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Abstract

Background: In response to the intricate language, specialized terminology outside everyday life, and the frequent presence of
abbreviations and acronyms inherent in health care text data, domain adaptation techniques have emerged as crucial to
transformer-based models. This refinement in the knowledge of the language models (LMs) allows for a better understanding of
the medical textual data, which results in an improvement in medical downstream tasks, such as information extraction (IE). We
have identified a gap in the literature regarding health care LMs. Therefore, this study presents a scoping literature review
investigating domain adaptation methods for transformers in health care, differentiating between English and non-English
languages, focusing on Portuguese. Most specifically, we investigated the development of health care LMs, with the aim of
comparing Portuguese with other more developed languages to guide the path of a non–English-language with fewer resources.

Objective: This study aimed to research health care IE models, regardless of language, to understand the efficacy of transformers
and what are the medical entities most commonly extracted.

Methods: This scoping review was conducted using the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and
Meta-Analyses extension for Scoping Reviews) methodology on Scopus and Web of Science Core Collection databases. Only
studies that mentioned the creation of health care LMs or health care IE models were included, while large language models
(LLMs) were excluded. The latest were not included since we wanted to research LMs and not LLMs, which are architecturally
different and have distinct purposes.

Results: Our search query retrieved 137 studies, 60 of which met the inclusion criteria, and none of them were systematic
literature reviews. English and Chinese are the languages with the most health care LMs developed. These languages already
have disease-specific LMs, while others only have general–health care LMs. European Portuguese does not have any public
health care LM and should take examples from other languages to develop, first, general-health care LMs and then, in an advanced
phase, disease-specific LMs. Regarding IE models, transformers were the most commonly used method, and named entity
recognition was the most popular topic, with only a few studies mentioning Assertion Status or addressing medical lexical
problems. The most extracted entities were diagnosis, posology, and symptoms.

Conclusions: The findings indicate that domain adaptation is beneficial, achieving better results in downstream tasks. Our
analysis allowed us to understand that the use of transformers is more developed for the English and Chinese languages. European
Portuguese lacks relevant studies and should draw examples from other non-English languages to develop these models and drive
progress in AI. Health care professionals could benefit from highlighting medically relevant information and optimizing the
reading of the textual data, or this information could be used to create patient medical timelines, allowing for profiling.
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Introduction

The health care sector generates a vast amount of structured
and unstructured data, including images from medical exams,
text written in electronic medical records (EMRs) or Electronic
Health Records (EHRs), and structured data from relational
databases that store patient and admission information, as well
as all the data collected during a patient’s hospitalization [1].
Approximately 30% of the world’s data volume is generated
by the health care sector, and projections indicate that by 2025,
the compound annual growth rate of data for health care will
reach 36% [2].

Medical texts present several challenges due to the use of
unfamiliar context-specific terminologies that differ from
everyday language. In addition, physicians often use
abbreviations and acronyms to save time and space. However,
the same abbreviation can have different meanings, adding an
additional layer of complexity when trying to understand the
content of medical texts [3]. All these characteristics pose
challenges when attempting to apply artificial intelligence (AI)
techniques to interpret the text.

In the field of natural language processing (NLP), the
introduction of transformers [4] has revolutionized the field,
achieving state-of-the-art performance for numerous NLP tasks
[5]. Their general architecture comprises an encoder, which
receives the input and builds a representation of it, and a decoder
that uses the encoder’s representation along with other inputs
to generate a target sequence. The introduction of the
self-attention mechanism further revolutionized NLP by
allowing the model to weigh the importance of different words
in a sentence regardless of their position. This enables better
handling of long-range dependencies compared with traditional
deep learning (DL) architectures like recurrent neural networks
(RNNs) and long short-term memory Networks [6]. In the
context of medical text, transformers excel in interpreting and
extracting medically relevant information by effectively
handling context and meaning, even in complex and specialized
language.

Transformers can be trained as language models (LMs) on raw
text in a self-supervised manner, enabling them to develop a
statistical understanding of the text they were trained on [7].
However, the benefits of this approach are only fully realized
when fine-tuning a downstream task.

Another important concept is called domain adaptation, which
stands for the process of adapting or adjusting something to be
suitable within a different domain or context. In the field of
machine learning (ML), domain adaptation is used to align the
disparity between domains so that the trained model can
generalize into the domain of interest [8]. For transformers,
domain adaptation involves continuing the pretraining of an
LM with text data from a different domain than the one it was
originally trained on [9]. This approach allows for leveraging
the learning capabilities of general-scope LMs and refining

them for specific contexts. For example, if we consider a
general-scope LM, one that was trained using textual data from
various domains, and continue its pretraining with health
care–specific textual data, it will help the LM to refine its
understanding of the health care data, leading to improvements
when fine-tuning the LM for downstream tasks related to health
care. To explore this further, we can take a health care LM who
was trained using EMRs from a hospital and continue its
pretraining using only text from patients with a specific disease.
It will allow the LM to adjust its weights and become more
precise when interpreting texts related to that particular disease.

An example of domain adaptation is the BioBERT model [10],
which resulted from the continuation of the pretraining of the
Bidirectional Encoder Representations from Transformers
(BERT) [10] model on biomedical text. The BioBERT model
outperformed its predecessor in biomedical named entity
recognition (NER), relation extraction, and question-answering
tasks. Alzheimer’s Disease-BERT [11] and CancerBERT [12]
are 2 examples of applying domain adaptation to a more
restricted domain. Both models outperformed their respective
baselines on downstream tasks related to their respective
diseases. Summing up, performing domain adaptation for the
health care sector appears inevitable to improve results, for
example, for information extraction (IE) models, where a better
understanding of medical terminologies and lexicon would make
it easier to identify and extract information [13].

The European Portuguese (PT-PT) language does not generate
the same amount of data as the English language, resulting in
limitations in the literature and the published models. A study
published in 2023 by the Ernst & Young Audit highlights the
following areas where AI can play a relevant role in Portugal’s
health care; disease diagnoses, precision medicine, remote
monitoring and prevention, data management and hospital
efficiency, and health policies [14]. Recently, a project was
launched in Portugal, funded by the European Union, with the
aim of creating PT-PT NLP solutions for the health care sector.
Under this scope, the objective is to create PT-PT medical LM
and IE models to automatically identify medically relevant
entities.

Therefore, in this study, we aim to present a scoping literature
review (SLR), in which we will begin by exploring the creation
of health care LMs through domain adaptation and analyze their
results. In addition, we aim to focus on the geographical domain
to understand the current state-of-the-art for the Portuguese
language and compare it to other, potentially more developed,
languages to identify further steps. We also want to explore IE
models in the health care sector, regardless of their data
language, to understand the most commonly extracted medical
entities and the methods used in doing so. Despite the literature
being rich in studies focused on health care large language
models (LLMs), there is a lack of studies that evaluate the
current state-of-the-art of health care LMs not only in English
but also in other less-resourced languages. This will enable us
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to grasp how the community is using the capabilities of
transformers and whether the advantages of using them are
indeed present in the health care domain. In addition, researchers
will have 1 study about health care LMs that could guide their
path and help them understand how the literature has developed
in their respective languages. Finally, we will present the
corresponding discussion and the conclusion drawn from the
SLR.

Methods

Overview
To complete our goal, we have conducted an SLR to gain a
better understanding of the research conducted in the application
of health care–domain LMs and the development of IE models
within the health care domain. In the first stage, our study
encompasses health care–domain LMs in various languages,
with a focus on the Portuguese language. In the second stage,
we searched for studies related to IE models to evaluate the
methods most frequently used. In terms of methodology, we
followed the PRISMA-ScR (Preferred Reporting Items for
Systematic reviews and Meta-Analyses extension for Scoping
Reviews) [15] to ensure a systematic and transparent approach
in conducting and reporting our scoping review.

Search Strategy and Inclusion Criteria
This SLR was conducted in November 2023 and focused
exclusively on studies and reviews published in journals within
the last 5 years (2019-2023) that were written in English or
Portuguese. It was not an arbitrary data range since limiting the
search to the last 5 years ensures that the review includes the
most recent and relevant studies, reflecting the latest
advancements, technologies, and methodologies in the field.
Since BERT [10], one of the most popular transformer
architectures, and LM were launched at the end of 2018, we
searched for studies from 2019 onward. The primary databases
used for this review were Scopus [16] and the Web of Science
Core Collection (WOSCC) [17] since both databases are
renowned for indexing a wide array of peer-reviewed journals
across multidisciplinary fields [18,19]. While acknowledging
that additional databases might offer further insights, the
significant overlap with these resources ensures that relevant
studies are unlikely to be missed.

The criteria were defined to include studies focused on
continuing the pretraining of LMs to achieve health care–domain
LMs or studies focused on creating IE models within the health
care field. Therefore, we formulated a query that includes the
training or fine-tuning LMs or IE Models within the context of
health care or similar, using EMRs or EHRs as data.

Since there is a significant semantic similarity between LMs
and LLMs, we decided to exclude the second from the search
query because it has a different purpose from the aim of our
study. LLMs are typically composed of more than 7B parameters
and are suited for text generation. LMs are models that are not,
by themselves, suited to perform any downstream NLP task,
needing to be readjusted or fine-tuned with labeled data to be
able to perform downstream tasks.

Our final query is as follows: “(“Language Model” OR “Masked
Language Model” OR “Information Extraction” OR “Content
Extraction”) AND (“EHR” OR “EMR” OR “Electronic Health
Record” OR “Electronic Medical Record”) AND (“Fine-Tuned”
OR “Fine-tuning” OR “Training” OR “Trained”) AND
(“Healthcare” OR “Health Care” OR “Clinical” OR “Medical”)
AND NOT (“Large Language Model” OR “LLM”).”

According to our objectives, a study was considered valid if it
documented a continuation of the pretraining of an LM to create
a health care LM or if it focused on the creation of health care
IE models.

Study Selection
To minimize the risk of bias in the study selection, the process
was conducted independently by 3 researchers. A total of 2
researchers were responsible for reading and judging the studies
according to the inclusion criteria, while the third researcher
was involved in cases of disagreement.

Data Charting and Synthesis
A data-charting form was jointly developed by two reviewers
to extract relevant information from the selected studies
systematically. The form included variables such as study title,
year of publication, language focus (English or non-English),
domain adaptation techniques for Transformer-based models,
healthcare-specific information extraction tasks, evaluation
metrics used, and the specific health-related entities being
extracted. Both reviewers independently charted the data to
ensure comprehensive coverage of healthcare language models
in English and non-English languages, with particular attention
to languages other than English (referred to as non-English).
Discrepancies in the extracted data were discussed and resolved
through consensus. As the review progressed, the data-charting
form was iteratively updated to capture emerging themes,
especially regarding the disparity between language resources
and technological development for healthcare information
extraction across different languages.

Results

The query retrieved 137 papers, with the vast majority of these
studies being retrieved from Scopus, adding up to 90 when
compared with the 47 studies WOSCC has yielded. The
PRISMA-ScR methodology was then followed, as seen in Figure
1. Since we included studies from sources beyond the 2 selected
databases, we adhered to the updated PRISMA-ScR guideline
[20]. In the following subsections, we explained the decision
to include studies by other methods.

The first step was to identify and remove duplicated papers,
resulting in 101 studies. Following a screening of titles and
abstracts, 10 records were deemed out of scope, and 1 could
not be retrieved, leaving us with 90 fully reviewed studies.

After screening all the papers that matched our criteria, we
realized that 30 of them did not meet our inclusion criteria.
Some studies referred to the fine-tuning of pretrained LMs for
tasks unrelated to IE, or they lacked relevant information to
contribute to this study, or even though we excluded them from
our search query, they mentioned the use of LLMs.
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As we were focused on the Portuguese language, our study also
emphasized the geographical domain, with an aim to
comprehend the medical data language used in health care LMs.
Table 1 resumes the studies focused on the pretraining of LMs
separated by the language of their data.

From the reading of Table 1, we can understand that English is
the main language, which can be explained by the much higher
availability of English data and the overwhelming presence and
applicability of this language throughout the world. However,
we notice that in the Chinese language, there are studies
attempting to fill the gap of being non-English, creating
in-domain LMs aware of their benefits. We also found studies
in Brazilian Portuguese (PT-BR), Spanish, and PT-PT, and we

acknowledge that there might be other studies in different
languages, even though they did not match our search query
criteria.

Changing the view for the health care IE studies, Figure 2
resumes the distribution of studies by topic.

From the reading of Figure 2, NER appears as the main topic
on the IE, with only 2 studies performing Assertion Status and
3 studies focused on solving medical lexical problems.

To provide a more in-depth review of each study, we present
the subsequent 3 subsections where we differentiate between
non-Portuguese health care LMs, Portuguese health care LMs,
and health care IE models.

Figure 1. PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) workflow diagram.
WOSCC: Web of Science Core Collection.

Table 1. Studies for pretraining language models (LMs) were reviewed by their data language.

Studies, nReferenceMedical data language

7[11,12,21-25]English

4[26-29]Chinese

2[30,31]Brazilian Portuguese

1[32]Spanish

1[33]European Portuguese
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Figure 2. Distribution of health care information extraction (IE) studies by topic. NER: named entity recognition.

Non-Portuguese Health Care Language Models
A study by Zhou et al [12] introduces CancerBERT, a
domain-specific LM, that resulted from continuing the
pretraining of the BlueBERT model [34] with a cancer corpus,
resulting in various checkpoints of CancerBERT. The evaluation
was performed for the cancer phenotyping NER task, with the
results showing that the CancerBERT model pretrained with
the cancer corpus outperformed the checkpoint using the original
BERT [10] vocabulary.

A similar approach was conducted in a study by Mao et al [11],
where the objective was to predict the risk of disease progression
from Mild Cognitive Impairment to Alzheimer disease. A BERT
model specifically tailored for Alzheimer disease (ie,
AD-BERT) was pretrained with clinical notes, and its
comparison with other models in experiments showed the
benefits of domain adaptation.

Within the same scope, the identification of fall incidents from
EHRs is discussed in the study by Fu et al [21]. A context-aware
LM, BERT-based, was trained and integrated into a hybrid
architecture along with post hoc heuristic rules. The performance
of the BERT-based model was compared with DL methods,
and the conclusions highlighted that the BERT model achieved
superior results in identifying fall events.

In a study by Wang et al [26], a Chinese medical text corpus
was used to pretrain BERT and obtain the Chinese BERT model.
The results were aligned with previous studies, and domain
adaptation demonstrated better results than traditional DL
models and other pretrained LMs.

Studies by Roitero et al [22] and Agnikula Kshatriya et al [23]
once again mention the pretraining of BERT models on a
medical corpus, achieving comparable or better performance
than state-of-the-art models. In a study by Zhang et al [24], an
unsupervised adversarial domain adaptation framework with a
pretrained LM for clinical event sequences is presented. Another
example can be found in a study by Chen et al [25], where a
contextual LM is used in combination with rule-based
preprocessing methods to develop a model for ICD-10
(International Statistical Classification of Diseases, Tenth
Revision) multilabel classification. The results demonstrate
superiority over state-of-the-art models. Studies by Wen G et
al and Wen C et al [27,28] refer to the training of a

domain-specific pretrained LM on unlabeled medical data, with
the evaluation being made through NER.

In the process of reviewing all the papers, we observed
references to papers that aligned with our requirements despite
not being explicitly included within our search query criteria.
It is the case of studies by Zhang et al [29] and Carrino et al
[32]. Carrino et al [32] present a large-scale biomedical Spanish
LM, where the models were pretrained from scratch, using a
RoBERTa [35] base model, and then fine-tuned on 3 clinical
NER tasks. The comparison between general-domain and other
available Spanish clinical models revealed the superiority of
the models presented in the paper. Zhang et al [29] share a
similar scenario with BERT being pretrained on Chinese
biomedical corpora, and MC-BERT, an in-domain LM, was
developed. The results are consistent with previous studies, with
MC-BERT outperforming BERT-based models in all evaluated
tasks.

Portuguese Health Care Language Models
Our search query did not retrieve any studies for the Portuguese
language. To address this scarcity of studies and since it is one
of the objectives of this research, we carried out a broader search
on Google Scholar [36] to include studies that mentioned the
creation of Portuguese health care LMs.

The PT-BR language has already presented several studies, with
BioBERTpt [30] being one example. The authors used clinical
notes and biomedical abstracts to pretrain 3 BERT-based
checkpoints that were fine-tuned for the NER task to assess
their performance. The results align with others, showing that
the in-domain models achieved better performance. Another
example is the study by Schneider et al [31], where several
clinical BERT-based checkpoints were developed resulting
from the continuation of the pretraining of BERTimbau [35],
mBERT [11], and all 3 BioBERTpt checkpoints on 150,000
clinical narratives from cardiology ambulatory. The results of
fine-tuning for NER align with previous studies, demonstrating
that the in-domain models outperformed general LMs.

For the PT-PT language, we found the literature to be scarcer,
with only 1 study being found that mentioned the continuation
of the pretraining of an LM to achieve health care–domain LM.
Coutinho and Martins [33] propose a BERT-based model for
assigning ICD-10 codes to causes of death by using BERTimbau
and continuing its pretraining with death certificates. The
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evaluation was made through NER, with all the checkpoints
involved being fine-tuned for the classification task, and the
findings indicated that transformer models could produce
promising outcomes for health care tasks involving the analysis
of relatively short documents.

Health Care IE Models
To better organize this section, we decided to categorize the
studies by topic. Therefore, the first subsection presents NER
studies where the authors attempted to automatically identify
and extract medical information. The second subsection contains
Assertion Status models, where entities are classified according
to their status (present or absent), and finally, the third
subsection presents studies that attempt to solve medical lexical
problems.

NER
Zhou et al [37] evaluated the performance of CancerBERT along
with ML models for the breast cancer phenotype extraction task,
with the results proving that CancerBERT has superior learning
ability and generalizability for this task. Rahman et al [38] refer
to the use of BERT to identify the presence of a diagnosis in
EHRs. With BERT’s ability to understand the context of text
and based on conditions presented in EHRs, a pipeline was
successfully designed to identify EHRs with the presence of a
diagnosis, reducing the manual note review load. Crema et al
[39], use an Italian biomedical BERT model, fine-tuning it for
the NER task with the entities of interest, including diagnoses,
symptoms, drugs, and medical assessments, achieving an
F1-score of nearly 0.85 values. Entity-BERT was introduced in
the study by Lu et al [40], a DL-based model for entity IE that
is capable of recognizing entities such as medical terminologies,
disease names, or drug information. Zhang et al [41] propose
the combination of data augmentation and domain information
using the Adapter Transformer Encoder Model for Clinical
Event Detection. It uses the BioBERT model to generate
word-level features, addressing the issue of many obscure
professional terms in EMRs leading to poor recognition
performance of the model. The results were reported to be
superior to those of other existing models. A multilingual
transformer was fine-tuned in a study by Kim et al [42], where
researchers successfully extracted alcohol-related information
from unstructured clinical notes with an extraction accuracy of
0.84 as measured by the macro F1-score. Kormilitzin et al [43],
initially pretrained a model on the task of predicting the next
word and subsequently fine-tuned it for the NER task, extracting
various categories of drugs and achieving performance with an
F1-score above 0.95 values. Solarte-Pabón et al [44] evaluate
the fine-tuning of several pretrained LMs for the NER task,
aiming to identify breast cancer concepts in the Spanish
language. The results show that BERT-based and
RoBERTa-based LMs exhibit competitive performance on this
task. Liu et al [45] propose the use of BERT-BiLSTM-CRF for
the NER task of rheumatoid arthritis vocabulary and then
MC-BERT for the entity extraction task, with results showing
F1-scores above 90%. Wang et al [46] compare the use of 4
pretrained transformer-based LMs fine-tuned for the NER task
with a baseline regular expression model in order to extract
ophthalmic examination components, demonstrating that

transformers achieve superior results. In the study by Singh et
al [47], a pretrained transformer-based LM was fine-tuned with
cardiac magnetic resonance imaging annotations to effectively
extract measurements from clinical reports, and it achieved high
extraction performance without requiring heuristics or expert
annotations.

Several studies focus on extracting information about family
history, such as studies by Kim et al [48], He et al [49], Silva
et al [50], Dai et al [51], and Zhan et al [52]. They use ML
methods, incorporating rule-based approaches, multitask-based
artificial neural networks (ANN), attention-based neural
networks, and even combinations such as convolutional neural
networks (CNNs) BiLSTM and BERT. The goal was to
automatically extract entities such as people’s names, residence,
birth date, or death date, and in some cases, there is an additional
subtask related to relation extraction, which involves identifying
relationships between family members. Overall, the results have
proven to be satisfactory, particularly in the NER task.

CNNs are highly popular methods in the scientific community
for extracting clinical information and studies by Yang et al
[53], Santus et al [54], Mahajan and Rana [55], and Landlosi
et al [56] primarily used them, often supplemented with
rule-based approaches or feature optimization in some cases.
The use of these methods lies in extracting clinical information
from EHRs, tasks that could be time-consuming if done
manually. Within the broader category of neural networks,
RNNs are also a method used for IE in which the authors of
studies [57-66] all use RNNs, with BiLSTM-CRF (Bidirectional
Long Short-Term Memory - Conditional Random Field) being
a very popular network among these studies. The main topics
extracted include terms related to specific diseases, drug names
with associated attributes (dosage, frequency, duration, route,
and condition), adverse drug events, the presence of a diagnosis,
or even important information in medical image reports, with
the results globally proven to be promising.

Studies [67-69] use ML methods, with the first focusing on
automatically classifying the outcomes of specific tasks related
to the clinical conditions of stroke survivors, the second aiming
to extract useful information in abdominopelvic radiology
reports, and the third one focused on extracting travel history
mentions from clinical documents. In Malmasi et al [70], the
use of different methods to extract low-prevalence concepts is
discussed, specifically in the case of insulin rejection by patients
with attempts at both sentence-level and token-level approaches
using ML and DL methods, but the results showed that it is
challenging to automatically identify low-prevalence concepts.
Similar proposals have been presented in studies [71-79] using
spaCy’s [80] pipeline for IE, contextual embeddings such as
embeddings from language models (ELMo) [81] and BERT,
position-attention mechanisms, knowledge graph embeddings,
word segmentation models, or even NLP models developed
using Java for extracting medical information, for example,
extracting details related to drugs, drug attributes, or diagnoses.

In Lee and Uppal [82], a web-based summarization and
visualization tool is introduced for extracting salient information
from clinical and biomedical text, featuring sentence ranking
by relevance and facilitating early medical risk detection in
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clinical settings. Chen et al [83] aimed to create a model to
extract concept embeddings from EHRs for disease pattern
retrieval and subsequent classification tasks.

Assertion Status
Sykes et al [84] address the issue of negation and non-negation
of clinical terms in EHRs. It is an Assertion Status case, in which
the text can be characterized by cases where diseases are stated
to be absent or only hypothesized. In this study, they propose
various methods to address this issue, including rule-based, ML,
or DL approaches, and all proposals yielded good results in a
test set, achieving an F1-score of more than 0.95. In Chaturvedi
et al [85], a corpus annotated with mentions of pain was
developed, considering the presence or absence of pain. It is
another example of an Assertion Status problem aimed at
facilitating further studies using the corpus to better understand
how pain is mentioned in clinical notes.

Medical Lexical Problems
From a different perspective, there have been studies focusing
on medical lexical problems. Newman-Griffis et al [86] discuss
the presence of ambiguous words and attempts to normalize
medical concepts to standardize vocabularies, while the study
by Jaber et al [87] addresses the problem of the frequent use of
abbreviations by proposing a method, by fine-tuning a pretrained
LM, to successfully disambiguate clinical abbreviations. Lee
et al [88] propose a typographical error correction model that
considers context, based on a masked LM, to address the issue
of typographical errors in real-world medical data. They
conclude that typographical errors in unstructured text negatively
impact the performance of NLP tasks, and their method is robust
and applicable in real-world environments.

Discussion

Principal Findings
Continuing the pretraining of LMs to develop health care LMs
has proven beneficial. The most common method to evaluate
this approach is by fine-tuning both the baseline and the
in-domain LM on downstream NLP tasks and comparing the
results.

In IE models, NER is the most popular topic aimed at
automatically identifying and extracting medically relevant
information. Transformers are the preferred technology for this
purpose, with fine-tuning of medical LMs consistently achieving
superior results.

To conclude our SLR, we engaged in a deeper discussion
divided into health care LMs and health care IE models.

Health Care Language Models
On a global scale, we have identified numerous studies that
continued the pretraining of LMs to develop domain-specific
LM, specifically medical LMs. In general, the findings across
almost all of these studies substantiate the advantages of
in-domain training before undertaking any other downstream

tasks. The favorite evaluation task is NER, with almost every
study mentioning the fine-tuning of LMs for the NER task.

As shown in Table 1, English and Chinese are the languages
with the most studies and published models due to the available
resources in terms of data and hardware power. The level of
domain adaptation for these languages is more advanced, with
dedicated health care LMs developed for specific diseases such
as Alzheimer Disease-BERT [11] and CancerBERT [12], which
represent very focused domains. These studies offer advantages
by achieving better performance in extracting specific concepts
from textual data related to these diseases compared with general
health care LMs.

For non-English languages, the process is not so developed,
which can be considered as expected since they have their
known limitations, such as the scarcity of data and resources
available. Nevertheless, there have been concerted efforts to
create general health care LMs, underscoring the community’s
recognition of the use of these models. The Portuguese language
fits this context, and despite initial strides that have already
been taken, there exists ample room for improvement,
particularly in the context of PT-PT where the only published
study is [33], yet, to the best of our knowledge, the model is
not publicly available.

Non-English languages, particularly Portuguese, should draw
inspiration from advancements and results in medical domain
adaptation studies. Despite limited resources and available data,
efforts should first focus on creating general medical LMs. In
a subsequent phase, efforts should be directed toward narrowing
down to specific diseases while performing domain adaptation.
This approach ensures that knowledge previously acquired by
the LMs is refined within the medical domain and then adapted
to smaller medical domains without losing the previously
acquired knowledge completely. This initiative aims to foster
the development of AI technologies in Portuguese, thereby
promoting health care equality and access in languages with
fewer resources. These models can be further fine-tuned for
medical NLP tasks, such as IE, aimed at automatically
identifying or highlighting specific information or structuring
medical information extracted from textual data for ML analysis
to aid health care professionals.

Health Care IE Models
Several methods have been used to create health care IE models.
The most common method is the use of transformers, followed
by the application of other DL and ML methods (Table 2). As
previously discussed, the most popular topic was NER, where
authors attempted to identify and extract medically relevant
information.

The results indicate that the most successful approach involves
using pretrained LMs fine-tuned for IE tasks, benefiting from
the contextual understanding of the text to achieve better results.
The most commonly identified entities were diagnoses or
diseases and drugs, along with specific phenotypes related to
certain diseases.
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Table 2. Number of studies used per method.

ArticlesMethods

16Transformers

15Other DLa

10RNNb

9Other MLc

5CNNd

4Rule-based

aDL: deep learning.
bRNN: recurrent neural network.
cML: machine learning.
dCNN: convolutional neural network.

It is also relevant to mention that in our query, 2 studies were
focused on Assertion Status. This task involves classification
at the sentence level aimed at assessing an entity based on its
presence or absence in the text. Examples of absence include
negation or hypothesizing medical information. From another
perspective, to address the problems presented by medical text,
we also found 2 studies that propose solutions to disambiguate
the multitude of abbreviations present in medical text and 1
study that presents a typo correction model. Both solutions
aimed to improve text quality and seek to correct issues in the
text that are considered inevitable by health care professionals.
These 5 studies could also be seen as an improvement to NER
results. The ones focused on correcting the text could be viewed
as a preprocessing step that would enhance the understanding
of the medical text, while the Assertion Status studies could
help ascertain whether an identified entity is present or absent
in a patient’s condition. When compared with the distribution
of NER, these 2 topics lack development, as together, they
account for only 10% of the health care IE studies found. The
community would benefit from more studies using different
technologies and identifying new challenges to be solved.

Conclusions
Our SLR highlights the benefits of in-domain training for health
care LMs and the effectiveness of transformers in IE tasks,
addressing a research gap regarding the lack of studies on health
care LMs. Transformers excel in NER, identifying diagnoses,
diseases, drugs, and phenotypes. English and Chinese lead in
research and LM development, while non-English languages
such as Portuguese show promise but need exploration.
Challenges include Assertion Status and text disambiguation,
necessitating diverse methodologies and research in health care
IE.

We have identified several health care–domain LMs, but there
is a clear gap for non-English languages where the data and
resources available are low. There is much to improve in those
languages, with Portuguese being an example. The benefits of
creating a medical-domain LM are already proven, and the
health care sector could benefit greatly from a symbiosis with
AI. Therefore, non-English languages should be motivated by
the scarce studies already published and try to replicate them
for their own language in order to fill this existing gap.

From another point of view, the use of transformers appears to
be the better technique to automatically identify medical
information. Despite the annotation process for any supervised
learning task being very time-consuming, transformers achieve
better results on fewer annotations, making their usage on new
tasks relatively easier. This task also benefits from an in-domain
medical LM. The entities most commonly extracted are
diagnosis or disease, posology-related entities, symptoms, and
phenotypes related to specific diseases.

Despite our belief that this was the right choice, we highlight
the 2 databases that we searched, and we acknowledge that,
despite our best efforts, there is always a possibility that not all
relevant papers will be found when formulating a query. These
are the limitations of our study. The chosen timeframe may also
limit the availability of relevant studies, even though we believe
it is the right timeframe to include studies that establish the
current state-of-the-art with new technologies. While we focused
on the Portuguese language, we acknowledge that our
conclusions cannot be generalized to all non-English languages.
However, other languages with similar characteristics in terms
of available data and resources can certainly gain insights from
this SLR.

Globally, the development and research in these topics for the
English language are very advanced compared with non-English
languages. In English, several studies have been presented that
perform domain adaptation for smaller domains, such as
specific-disease LMs, which have improved results in extracting
medical information related to these diseases. The next steps
should involve continuing the pretraining for different medical
areas or diseases to ensure the most comprehensive coverage
with LMs. In addition, fine-tuning the already available models
to meet the specific requirements of health care professionals
is essential.

Non-English languages are still performing domain adaptation
for general domains, such as medical or biomedical fields, and
should be motivated by these studies to overcome the barriers
inherent in their respective language. In the next step, they
should focus on performing domain adaptation, aiming to narrow
down to specific medical areas or diseases. They should strive
to replicate studies on Assertion Status or even those focused
on resolving the frequent presence of abbreviations and typos
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in the text. In non-English languages where there is a scarcity
of available data, it would be beneficial to have open corpora,
even if distributed under licenses that protect data privacy, to
enable more researchers to develop models.

These types of studies are important to assess and guide the
development of non-English languages trying to bridge the gaps
and capitalize on the opportunities provided by these
technologies to promote equity and improve access to health

care all over the world. The differences in the available data
and resources are almost impossible to correct but at least should
be minimized.

This effort aims to harness AI to enhance health care by
developing advanced LMs tailored for non-English languages,
thereby supporting health care professionals with
decision-making tools that alleviate their workload and improve
patient care indirectly.
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