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Abstract
Background: Data quality is fundamental to maintaining the trust and reliability of health data for both primary and secon-
dary purposes. However, before the secondary use of health data, it is essential to assess the quality at the source and to
develop systematic methods for the assessment of important data quality dimensions.
Objective: This case study aims to offer a dual aim—to assess the data quality of height and weight measurements across
7 Belgian hospitals, focusing on the dimensions of completeness and consistency, and to outline the obstacles these hospitals
face in sharing and improving data quality standards.
Methods: Focusing on data quality dimensions completeness and consistency, this study examined height and weight data
collected from 2021 to 2022 within 3 distinct departments—surgical, geriatrics, and pediatrics—in each of the 7 hospitals.
Results: Variability was observed in the completeness scores for height across hospitals and departments, especially within
surgical and geriatric wards. In contrast, weight data uniformly achieved high completeness scores. Notably, the consistency of
height and weight data recording was uniformly high across all departments.
Conclusions: A collective collaboration among Belgian hospitals, transcending network affiliations, was formed to conduct
this data quality assessment. This study demonstrates the potential for improving data quality across health care organizations
by sharing knowledge and good practices, establishing a foundation for future, similar research.
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Introduction
In an era of digital health care, hospitals are collecting
structured and coded electronic health record (EHR) data
at high velocity, resulting in a high volume of potentially
valuable data [1,2]. The secondary use of these data specif-
ically provides the opportunity to accelerate research and
improve patient care pathways [3]. Belgium, already a major
hub for clinical trials in Europe [4], is enhancing its repu-
tation through the Real-World Data for Belgium [5] initia-
tive, which collaborates with stakeholders to improve health
care by reusing patient data for both primary and secondary
purposes.

However, among these initiatives and opportunities that
the evolving health care landscape presents, the quality of
health data is imperative. Data quality is the cornerstone
ensuring the trustworthiness and reliability of health data
use and reuse. Despite its importance for safe patient-level
care and accurate inferences, obtaining high-quality data in
a health care setting remains a challenge, accompanied by
ambiguities in defining data quality and the most suitable
assessment methods [6-8].

A widely accepted definition in the literature is that
of data being “fit for purpose” [9]. This concept is fur-
ther refined by the Global Data Management Community
(DAMA International), which adapts this definition to a more
specific data context—“data quality is the degree to which
the data dimensions meet requirements” [10]. This defini-
tion expands upon earlier ones by capturing the subjectivity
and context-dependence inherent in data quality, offering a
more stakeholder-sensitive perspective that aligns with the
specificities of data use and reuse.

The path to ensuring data quality in the secondary use of
health data is complex and multifaceted. It involves not only
the original quality of the data when and where it is cap-
tured (eg, within the primary source such as an EHR system)
but also the quality of the processes by which the data are
transferred and transformed for further use, for example by
mapping the data to a data model and terminology systems
used within a clinical data warehouse. These stages, each
embedded within the comprehensive data life cycle, are often
overlooked in the literature [8], yet they are essential for a
thorough understanding of data quality.

Prior to making secondary use of health data, it is crucial
to measure the quality at the source and to establish meth-
odologies for assessing relevant data quality dimensions.
If not, it will not be possible to recheck the quality of
the data at later life cycle points to verify that it has
not been degraded (eg, through an extract, transformation,
or load process). Research into data quality, especially
when involving multiple primary data sources, consistently
encounters significant challenges that add to the complexity

of the research process [11]. These include measurement
discrepancies [12], the use of varied software systems for
data collection [13], inconsistent coding of diseases and
procedures [12,14], and complex data sharing agreements
[15]. Together, these factors not only hinder the efficient
exchange of data but also significantly affect the quality of
the data [16]. Furthermore, the health care ecosystem faces
a significant challenge due to the lack of clear and practical
guidelines for implementing strategies to ensure high data
quality, especially when sharing data across different health
care organizations for secondary use.

Several studies have aimed to define data quality
dimensions and methodologies to describe and measure
the dynamic complexity of data quality [6,17-20]. Despite
these efforts, there is still no comprehensive framework
that captures all aspects of data quality [8]. This has led
to a fragmented understanding of data quality dimensions,
with varying interpretations depending on the specific use
of health data. Literature suggests that existing methods are
often constrained by the absence of standardized metrics that
can accurately assess data quality across different dimensions
[8]. This limitation also extends to the transformation of
these dimensions into concrete requirements for primary and
secondary data usage, as well as for the extract, transforma-
tion, and load processes, that consider the original intent
being the data’s collection at the primary source.

This paper examines these challenges by presenting a case
study on data quality across multiple Belgian hospitals. The
study is driven by a twofold objective—first, to evaluate
the data quality of height and weight measurements across
7 Belgian hospitals, focusing on the dimensions of complete-
ness and consistency; and second, to identify the challenges
these hospitals encounter when implementing and managing
data quality improvement initiatives.

Methods
Overview
In this case study the data quality framework developed by
the European Institute for Innovation through Health Data
(i~HD) was adopted [8,21]. This data quality frame-
work is the prior result of analyzing 22 different pub-
lished frameworks and consolidating all of their defined
data quality dimensions into a consolidated framework,
condensed into 9 distinct data quality dimensions. Table 1
presents the data quality dimensions incorporated into the
i~HD data quality framework together with their defini-
tions. As completeness and consistency dimensions were
the most frequently used in the data quality litera-
ture, particularly when it comes to providing statistical
assessment methods, these 2 were selected for quality
assessment in this study [8,22].
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Table 1. Data quality framework.
Data quality dimension Definition
Completeness The extent to which data are present
Consistency The extent to which data satisfy constraints
Correctness The extent to which data are true and unbiased
Timeliness The extent to which data are promptly processed and up-to-date
Stability The extent to which data are comparable among sources and over time
Contextualization The extent to which data are annotated with acquisition context
Representativeness The extent to which data are representative of intended use
Trustworthiness The extent to which data can be trusted based on the owner’s reputation
Uniqueness The extent to which data are not duplicated

Case Study

Study Setting
The case study was conducted within 7 different hospitals
across Belgium. Table S1 in Multimedia Appendix 1 presents
a detailed table of the bed capacity for each participating
hospital reflecting its scale and patient intake capability. To
protect the confidentiality of the participating hospitals, they
are referred to using numerical identifiers such as hospital 1,
hospital 2, and so forth. This approach safeguards the privacy
of all participating hospitals.

The variables of interest in this case study were height
and weight. These 2 basic variables are both crucial health
metrics that inform a wide range of clinical decisions [23-25].
These variables were used to exemplify the quality of data
that should be reliably captured in all patient encounters,
thereby serving as a barometer for the overall quality of data
collection practices within a health care setting. To accom-
plish the objectives set in this study, we focused on 3 specific
departments within each hospital, identified by their ward
identifiers or department codes—C (surgical), G (geriatrics),
and E (pediatrics). These ward identifiers are standardized
across Belgian hospitals and refer to specific types of care
provided within the hospital systems [26-28]. These codes
are used for administrative purposes and ensure consistency
in department identification across hospitals. However, they
do not account for specific patient or disease characteristics,
such as age or underlying health conditions. The use of
ward identifiers provides a uniform method for extracting and
comparing health data across similar specialty departments,
allowing for standardized comparisons between hospitals in
this study.

Data Collection
The data collection spanned for 2 years and included all
patients discharged from the respective departments between
January 1, 2021, and December 31, 2022. For every patient
discharged within this time frame, the last recorded data
for height and weight were extracted, which means that if
multiple measurements were available, the most recent one
was used. In cases where only a single measurement was
taken, that value was used as the last recorded data. Should
there be instances where measurements for these variables
were not taken, these were systematically recorded as “NA”
or “NULL” to denote the absence of data within the specified

time frame. It is important to note that measurements taken
during preadmission consultations were deliberately excluded
from the data collection. This decision was made to ensure
that the study focused on inpatient data, reflecting the data
quality at this point of care during hospital stays. Since
natural language processing falls outside the scope of this
case study, only structured data were extracted. Table S2 in
Multimedia Appendix 1 presents the total number of patients
by department for each hospital involved in this case study.

The research team’s access to and analysis of the data
were limited to aggregated results, for data protection reasons.
Only hospital personnel with the appropriate access rights
performed the data extraction and derived the data quality
assessment results. The aggregated results were derived from
the data quality assessments conducted within each hospital
using a standardized set of analytical tools in R (version
2023/09/1; R Core Team) [29]. This approach not only
facilitated the uniform assessment of data quality across
various institutions but also eliminated the need for direct
access by the research team to personal health information,
thereby preserving patient anonymity and confidentiality
within this research.

Data for this study were collected in accordance with
data sharing agreements established with all participating
hospitals (University of Leuven, University Hospital Gent,
General Hospital Groeninge, OLV Hospital Aalst, General
Hospital – AZ Sint-Lucas Gent, Antwerp University Hospital,
and General Hospital Maria Middelares). The challenges
and obstacles encountered by hospitals were highlighted
during a conference session. During this session, various
hospitals shared their experiences, and participants offered
their insights and feedback [30-33]. All challenges were
carefully documented and categorized into 3 main areas, that
are privacy and governance requirements, software limita-
tions, and institutional responsibilities. The categorization
of obstacles was not predefined. Instead, it was developed
through a consensus-based approach during the confer-
ence session. After gathering input from various hospitals,
participants engaged in discussions and iterative feedback
rounds until an agreement was reached on how to group the
obstacles into these 3 categories. This process, culminating in
a consensus among all participants, ensured that the identified
obstacles were grouped and accurately reflected the shared
experiences of participating hospitals.
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Data Quality Assessment and Statistical
Analysis
The first step in the data quality assessment focused on
assessing the completeness of the collected data. Complete-
ness, in this case study, refers to the extent to which height
and weight data were recorded for patient admissions within
the study’s time frame. Completeness was quantified as the
percentage of missing values for both height and weight data
across all selected departments.

The second step evaluated the consistency of the data. In
this case study, consistency was determined by the percentage

of recorded height and weight values falling within clinically
acceptable ranges, predefined based on department-specific
norms. To calculate consistency scores, missing data entries
were excluded to avoid skewing the results. Subsequently, the
proportion of data within the specified ranges for both height
and weight was then determined, providing a percentage
score of values falling inside and outside the acceptable
range. Table 2 provides an overview of the variables and
associated data quality rules for completeness and consis-
tency.

Table 2. Overview of variables and data quality rules used for consistency.
Variable Definition Departments Data quality rule
Height Height (m) • Geriatrics (code G)

• Surgical (code C)
• Pediatrics (code E)

• Code G: range between 1.4 and 2.2 meters
• Code C: range between 1.4 and 2.2 meters
• Code E: range between 0.4 and 2 meters

Weight Weight (kg) • Geriatrics (code G)
• Surgical (code C)
• Pediatrics (code E)

• Code G: range between 40 and 160 kg
• Code C: range between 40 and 160 kg
• Code E: range between 1 and 80 kg

Ethical Considerations
The study protocol was approved by the Ethics Committee of
Antwerp University Hospital (Project ID 6268).
Results
Data Quality Assessment

Data Quality Assessment for Completeness in
Hospitals
Figure 1 presents all completeness (%) scores for height
and weight for each hospital across the described depart-
ments. Each box plot contains the IQR of the completeness
percentage, with the central line within each box representing
the median value. The square box presents the average value.
Table S2 in Multimedia Appendix 1 compiles all results for
each department within every hospital.

In the geriatrics department, the mean completeness of
height data stood at 63.89%, with a median marginally lower
at 62.35%. A wide range was observed, stretching from
25.56% to 94.70%, reflecting significant variability among
institutions within this department, as evidenced by an IQR
of 31.77%. Conversely, the pediatrics department presented
a mean completeness of 60.11% with an even larger IQR
of 73.10%, suggesting a more pronounced discrepancy in
recording practices. Here, data completeness varied from a
minimum of 11.29% to a maximum of 97.26%. The median
value, at 77.24%, was higher than the mean, indicating a
distribution skewed toward lower completeness percentages.
The surgical department reported a mean completeness of
63.12% for height data, with an IQR of 51.75% underscor-
ing the variability. The lowest recorded completeness was
33.92%, and the highest was 96.99%, with a notably lower
median of 44.67% suggesting a skew toward less complete
data.

Figure 1. Completeness scores for height and weight data.
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A comparison with weight data showed different trends.
The geriatrics department exhibited a high mean com-
pleteness of 92.73% and a relatively narrow IQR of
7.62% indicative of more uniform data collection practices.
Completeness ranged from a high 77.97% to an exemplary
98.72%, with the median at 96.74%, pointing to a cluster of
values toward the upper range. The pediatrics department’s
mean completeness for weight data was 89.94%, with an IQR
of 6.06%, denoting consistency. Despite some outliers, as the
range spanned from 52.24% to 99.09%, the elevated median
of 97.53% implied that most pediatric units adhered to high
standards of data completeness. In the surgical department,
the mean completeness was 87.63%, with a modest IQR of
3.56%, reflecting uniformity in data capture. With a range
from 46.43% to 97.94% and a median of 93.79%, the findings
suggested that while data recording is generally robust, there
is room for improvement.

Data Quality Assessment for Consistency in
Hospitals
Figure 2 presents all consistency (%) scores for height and
weight for each hospital across the described departments.
Each box plot contains the IQR of the consistency percent-
age, with the central line within each box representing the
median value. The square box presents the average value.
Table S2 in Multimedia Appendix 1 compiles all results for
each department within every hospital.

Height data recording demonstrated high consistency, with
the geriatrics department achieving a mean of 99.31%. The
consistency was impressively uniform, ranging narrowly from
97.53% to 99.89%, as the median at 99.59% and a minimal
IQR of 0.23% confirmed. The pediatrics department’s mean
consistency was 99.18%, with a slightly broader range from
96.83% to 99.96%. Nevertheless, a high median of 99.57%
and an IQR of 0.39% indicated a strong overall consistency.
Similarly, the surgical department showed a mean consistency
of 99.48%, with a small range from 98.91% to 99.84%. The
median of 99.57% and an IQR of 0.30% denoted a highly
reliable level of data quality.

Consistency in weight data also exhibited positive results.
In the geriatrics department, the mean consistency was
98.56%, with a tight range between 97.65% and 99.07%.
The median mirrors the mean and an IQR of 0.31% high-
lighted the concentration of values. In pediatrics, the mean
consistency was 98.85%, with a wider range from 96.97% to
99.78% and an IQR of 1.46%. Despite this variability, a high
median of 99.55% was maintained. The surgical department
continued the trend of high mean consistency at 99.45%, with
a tight range and an IQR of 0.37%, signaling a consistent
quality of weight data recording.

Figure 2. Consistency scores for height and weight data.
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Challenges and Obstacles Toward Data
Quality Initiatives

Privacy or Governance Requirements
Data quality initiatives within hospitals are complicated
by privacy and governance requirements that dictate the
handling and sharing of patient data. These regulations
are critical for protecting patient confidentiality but pose
substantial challenges for collaborative data quality initia-
tives. An important challenge in this domain is the heteroge-
neity of documents concerning data sharing agreements. Each
hospital, with its unique set of protocols and agreements,
operates with its own distinct processes for data sharing. This
fragmented approach toward data sharing and governance
creates significant difficulties when attempting to share data
across different hospitals. Not only does it impede the flow
of information, but it also poses a barrier to improving data
quality, as harmonizing data across different systems becomes
a complex task.

Software Requirements
The diversity in hospital software systems, comprising both
commercially available and internally developed solutions,
poses a considerable challenge to initiatives aimed at ensuring
data quality. Although we introduced a standardized protocol,
the heterogeneity in these systems used by each participat-
ing hospital had an impact on the data extraction process.
Additionally, while some hospitals extracted data directly
from the original source, others retrieved it from their data
warehouse. This variance in methods introduces multiple
steps in the data extraction phase, each presenting areas for
potential data quality issues even before the data quality
assessments start.

Additionally, the variation in data management systems
leads to differences in the data quality control protocols when
entering data or there might not be designated structured
fields for certain variables in the EHR system. Some
participating hospitals indicated that although the complete-
ness score was low, data for height and weight were
available in the EHR. However, it was often embedded
within unstructured fields, limiting its use for trend analysis
and clinical decision support, and further complicating data
harmonization efforts. All these differences in software tools
used by the hospitals may lead to subtle yet impactful biases
or variations in the data when data are transferred between
hospitals.

Who Is Responsible?
An important challenge encountered in this study was the
varying levels of responsibility for data quality across the
hospitals. Collaboration with data scientists within each
hospital was essential, as their expertise in handling health
data was invaluable in acquiring the necessary information
for the case study. Only 1 of the participating hospitals had a
data quality manager responsible for data quality initiatives,
and providing insights into existing issues, curation practices,
and strategies for data quality improvement. However, it is

important to note that there is no solid evidence showing
that a hospital with a dedicated data quality manager is more
likely to achieve higher data quality. The key seems to be
a widespread organizational recognition of the importance of
data quality, which can be upheld by either an individual or
a team. This fragmented role of responsibilities also creates
an ambiguity in formal education and training on data quality
in the health care sector. The participating hospitals indicated
they often resort to a “do-it-yourself” approach to tackle data
quality, reflecting on an important dedication to obtaining
high standards. Yet, this self-reliant method may lead to
inconsistencies when data are shared with other entities,
highlighting the need for a more uniform approach to data
quality management and education.

Discussion
Principal Findings
The primary aim of this study was to assess the quality of
height and weight data across 7 Belgian hospitals, focusing on
the data quality dimensions of completeness and consistency.
Our findings highlighted notable differences in the complete-
ness of height and weight data across departments (eg,
surgical, geriatric, and pediatric departments), with height
data in the surgical and geriatric departments being particu-
larly variable. This is likely due to the less frequent need to
measure height compared to weight, which is more routinely
measured given its critical role in patient care, such as
medication dosage. In contrast, weight data showed consis-
tently high completeness across all departments. Meanwhile,
consistency scores for both height and weight were uniformly
high, reflecting reliable data entry processes once measure-
ments were taken. Our study and analysis align with other
studies in suggesting that the quality of basic variables (eg,
height and weight) may serve as a preliminary barometer for
the overarching data quality within EHRs [7,34,35].

The mentioned departments were not selected at random
but based on their distinct patient care characteristics and the
importance of data quality related to their specialized care.
Height and weight are important for clinical care decision-
making in all 3 specialties. Surgery often involves immediate
and precise measurements for both variables, for calculat-
ing anesthetic dosages and setting ventilation parameters
during procedures [36]. In geriatric care, these measurements
are crucial for monitoring nutritional status and adjusting
medications, particularly given the frailty and complex health
profiles of older patients [37]. In pediatrics, regular track-
ing of height and weight is vital for assessing growth,
detecting developmental abnormalities, and ensuring accurate
medication dosing to support overall health [38,39].

Additionally, the consistency ranges for these variables
were set through consultations with the participating hospitals
rather than from academic sources. This approach allowed
us to tailor the acceptable ranges based on department-spe-
cific norms, ensuring that the assessment of consistency was
relevant and practical within the specific clinical settings of
each hospital. By focusing on consistency within predefined
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ranges, we were able to measure the reliability of the data
once it had been entered into the system.

A key distinction of our study, compared to other
research, is that we conducted this assessment across multiple
hospitals, focusing not only on data quality results but also on
the challenges and obstacles encountered during the process.
This broader approach provided valuable insights into the
variability of data quality practices across different health
care settings.

To fully understand the outcomes of a data quality
assessment, it is crucial to document the methodology and
tools used. This documentation enhances the transparency
and reproducibility of the assessment process. However, this
alone is insufficient to determine whether data are truly fit
for purpose. Understanding how data were initially collected
and extracted from the system is equally important. The lack
of detailed information on data extraction methods, com-
bined with the variations in software requirements and data
collection processes between the hospitals, plays a crucial
role in understanding the quality of the data. These gaps
in information may contribute to the observed variability in
the completeness of height and weight data across different
departments at various sites.

Comparative analyses with existing research reveal similar
discrepancies in data capture and variations across multi-
ple studies [40-42]. By not only focusing on the data
quality results but also identifying the structural reasons
for variability, we gained crucial insights into why certain
inconsistencies persist in the data capture process.

While the establishment of clear standard operating
procedures for data collection and extraction could help
mitigate such inconsistencies, they represent only 1 aspect
of a broader framework known as data quality maturity.
Data quality maturity refers to an organization’s progres-
sion in managing its data practices, gradually refining
these approaches and practices over time [43]. While many
maturity models emphasize technical factors, such as the
software used in EHR implementation and digitalization [44],
a more comprehensive approach should also address people
and processes. This includes education and awareness efforts
to ensure that health care providers understand the signifi-
cance of high-quality data and its impact on patient care and
operational decisions. This broader perspective is necessary
to achieve a higher level of data quality maturity, ensuring
that data are reliable for both clinical decision-making and
operation efficiency [45].

The long-term success of data quality initiatives depends
on a more integrated strategy—one that balances the right
tools, structured processes, and active involvement of staff.

A key aspect of this holistic approach is the establishment
of a dedicated data quality manager or a specialized team.
These roles are crucial for continuously monitoring data
quality efforts, identifying gaps, and implementing corrective
measures. By centralizing the responsibility for data quality,
the team can enforce standards, streamline processes, and
build a culture of accountability throughout the organization.

Detailed information from the participating hospitals,
which provides further evidence of the positive outcomes,
is available in Table S3 in Multimedia Appendix 1. These
testimonials highlight the tangible impact of our research,
demonstrating a shared commitment across institutions to
continuously improve data quality and management practices.
This collective effort underscores the growing recognition of
the importance of high quality for enhancing patient care and
operational efficiency.
Limitations
This study selected 2 data quality dimensions—completeness
and consistency (by range)—while acknowledging the value
of the other dimensions within our established framework.
The focus on these dimensions reflects their prevalent use
within the data quality literature [23-25] and their rele-
vance to clinical data assessment [36-39]. The selection of
height and weight alone as variables for analysis cannot
fully represent the complex and varied nature of patient
records, which include critical elements such as vital signs,
laboratory findings, and prescribed medications. Therefore,
future studies should include a broader spectrum of quality
dimensions and clinical variables. This expansion is necessary
to gain a more comprehensive view of data quality, the issues
that affect reaching good data quality and strategies to address
the multifaceted nature of health data within EHRs.

Furthermore, the study’s reliance on aggregated data for
the purpose of comparing hospitals introduces a limitation.
Each hospital independently conducted its analysis and shared
only the aggregated results, which constrained the potential
for a comprehensive, cross-institutional evaluation of data
quality at the individual patient level. This method limits the
ability to identify specific data quality patterns that might
only emerge through detailed, patient-level analysis.

Another limitation is the use of ward identifiers, which
group patients based on administrative classifications rather
than patient-specific or disease-related characteristics. This
restricts the granularity of the analysis and may obscure
important variations in data quality within different patient
populations across the departments.
Conclusions
This study has underscored the complexities and challenges
inherent in assessing and assuring the quality of health
data across multiple hospital settings. Our findings indica-
ted a significant variance in the completeness of height
and weight data among hospitals, underscoring the need for
improved data capture and extraction protocols. The high
consistency scores within recorded data attest to the pre-
cision of documentation when height and weight measure-
ments are recorded. Performing a data quality assessment
across different hospitals is a complex process in which
multiple challenges need to be addressed before statistical
analysis can even start. The challenges identified through this
case study, particularly regarding privacy, governance, usage
of different software systems, and responsibility for data
quality, emphasize the need for more standardized opera-
tion procedures and specialized roles within the data quality
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management domain. The establishment of dedicated data
quality managers and standardized education could bridge

these gaps, enabling more effective and uniform data quality
assessments and improvements.
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