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Abstract
Background: Clinical named entity recognition (CNER) is a fundamental task in natural language processing used to extract
named entities from electronic medical record texts. In recent years, with the continuous development of machine learning,
deep learning models have replaced traditional machine learning and template-based methods, becoming widely applied in the
CNER field. However, due to the complexity of clinical texts, the diversity and large quantity of named entity types, and the
unclear boundaries between different entities, existing advanced methods rely to some extent on annotated databases and the
scale of embedded dictionaries.
Objective: This study aims to address the issues of data scarcity and labeling difficulties in CNER tasks by proposing a
dataset augmentation algorithm based on proximity word calculation.
Methods: We propose a Segmentation Synonym Sentence Synthesis (SSSS) algorithm based on neighboring vocabulary,
which leverages existing public knowledge without the need for manual expansion of specialized domain dictionaries. Through
lexical segmentation, the algorithm replaces new synonymous vocabulary by recombining from vast natural language data,
achieving nearby expansion expressions of the dataset. We applied the SSSS algorithm to the Robustly Optimized Bidirec-
tional Encoder Representations from Transformers Pretraining Approach (RoBERTa) + conditional random field (CRF) and
RoBERTa + Bidirectional Long Short-Term Memory (BiLSTM) + CRF models and evaluated our models (SSSS + RoBERTa
+ CRF; SSSS + RoBERTa + BiLSTM + CRF) on the China Conference on Knowledge Graph and Semantic Computing
(CCKS) 2017 and 2019 datasets.
Results: Our experiments demonstrated that the models SSSS + RoBERTa + CRF and SSSS + RoBERTa + BiLSTM + CRF
achieved F1-scores of 91.30% and 91.35% on the CCKS-2017 dataset, respectively. They also achieved F1-scores of 83.21%
and 83.01% on the CCKS-2019 dataset, respectively.
Conclusions: The experimental results indicated that our proposed method successfully expanded the dataset and remarkably
improved the performance of the model, effectively addressing the challenges of data acquisition, annotation difficulties, and
insufficient model generalization performance.
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Introduction
Named entity recognition (NER) is an important subtask in
natural language processing [1]. Its primary function is to
identify and classify entities such as diseases in textual data.
In the clinical domain, clinical NER (CNER) is used to
recognize and classify clinical textual data such as disea-
ses, symptoms, treatments, tests, body parts, and medica-
tions in electronic medical records (EMRs) [2]. CNER is
mission critical for building intelligent medical assistive
systems, such as clinical decision support systems, and
constructing medical knowledge graphs [3]. However, clinical
text data are usually unstructured, and clinical text syntax
might be incomplete with poor contextualization. Clinical
terms may have different meanings in different contexts,
and this variability and ambiguity make the identification
and classification of named entities extremely challenging,
thus making NER in the clinical domain more challenging
compared to NER in the general domain [4]. Additionally,
Chinese EMRs will appear to be more complicated compared
to those written in Roman alphabet languages due to the
complexity of Chinese grammatical structure and clausal
rules [5]. With a relatively flexible word order, the subject-
verb-object sequence of the Chinese language depends on the
emphasis of the content. In contrast, the sentence structure
in Roman alphabet languages is relatively fixed, where the
word order has minimal impact on semantics. In Chinese,
subjects, objects, or other components are frequently omitted,
which poses additional challenges for tasks like NER, as
this requires interpreting and adding this missing informa-
tion. In Roman alphabet languages, sentence components are
typically expressed explicitly and omissions are less common.
Even when omissions do occur, verb conjugations gener-
ally provide sufficient contextual clues. In Chinese EMRs,
technical terminology and colloquial descriptions are often
interwoven, and the frequent use of polysemy and vague
expressions further contributes to linguistic diversity and
complexity.

Over the past decade, remarkable advancements have
been made in the field of CNER [6-8]. Although conven-
tional dictionary-based techniques can identify names and
distinct clinical concepts with high accuracy and precision
in matching, the quality and size of dictionaries directly
impact recognition outcomes. With the development of
machine learning, the theoretical basis for several unsuper-
vised learning algorithms revolves around the distributional
hypothesis proposed by Zellig Harris [9]. This hypothe-
sis posits that words with similar semantic meanings tend
to appear in coherent contexts. Consequently, these algo-
rithms assign vector representations to words based on
their contextual associations. Two notable examples of such
algorithms that use the distributional hypothesis are GloVe
and word2vec. Word2vec relies on prediction models, while
GloVe is based on count-based calculations.

CNER presents increased complexity and challenges. This
is due to the widespread use of unconventional abbreviations
and various representations of the same entities within the
Chinese language. These factors greatly impede the accurate
and efficient extraction of crucial information. To address
this challenge, dictionary-based approaches require a deep
understanding and thorough utilization of well-annotated
data sources and relevant knowledge bases. This approach
enhances model performance and generalizability.

The adoption of deep learning has led to the emergence
of numerous models using a variety of approaches. One such
example is the work conducted by Li et al [10], who utilized
a lattice long short-term memory (LSTM) model incorpo-
rating contextualized character representation for recogniz-
ing clinical named entities in Chinese. They developed
a novel variant of contextualized character representation
and incorporated a conditional random field (CRF) layer
into their model. Xu et al [11] introduced a novel neural
network approach referred to as dictionary-attention-Bidirec-
tional LSTM-CRF (Dic-Att-BiLSTM-CRF) for disease NER.
Their method involved applying an efficient and precise
string-matching technique to identify disease entities with
disease dictionaries constructed from the disease ontology.
Furthermore, Dic-Att-BiLSTM-CRF created a dictionary
attention layer by integrating disease dictionary matching
strategies and document-level attention mechanisms. Wang et
al [12] constructed a dictionary- and context-based approach
using medical literature to construct feature vectors for each
Chinese character in their proposed combination method of
knowledge-driven dictionary methods and data-driven deep
learning for NER tasks. The results showed that this approach
effectively improved the processing of rare entities; as the
size of the dictionary increased, the performance of the
method gradually improved.

Despite significant advancements in these methods,
several limitations remain. The performance of these
approaches relies to some extent on the annotation and
embedding capabilities of the underlying databases [13].
Medical datasets often encounter challenges in data collec-
tion and annotation, and concerns regarding patient privacy
protection and compliance contribute to smaller document
collections. Moreover, rarer diseases, drugs, and entities
occur less frequently, making it difficult to train models
effectively. Few existing methods are universally applica-
ble across diverse datasets, and the generalization perform-
ance of the models requires further enhancement due to the
peculiarity of medical texts. EMRs abound with ambiguous
terms, nonstandard abbreviations, and variations of the same
entity, for example, “奥沙利铂(oxaliplatin)” and “奥沙利
柏(oxaliplatin)” [14] and “心肌梗死(Myocardial Infarction)”
and “心肌梗塞 (Myocardial Infarction).” Doctors’ writing
styles differ significantly, leading to intricate text structures
and challenging comprehension. Current NER tasks in the
medical domain are primarily focused on Chinese NER,
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which presents a challenge due to unclear entity bounda-
ries and difficulties in Chinese word segmentation, thereby
undermining model performance.

Based on the above problems, this paper proposes a
Segmentation Synonym Sentence Synthesis (SSSS) algorithm
based on proximity lexical expressions, which was exten-
sively validated on the China Conference on Knowledge
Graph and Semantic Computing (CCKS) 2017 and 2019
datasets. The main contributions of this paper are as follows:

1. We propose an adaptive SSSS algorithm for dataset
optimization, which exploits existing public knowl-
edge without manually expanding specialized domain
dictionaries. It achieved proximity expansion expres-
sion of the dataset through lexical cuts, recombined by
substituting new proximity repertoires from vast natural
language data.

2. By expanding the proximity vocabulary, our algorithm
successfully extended the documents of CCKS-2017
and CCKS-2019 by approximately 17 and 20 times,
respectively.

3. We evaluated the algorithm’s performance on
CCKS-2017 and CCKS-2019 and achieved relatively
competitive results compared to other state-of-the-art
models. By extending the proximity vocabulary, our
models (SSSS + Robustly Optimized Bidirectional
Encoder Representations from Transformers Pretraining
Approach [RoBERTa] + CRF and SSSS + RoBERTa
+ Bidirectional Long Short-Term Memory Network
[BiLSTM]+ CRF) outperformed both Bidirectional
Encoder Representations from Transformers [BERT] +
CRF and BERT + BiLSTM + CRF models in handling
unknown and low-frequency entities.

Methods
Generating an Extended Dataset Based
on Proximal Vocabulary
In our experiment, it was observed that specific entities
related to “disease” and “therapy” were relatively scarce
compared to other categories in the training dataset. This
imbalance in entity distribution may weaken the model’s
effectiveness when dealing with rare or subtle mentions of
these topics in the medical field. Additionally, given the
complexity and uniqueness of the medical domain, creating
comprehensive dictionaries requires substantial engineering
efforts and expertise from professionals to ensure smooth
execution.

In this work, we drew inspiration from the concept of
proximal lexical expressions [15] and proposed a method
called SSSS. The implementation of this algorithm involved
several steps. First, text segmentation was performed using
the Jieba library. Then, based on the natural language word
library trained with Word2Vec, synonyms were searched
and processed using the Synonyms database. Finally, these
identified synonyms were integrated into the original training
set at appropriate positions.

Specifically, when entity X appeared in the training data,
we first used the Jieba library to divide it into multiple
simple words, such as X1, X2, and X3. If the number of
simple words for an entity exceeded 2, we used the edit
distance algorithm to search for synonyms related to it in the
Synonyms database [16]. For example, “Norfloxacin” can be
associated with its synonym “Fluoroquinolones,” which are
different names for the same drug. Additionally, we replaced
the original simple words in the processed sentences with the
identified synonyms and then reassembled these new complex
words to generate synthetic sentences. For instance, after
breaking down “Pelvic MRI” into “Pelvis” and “MRI,” we
reconstructed them into a sentence using their corresponding
synonyms: “Pelvic nuclear magnetic resonance examination.”
Through these steps, our aim was to enhance the diversity
and richness of the training data, which may contribute
to improving the final model’s generalization ability and
accuracy. The replaced vocabulary was reintegrated into the
surrounding context sentences, aiming to supplement more
sentence expressions and vocabulary information without
altering the original meaning of the sentences. In similarity
calculations, only segmented words were considered; after
dimensionality reduction using principal component analysis,
they were visualized in a 2D space as shown in Figure 1.

To improve the generalizability and adaptability of models
faced with restricted training datasets, this algorithm explored
various synonymous or interchangeable wordings while
retaining the primary connotations of words. This strategy
enabled the expansion of the training dataset size without
the need for additional domain-specific dictionaries, thereby
reducing reliance on input from domain experts. Conse-
quently, both the workload of domain expertise personnel and
the labeling workforce required for datasets were signifi-
cantly reduced. By implementing this approach, we utilized
the SSSS algorithm to enhance the information and vocabu-
lary within the training set, thereby improving the model’s
learning ability. Table 1 presents some examples.
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Figure 1. Two-dimensional spatial representation of sample vocabulary.

Table 1. Examples of Segmentation Synonym Sentence Synthesis algorithm expansion.
Entity types Sentence Entity Postexpansion entity
Body 右手中指疼痛不适 (Pain and discomfort in

the right middle finger)
右手中指 (Right middle finger) 右中指 (Right middle finger)

Symptom 主因头部外伤出血伴头昏 3.5小时入院 (The
patient was admitted due to head trauma with
bleeding and dizziness for 3.5 hours)

头昏 (Dizziness) 头晕 (Dizziness)

Exam 心电图, 颈动脉彩超等检查
(Electrocardiogram, carotid artery Doppler
ultrasound, and other tests)

心电图 (Electrocardiogram), 颈动脉
彩超 (Carotid artery Doppler
ultrasound)

心电图 (Electrocardiogram), 双侧颈动脉彩
超 (Bilateral carotid artery Doppler
ultrasound)

Treatment 给予静点头孢哌酮, 炎琥宁联合抗感染
(Administered intravenous cefoperazone and
ibuprofen for combined anti-infection
treatment)

头孢哌酮 (Cefoperazone), 炎琥宁
(Ibuprofen)

头孢哌酮舒巴坦钠 (Cefoperazone and
sulbactam sodium), 炎琥宁 (Ibuprofen)
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Models

BERT and RoBERTa
BERT [17] is an outstanding pretrained model for text vector
representation. Comprising multiple layers of bidirectional
transformer encoders, it has the capability to consider the
words both before and after a given word, enabling it
to ascertain the word’s meaning within the context. The
structure of the BERT model is illustrated in Figure 2. This
model is obtained through unsupervised task training on a
vast corpus of everyday language. It leverages the self-atten-
tion mechanism embedded in its encoder layers to learn
enhanced word feature representations, which can be directly
applied to downstream tasks. However, due to the less

frequent occurrence of medical terms in everyday language
corpora and the inclusion of more long-tail vocabulary,
such as specialized terminologies, it is essential to con-
duct secondary training on supervised medical corpora for
downstream tasks. RoBERTa [18], developed by Facebook, is
a derivative version of the original BERT model. It inher-
its BERT’s basic architecture, including stacked transformer
layers and bidirectional context encoding. It enhances
the training set’s variability through dynamic masking in
language modeling, improving the model’s comprehension
abilities. Additionally, RoBERTa uses a larger pretraining
dataset and a bigger batch size, resulting in superior perform-
ance. It is reasonable to expect that replacing BERT with
RoBERTa could lead to even better outcomes.

Figure 2. BERT and RoBERTa model structure diagram. BERT: Bidirectional Encoder Representations from Transformers; RoBERTa: Robustly
Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.

BiLSTM Model
The BiLSTM model is a deep learning architecture designed
for processing sequential data, achieved by integrating 2
independent BiLSTM networks. Specifically, the BiLSTM
model comprises 2 LSTM modules: one reads the sequence
from left to right, and the other reads from right to left.
Numerous studies have used bidirectional recurrent neural
networks to extract local features, integrating them into global
information after obtaining the latter using BERT [19,20]. A
vector of length T, represented as x1, x2, …, xt, serves as
the input to the LSTM units, generating an output sequence
of vectors ℎ1, ℎ2, …, ℎt, all of equal length, through the
application of nonlinear transformations learned during the
training phase. Each ℎt is referred to as the activation of the
LSTM at token t. The computational process of neurons in the
LSTM is illustrated by Equations 1-4.

(1)it = σ Wxixt +Wℎiℎt − 1 +Wcict − 1 + bi
(2)ct = 1 − it ⊙ ct − 1 + it⊙ tanh Wxcxt +Wℎcℎt − 1 + bc
(3)ot = σ Wxoxt +Wℎoℎt − 1 +Wcoct + bo
(4)ℎt = ot⊙ tanh ct

In the equations above, W  and b are trainable parameters, σ
represents the element-wise sigmoid function, and ⊙  is the
element-wise product.

CRF Model
The CRF model is a machine learning model utilized for
processing sequence data, especially in natural language
processing. It typically takes a sequence of text as input
and generates a corresponding sequence of hidden states as
output. In the sequence labeling step of our research, there
exists a dependency relationship between adjacent labels.
For instance, an inside tag “I” must follow a beginning tag
“B.” We incorporate a CRF layer following the BERT or
BiLSTM layer to compute the optimal sequence combination.
This layer considers the dependency relationships between
adjacent labels, ensuring that an inside tag “I” follows a
beginning tag “B” while maintaining a consistent type [21].
CRF assumes that a Markov random field has 2 sets of
variables, where the X set usually represents a given value,
denoting the input sequence, and Y represents the output
under the given X condition as the corresponding output
label. The graph of a CRF satisfies the following properties.

When we are under the global condition of X , meaning
that the value of a random variable in X  is fixed or given, Y
follows the Markov property:
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(5)P YuX ,Yv,u ≠ v = P YuX ,Yx,Yu ∼ Yx
where Yu Yx indicates that Yu and Yx are neighbors in the
graph.
Integration Architecture
To evaluate the effectiveness of the SSSS algorithm
compared to the original dataset, this study integrated and
utilized 4 separate models (ie, BERT + CRF, BERT +
BiLSTM + CRF, RoBERTa + CRF, and RoBERTa +
BiLSTM + CRF). These models have similar structures but
were trained using different datasets, masking representations,
and training steps during the pretraining phase. The BERT +

CRF and BERT + BiLSTM + CRF models have already been
proven effective in numerous NER experiments [20,22,23],
hence they were chosen as comparative baselines for this
experiment. The impact of the downstream training set on the
experimental results is significant, but the choice of pretrain-
ing dataset for the pretrained models also plays a crucial
role. To validate this, the study introduced the Chinese BERT
model RoBERTa, which uses more Chinese training data for
model training. Finally, our model structures were divided
into 2 categories, those including BiLSTM and those not
including BiLSTM, as shown in Figures 3 and 4, respectively.
An ablation study was also conducted on the RoBERTa +
CRF and RoBERTa + BiLSTM + CRF models.

Figure 3. SSSS + RoBERTa + BiLSTM + CRF model structure diagram. CRF: conditional random field; BiLSTM: Bidirectional Long Short-Term
Memory; RoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach; SSSS: Segmentation
Synonym Sentence Synthesis.

Figure 4. SSSS + RoBERTa + CRF model structure diagram. CRF: conditional random field; RoBERTa: Robustly Optimized Bidirectional Encoder
Representations from Transformers Pretraining Approach; SSSS: Segmentation Synonym Sentence Synthesis.
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Parameter Setting
In this study, beginning, inside, outside tags are utilized to
denote entities. Each clinical record may consist of several
sentences and treating the record as a whole could result in
excessively long samples. Therefore, we separate each record

with a Chinese period. All models in this experiment were
trained on a 3080 Ti GPU. Common parameter settings for
all models were standardized to ensure fairness, utilizing the
parameters shown in Table 2.

Table 2. Model parameter settings.
Parameters Value
Learning rate of BERT/RoBERTaa 2×10−5

Learning rate of BiLSTMb 2×10−5

Learning rate of CRFc 2×10−3

Max length 256
Batch size 32
Epoch 50

aBERT/RoBERTa: Bidirectional Encoder Representations from Transformers/Robustly Optimized Bidirectional Encoder Representations from
Transformers Pretraining Approach
bBiLSTM: Bidirectional Encoder Representations from Transformers.
cCRF: conditional random field.

Ethical Considerations
The CCKS-2017 and CCKS-2019 databases used in this
study are publicly available and no ethical review was
required.

Results
Datasets
This study utilized 2 datasets from the CCKS-2017 CNER
and CCKS-2019 CNER tasks, each consisting of training and
testing sets. The training sets were used for model train-
ing, while the testing sets were used for model evaluation.

All data were derived from progress notes and examina-
tion results in inpatient EMRs released by the CCKS
challenge tasks. CCKS-2017 includes annotations for 5
entity types: symptoms, tests, diagnoses, treatments, and
anatomical locations. CCKS-2019 encompasses annotations
for 6 entity types: anatomical locations, surgeries, diseases,
diagnoses, imaging examinations, medications, and laboratory
tests. CCKS-2017 comprises 1559 training instances, while
CCKS-2019 comprises 1379 training instances. The original
datasets used a JSON structure to annotate the beginning
and end of entities, which were then transformed into the
beginning, inside, outside annotation scheme for ease of
training and testing. The types and quantities of entities in
the training datasets are shown in Tables 3 and 4.

Table 3. Entity distribution in the China Conference on Knowledge Graph and Semantic Computing 2017 dataset.
Type Quantity
Body 9114
Symptom 8236
Exam 11,163
Disease 1462
Treatment 3260

Table 4. Entity distribution in the China Conference on Knowledge Graph and Semantic Computing 2019 dataset.
Type Quantity
Laboratory 1796
Image 1324
Operation 1194
Disease 5540
Drug 2316
Anatomy 11,521

Evaluation Metrics
Evaluation metrics are defined by the alignment of true
values and predicted results, ensuring consistency in both
starting and ending positions as well as correct identification

of entity types. In our experiments, we utilized precision,
recall, and F1-scores to evaluate the recognition performance
of the models; evaluations of all metrics were conducted
at the entity level. To validate the feasibility of the SSSS
algorithm, we selected dual baselines (BERT + CRF and
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BERT + BiLSTM + CRF) and dual datasets (CCKS-2017
and CCKS-2019), applying them simultaneously to different
datasets and models to achieve cross-validation.

After applying the SSSS algorithm [24], the CCKS-2017
dataset expanded from its original size of 1559 documents to

26,768 entries, representing an expansion of approximately
17 times. Similarly, the CCKS-2019 dataset increased from
its original 1379 entries to 28,933 entries, marking an
expansion of approximately 20 times. The extent of entity
expansion is illustrated in Tables 5 and 6 below.

Table 5. Segmentation Synonym Sentence Synthesis algorithm extended effect on the China Conference on Knowledge Graph and Semantic
Computing 2017 test set.

Preexpansion Postexpansion
Body 9114 318,220
Symptom 8236 275,457
Exam 11,163 389,045
Disease 1462 39,599
Treatment 1462 59,852

Table 6. Segmentation Synonym Sentence Synthesis algorithm extended effect on the China Conference on Knowledge Graph and Semantic
Computing 2019 test set.

Preexpansion Postexpansion
Laboratory 1796 20,270
Image 1324 17,396
Operation 1194 18,662
Disease 5540 77,207
Drug 2316 24,365
Anatomy 11,521 143,332

Experiment Results
To demonstrate the effectiveness of the algorithm, we
constructed four models: (1) SSSS + BERT + CRF, (2)
SSSS + BERT + BiLSTM + CRF, (3) SSSS + RoBERTa
+ CRF, and (4) SSSS + RoBERTa + BiLSTM + CRF.
These were compared with BERT + CRF (baseline 1)
and BERT + BiLSTM + CRF (baseline 2). To investigate
the impact of SSSS on RoBERTa, we also performed an
ablation study on the RoBERTa + CRF and RoBERTa +
BiLSTM + CRF models. The results for CCKS-2017 and
CCKS-2019 are presented in Tables 7 and 8. Specifically,
incorporating SSSS into the BERT + CRF and BERT +
BiLSTM + CRF models resulted in F1 measure increases of
1.97% (compared with baseline 1) and 1.77% (compared with
baseline 1), respectively, for CCKS-2017. Switching from

BERT to RoBERTa, which includes more Chinese data in
its pretraining, led to even more significant improvements.
The F1-score of SSSS + RoBERTa + CRF improved by
2.51% (compared with baseline 1) and 2.36% (compared with
RoBERTa + CRF), and SSSS + RoBERTa + BiLSTM +
CRF improved by 2.37% (compared with baseline 2) and
by 1.66% (compared with RoBERTa + BiLSTM + CRF).
For CCKS-2019, similar enhancements were observed, with
increases of 2.06% (compared with baseline 1) and 2.29%
(compared with baseline 2) for SSSS + BERT + CRF and
SSSS + BERT + BiLSTM + CRF; 2.62% (compared with
baseline 1) and 2.24% (compared with RoBERTa + CRF)
for SSSS + RoBERTa + CRF; and 2.44% (compared with
baseline 2) and 2.12% (compared with RoBERTa + BiLSTM
+ CRF) for SSSS + RoBERTa + BiLSTM + CRF.

Table 7. Results of various methods on the China Conference on Knowledge Graph and Semantic Computing 2017 test set.
Method Precision, % Recall, % F1-score, %
BERTa + CRFb (baseline1) 87.61 90.00 88.79
BERT + BiLSTMc + CRF (baseline 2) 89.27 88.69 88.98
RoBERTad + CRF 87.52 90.40 88.94
RoBERTa + BiLSTM + CRF 89.96 89.43 89.69
SSSSe + BERT + CRF 91.20 90.33 90.76
SSSS + BERT + BiLSTM + CRF 90.70 90.80 90.75
SSSS + RoBERTa + CRF 91.31 91.29 91.30
SSSS + RoBERTa + BiLSTM + CRF 91.22 91.48 91.35

aBERT: Bidirectional Encoder Representations from Transformers.
bCRF: conditional random field.
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Method Precision, % Recall, % F1-score, %

cBiLSTM: Bidirectional Long Short-Term Memory.
dRoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.
eSSSS: Segmentation Synonym Sentence Synthesis.

Table 8. Results of various methods on the China Conference on Knowledge Graph and Semantic Computing 2019 test set.
Method Precision, % Recall, % F1-score, %
BERTa + CRFb (baseline 1) 78.43 82.88 80.59
BERT + BiLSTMc + CRF (baseline 2) 78.14 83.17 80.57
RoBERTad + CRF 78.10 84.06 80.97
RoBERTa + BiLSTM + CRF 79.82 82.00 80.89
SSSSe + BERT + CRF 81.08 84.28 82.65
SSSS + BERT + BiLSTM + CRF 81.22 84.57 82.86
SSSS + RoBERTa + CRF 81.10 85.46 83.21
SSSS + RoBERTa + BiLSTM + CRF 81.51 84.57 83.01

aBERT: Bidirectional Encoder Representations from Transformers.
bCRF: conditional random field.
cBiLSTM: Bidirectional Long Short-Term Memory.
dRoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.
eSSSS: Segmentation Synonym Sentence Synthesis.

Further analysis across different entity types in both datasets
confirmed the comprehensive performance of our models.
The experiment results are shown in Figures 5 and 6 and
Tables 9 and 10. In CCKS-2017, all entity types showed
improvements in F1-scores after applying the SSSS algo-
rithm. Notably, the body entity type reached an F1 score of
88.24% with SSSS + RoBERTa + CRF, marking a 3.45%
increase (compared with baseline 1) and 3.71% increase
(compared with RoBERTa + CRF). The symptom entity
type achieved its highest F1-score at 97.28% with SSSS +
RoBERTa + BiLSTM + CRF, improving by 0.92% (com-
pared with baseline 2) and 0.81% (compared with RoBERTa
+ BiLSTM + CRF). SSSS + RoBERTa + BiLSTM + CRF
also led in the exam entity type with an F1-score of 90.51%,

representing a 1.5% increase compared with baseline 2 and
a 1.02% increase compared with RoBERTa + BiLSTM +
CRF. The disease entity type saw their highest F1-score
of 88.88% with SSSS + RoBERTa + CRF, increasing by
4.22% (compared with baseline 1) and 2.56% (compared
with RoBERTa + CRF). The treatment entity achieved the
highest F1-score of 88.38% using SSSS + RoBERTa + CRF,
marking an increase of 1.41% (compared with baseline 1) and
2.23% (compared with RoBERTa + CRF). The CCKS-2019
results echoed this pattern of improvement across all entity
types. The laboratory, image, operation, disease, drug, and
anatomy entity types all saw their best performances with our
models, showcasing the effectiveness of the SSSS algorithm
in enhancing model accuracy and robustness.
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Figure 5. Results of different models on various entity types within the CCKS-2017 test set. BERT: Bidirectional Encoder Representations from
Transformers; BiLSTM: Bidirectional Long Short-Term Memory; CCKS: China Conference on Knowledge Graph and Semantic Computing; CRF:
conditional random fields; RoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach; SSSS:
Segmentation Synonym Sentence Synthesis.

Figure 6. Results of different models on various entity types within the CCKS-2019 test set. BERT: Bidirectional Encoder Representations from
Transformers; BiLSTM: Bidirectional Long Short-Term Memory; CCKS: China Conference on Knowledge Graph and Semantic Computing; CRF:
conditional random fields; RoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach; SSSS:
Segmentation Synonym Sentence Synthesis.

Table 9. Results of entity type on the China Conference on Knowledge Graph and Semantic Computing 2017 test set.
Model Body Symptom Exam Disease Treatment
BERTa + CRFb (baseline 1) 84.79 96.39 86.44 84.66 86.97
BERT + BiLSTMc + CRF (baseline 2) 83.68 96.36 89.01 84.56 86.14
RoBERTad + CRF 84.53 96.02 86.73 86.32 86,15
RoBERTa + BiLSTM + CRF 85.34 96.47 89.49 86.68 85.82
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Model Body Symptom Exam Disease Treatment
SSSSe + BERT + CRF 87.01 96.91 89.83 88.25 85.96
SSSS + BERT + BiLSTM + CRF 86.91 97.21 89.42 87.45 88.10
SSSS + RoBERTa + CRF 88.24 97.24 89.06 88.88 88.38
SSSS + RoBERTa + BiLSTM + CRF 87.65 97.28 90.51 88.61 87.55

aBERT: Bidirectional Encoder Representations from Transformers.
bCRF: conditional random field.
cBiLSTM: Bidirectional Long Short-Term Memory.
dRoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.
eSSSS: Segmentation Synonym Sentence Synthesis.

Table 10. Results of entity type on the China Conference on Knowledge Graph and Semantic Computing 2019 test set.
Model Laboratory Image Operation Disease Drug Anatomy
BERTa + CRFb (baseline 1) 75.85 82.25 84.16 79.39 83.44 81.30
BERT + BiLSTMc + CRF (baseline 2) 77.54 82.39 76.71 79.97 82.25 81.36
RoBERTad + CRF 78.70 79.43 79.13 81.02 83.61 81.33
RoBERTa + BiLSTM + CRF 77.65 83.05 80.37 80.38 82.66 81.31
SSSSe + BERT + CRF 78.55 84.64 84.79 83.53 86.88 81.77
SSSS + BERT + BiLSTM + CRF 79.78 85.63 82.95 82.40 84.98 83.05
SSSS + RoBERTa + CRF 82.05 85.96 84.79 82.79 85.71 82.74
SSSS + RoBERTa + BiLSTM + CRF 84.87 83.85 82.57 81.60 85.03 82.95

aBERT: Bidirectional Encoder Representations from Transformers.
bCRF: conditional random field.
cBiLSTM: Bidirectional Long Short-Term Memory.
dRoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.
eSSSS: Segmentation Synonym Sentence Synthesis.

To validate the performance of our model in handling
unknown and low-frequency entities, we conducted experi-
ments comparing our models (SSSS + RoBERTa + CRF and
SSSS + RoBERTa + BiLSTM + CRF) with BERT + CRF
and BERT + BiLSTM + CRF in terms of precision. Entities
were categorized based on their occurrence frequency in the
training set, as follows:

1. Unknown entities: occurrence frequency of 0 in the
training set.

2. Low-frequency entities: occurrence frequency <5 times
in the training set.

3. High-frequency entities: occurrence frequency ≥5 times
in the training set.

The comparison results are shown in Tables 11 and 12.
From the tables, it can be observed that in the CCKS-2017
task, compared to the baseline models, our models SSSS
+ RoBERTa + CRF and SSSS + RoBERTa + BiLSTM +
CRF improved F1-scores for unknown entities by 6.04%
(compared with baseline 1) and 5.54% (compared with
baseline 2), respectively. For low-frequency entities, the

improvements were 7.74% (compared with baseline 1) and
6.39% (compared with baseline 2), respectively. As for
high-frequency entities, improvements of 1.96% (compared
with baseline 1) and 1.85% (compared with baseline 2)
were achieved, respectively. Similar results were obtained in
the CCKS-2019 task. Compared with the baseline mod-
els, SSSS + RoBERTa + CRF and SSSS + RoBERTa +
BiLSTM + CRF achieved improvements of 4.21% (com-
pared with baseline 1) and 2.29% (compared with baseline
2) for unknown entities, respectively, for . For low-fre-
quency entities, improvements of 2.35% (compared with
baseline 1) and 6.31% (compared with baseline 2) were
achieved, while for high-frequency entities, improvements
of 1.09% (compared with baseline 1) and 0.95% (compared
with baseline 2) were observed. These results demonstrate
significant enhancements in handling unknown and low-fre-
quency entities after expanding the training dataset, with
more noticeable improvements observed for low-frequency
entities compared to unknown entities.

Table 11. The F1-scores for each method on the China Conference on Knowledge Graph and Semantic Computing 2017 test set.
Model Unknown entities Low-frequency entities High-frequency entities
BERTa + CRFb (baseline 1) 40.95 53.43 91.96
BERT + BiLSTMc + CRF (baseline 2) 42.59 55.98 92.09
SSSSd + RoBERTae + CRF 46.99 61.17 93.92
SSSS + RoBERTa + BiLSTM + CRF 48.13 62.37 93.94

aBERT: Bidirectional Encoder Representations from Transformers.
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Model Unknown entities Low-frequency entities High-frequency entities

bCRF: conditional random field.
cBiLSTM: Bidirectional Long Short-Term Memory.
dSSSS: Segmentation Synonym Sentence Synthesis.
eRoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.

Table 12. The F1-scores for each method on the China Conference on Knowledge Graph and Semantic Computing 2019 test set.
Model Unknown entities Low-frequency entities High-frequency entities
BERTa + CRFb (baseline 1) 47.84 63.90 83.65
BERT + BiLSTMc + CRF (baseline 2) 45.58 63.59 84.01
SSSSd + RoBERTae + CRF 52.05 66.25 84.74
SSSS + RoBERTa + BiLSTM + CRF 47.87 68.68 84.96

aBERT: Bidirectional Encoder Representations from Transformers.
bCRF: conditional random field..
cBiLSTM: Bidirectional Long Short-Term Memory.
dSSSS: Segmentation Synonym Sentence Synthesis.
eRoBERTa:Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.

To demonstrate the superiority of our model, we compared
it with existing state-of-the-art models. Table 13 presents the
experimental results of different models on the CCKS-2017

and CCKS-2019 datasets. Our model shows a clear advant-
age.

Table 13. Comparison of results with existing models on the China Conference on Knowledge Graph and Semantic Computing 2017 and 2019
datasets.
Model 2017 dataset 2019 dataset

Precision, % Recall, % F1-score, % Precision, % Recall, % F1-score, %
ATa-Lattice LSTMb-CRFc [25] 88.98 90.28 89.64 —d — —
BiLSTMe-CRF + Gazetteer + Spatial Attention
[26]

85.39 87.62 86.49 — — —

BiLSTM-Attf-CRF + POSg + Dich [27] 90.41 90.49 90.48 — — —
MCBERTi-GCNj-CRF [28] — — — 83.87 82.26 83.06
SSSSk + RoBERTal + CRF 91.31 91.29 91.30 81.10 85.46 83.21
SSSS + RoBERTa + BiLSTM + CRF 91.22 91.48 91.35 81.51 84.57 83.01

aAT: adversarial training.
bLSTM: Long Short-Term Memory.
cCRF: conditional random field.
dNot applicable.
eBiLSTM: Bidirectional Long Short-Term Memory.
fAtt: attention.
gPOS: part-of-speech.
hDic: dictionary.
iMCBERT: Medical Chinese Bidirectional Encoder Representations from Transformers.
jGCN: graph neural network.
kSSSS: Segmentation Synonym Sentence Synthesis.
lRoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.

Discussion
Principal Results
We proposed the SSSS algorithm based on neighbor-
ing vocabulary to effectively expand the training dataset
without introducing additional specialized domain dictionar-
ies, thereby enhancing the model’s performance in CNER
tasks. The algorithm utilized the Jieba library to tokenize
the original entities, then used a natural language vocabu-
lary trained based on Word2Vec and calculated neighbor-
ing vocabulary through the Synonyms library to generate

more forms of entity expressions, which are integrated
into the training set. This approach allowed the model to
encounter more diverse forms of entities during training,
thereby improving its generalization ability and capability to
recognize diverse entities.

In terms of model structure, this study adopted BERT as
the underlying model, combined with the CRF model for
sequence labeling tasks, and introduced the BiLSTM model
for extracting local features. Experimental results demon-
strated that these models achieved significant performance
improvement in handling CNER tasks after introducing
the SSSS algorithm. The algorithm substantially augmented
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the dataset, leading to notable enhancements in identify-
ing previously unknown entities and low-frequency enti-
ties. Particularly, the improvement in low-frequency entities
was substantial, as the generation of expanded entities
depends on the decomposition and recombination of existing
entities. By splitting and expanding low-frequency entities,
their frequencies can be increased, effectively enhancing
the model’s recognition capabilities for these entities. For
example, in the EMR text “依据头颅 CT：多发脑梗死，
故多发脑梗死诊断明确  (Based on cranial CT: multiple
cerebral infarctions, hence the diagnosis of multiple cere-
bral infarctions is clear),” the disease entity “多发脑梗死
(multiple cerebral infarctions)” and the treatment entity “单
硝酸异山梨酯扩冠 (isosorbide mononitrate vasodilation)” in
the phrase “单硝酸异山梨酯扩冠改善心肌缺血 (isosorbide
mononitrate vasodilation to improve myocardial ischemia)”
appeared only once in the original dataset and they were
not recognized by the baseline model. However, after SSSS
expansion, these entities were successfully identified. For
high-frequency entities, such as the cure entities “阿司匹
林  (Aspirin)” and “头孢哌酮钠舒巴坦钠  (Cefoperazone
Sodium and Sulbactam Sodium)” and the disease entity “冠心
病 (coronary heart disease),” expansion further increased their
occurrence frequency in the training set, improving cover-
age. However, for previously unknown entities, although
some new entities could be generated through the decompo-
sition and expansion of high-frequency and low-frequency
entities, their improvement was less than that of low-fre-
quency entities. For example, the body entity “右侧胸腔
(right pleural cavity)” did not exist in the original dataset but
was successfully identified through expansion from entities
like “胸腔  (pleural cavity)” and “左侧胸腔  (left pleural
cavity).” However, drug entities such as “地高辛 (digoxin)”
and “格列本脲  (glibenclamide),” which were also absent
in the original dataset, remained unrecognized even after
expansion. This is because it is difficult to create entities that
are entirely absent from the original training set but that exist
in the medical domain; these entities are far from any entity in
the original training set based on the edit distance algo-
rithm. Subsequently, replacing BERT with RoBERTa further
improved performance, attributed to RoBERTa’s increased
use of pretraining data, leading to increased data volume
and iteration rounds, thus validating the effectiveness and
superiority of the proposed model.

This study adopted a multibaseline and multidataset
cross-experimental method, achieving significant improve-
ments in 2 model structures (BERT + CRF and BERT
+ BiLSTM + CRF) and 2 datasets (CCKS-2017 and
CCKS-2019), demonstrating that the method of expanding the
dataset by replacing neighboring vocabulary expressions with
new words can effectively improve the accuracy and recall of
the model on vocabulary in different models.
Limitations and Future Work
The increase in training time due to the expansion of
vocabulary expressions varies. Moreover, it can be observed

that in the CCKS-2019 task, the use of the expanded dataset
for anatomical entities was improved but still did not reach
the average level. This may be because anatomical entities
often appear mixed in surgical or disease and diagnosis
entities. Additionally, since the algorithm did not introduce
additional domain dictionaries, there are still shortcomings
in the expansion method for discovering new unknown
entities. Due to the extensive expansion of domain-specific
vocabulary, it may be difficult to ensure that the restruc-
tured sentences fully retain the original meaning. With the
rapid development of medical information, EMR text data
are becoming increasingly extensive and complex, resulting
in higher requirements for the performance and efficiency
of models. In future research, further combining small-scale
domain dictionaries to enhance the coverage of unknown
entities—or using techniques such as random word replace-
ment with MacBERT or Chinese word embeddings with
BERT-wwm—while addressing issues like nested anatomical
entities and Chinese word segmentation ambiguities remains
a direction that requires continued exploration and investiga-
tion.
Conclusion
This study introduces an adaptive dataset optimization
algorithm named SSSS, which is based on the utilization of
nearby vocabulary expressions. The algorithm was exten-
sively validated using the CCKS-2017 and CCKS-2019
datasets. We leveraged existing public knowledge, eliminat-
ing the need for manual expansion of specialized domain
dictionaries. By segmenting the existing vocabulary and
replacing it with new synonyms from the large natural
language database word2vec, we achieved the recombina-
tion of the datasets’ nearby expanded expressions. Experi-
mental results demonstrated that our algorithm successfully
expanded the documents of CCKS-2017 and CCKS-2019 by
approximately 17 times and 20 times, effectively addressing
challenges such as data acquisition, annotation difficulties,
and insufficient model generalization performance.

In terms of performance evaluation, when compared to the
basic BERT + CRF and BERT + BiLSTM + CRF models,
our model improved F1-scores by 2.51% and 2.37% in the
CCKS-2017 task, and achieved an increase of 2.62% and
2.44% in F1-scores in the CCKS-2019 task. Furthermore,
through the expansion of nearby vocabulary, our model
outperformed BERT + CRF and BERT + BiLSTM + CRF
in handling unknown entities and low-frequency entities. This
provides a novel approach for addressing challenges in CNER
tasks, such as the unstructured nature of clinical text, poor
contextual association, and difficulties in annotation.
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