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Abstract

Background: The World Health Organization (WHO) reported that cardiovascular diseases (CVDs) are the leading cause of
death worldwide. CVDs are chronic, with complex progression patterns involving episodes of comorbidities and multimorbidities.
When dealing with chronic diseases, physicians often adopt a “watchful waiting” strategy, and actions are postponed until
information is available. Population-level transition probabilities and progression patterns can be revealed by applying time-variant
stochastic modeling methods to longitudinal patient data from cohort studies. Inputs from CVD practitioners indicate that tools
to generate and visualize cohort transition patterns have many impactful clinical applications. The resultant computational model
can be embedded in digital decision support tools for clinicians. However, to date, no study has attempted to accomplish this for
CVDs.

Objective: This study aims to apply advanced stochastic modeling methods to uncover the transition probabilities and progression
patterns from longitudinal episodic data of patient cohorts with CVD and thereafter use the computational model to build a digital
clinical cohort analytics artifact demonstrating the actionability of such models.

Methods: Our data were sourced from 9 epidemiological cohort studies by the National Heart Lung and Blood Institute and
comprised chronological records of 1274 patients associated with 4839 CVD episodes across 16 years. We then used the
continuous-time Markov chain method to develop our model, which offers a robust approach to time-variant transitions between
disease states in chronic diseases.

Results: Our study presents time-variant transition probabilities of CVD state changes, revealing patterns of CVD progression
against time. We found that the transition from myocardial infarction (MI) to stroke has the fastest transition rate (mean transition
time 3, SD 0 days, because only 1 patient had a MI-to-stroke transition in the dataset), and the transition from MI to angina is the
slowest (mean transition time 1457, SD 1449 days). Congestive heart failure is the most probable first episode (371/840, 44.2%),
followed by stroke (216/840, 25.7%). The resultant artifact is actionable as it can act as an eHealth cohort analytics tool, helping
physicians gain insights into treatment and intervention strategies. Through expert panel interviews and surveys, we found 9
application use cases of our model.

Conclusions: Past research does not provide actionable cohort-level decision support tools based on a comprehensive, 10-state,
continuous-time Markov chain model to unveil complex CVD progression patterns from real-world patient data and support
clinical decision-making. This paper aims to address this crucial limitation. Our stochastic model–embedded artifact can help
clinicians in efficient disease monitoring and intervention decisions, guided by objective data-driven insights from real patient
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data. Furthermore, the proposed model can unveil progression patterns of any chronic disease of interest by inputting only 3 data
elements: a synthetic patient identifier, episode name, and episode time in days from a baseline date.

(JMIR Med Inform 2024;12:e59392) doi: 10.2196/59392

KEYWORDS

healthcare analytics; eHealth; disease monitoring; cardiovascular disease; disease progression model; myocardial; stroke; decision
support; continuous-time Markov chain model; stochastic model; stochastic; Markov; cardiology; cardiovascular; heart; monitoring;
progression

Introduction

Chronic conditions are defined as conditions that last for 1 year
or more, require continuous medical care, or limit the ability to
perform daily activities. They pose significant health challenges
and financial burdens in the United States and worldwide [1,2].
In the United States, 6 in 10 adults have at least 1 chronic
condition, and 4 in 10 have 2 or more [1]. Worldwide, nearly
one-third of adults worldwide have with multiple chronic
conditions [2].

Among these chronic conditions, cardiovascular diseases
(CVDs), defined by the World Health Organization (WHO) as
a group of disorders of the heart and blood vessels, are a
significant public health concern worldwide. The WHO reported
that CVDs are the leading cause of death worldwide, with an
estimated 17.9 million deaths from CVDs in 2019, accounting
for 32% of all deaths worldwide [3]. The American Heart
Association also reported that in 2020, there were 928,713
CVD-related deaths in the United States, making it the leading
cause of death in the United States [4].

CVDs are characteristically chronic, with a pattern of
progression through many stages and episodic instances over
time. Moreover, they are often associated with various
comorbidities such as congestive heart failure (CHF),
myocardial infarctions (MI), coronary heart disease, angina,
stroke, and other complications [4]. For managing complex
chronic conditions such as CVDs with long progression cycles,
a detailed understanding of the progression pattern of disease
states over time is essential [5,6]. This knowledge not only
facilitates clinical decision-making but also enables hospitals
to allocate their resources better [5]. Such models developed
using representative population data can enable physicians to
compare a patient’s progress with the patterns in the base
population model to evaluate whether an intervention strategy
reduces the transition probabilities between states of interest
[7].

When dealing with chronic diseases, physicians often adopt a
“watchful waiting” strategy and actions are postponed until
information from an evolving clinical scenario is available [8].
However, data-driven clinical decision support tools with the
ability to generate transition probabilities and progression paths
can allow the development of effective intervention strategies
at a cohort level, leading to better treatment outcomes. For this
purpose, researchers have proposed and developed various
quantitative disease progression models based on mathematical
functions to understand the progression patterns of complex
chronic diseases [6]. Quantitative disease progression models

can be applied to track and describe the changes in disease
progression over time and enable physicians to continually
monitor and tailor treatment strategies and interventions [5,6].
Such models have significantly contributed to managing chronic
progressive diseases such as Parkinson disease [5] and can be
a critical precursor to policy development in cancer control [9].
Work on quantitative disease progression modeling has been
found addressing various conditions such as Alzheimer disease
and glaucoma [10,11], chronic kidney disease [12], abdominal
aortic aneurysm [13], multiple sclerosis [14], and cardiovascular
disorders, such as hypertrophic cardiomyopathy [15].

Among these quantitative disease progression models, stochastic
models such as Markov models are widely applied to analyze
disease processes [16-18]. Soper et al [19], for example, studied
the dynamic progression of COVID-19 during the course of
hospitalization using a continuous-time hidden Markov model.
A Markov process can be constructed as a discrete-time Markov
Chain (DTMC) model when the observations of the events are
captured at a fixed recurring interval of time. However, DTMC’s
approach to time quantification may not be suitable for diseases
requiring frequent monitoring over short periods and observation
over extended spans ranging from years to decades [20]. In
contrast, events can be modeled as a continuous-time Markov
chain (CTMC) when the recurring periods of observations are
not fixed. CTMC models offer a realistic approach, supporting
state transitions at any instant in a continuous time scale [21,22].
This motivated our study to adopt CTMC as the stochastic
modeling method to unveil time-variant progression patterns
of CVDs. There are other stochastic modeling approaches in
the disease domain. We have provided a comparative analysis
of the CTMC approach with 5 other approaches in Multimedia
Appendix 1.

To better understand the extent of work in CTMC applications
in disease progression modeling, we conducted a literature
search (period: 2000-2023) and analyzed the studies that applied
CTMC—an advanced stochastic modeling method—to model
disease progression. The details of the paper search process and
the results are described in Multimedia Appendix 2. We found
only 7 papers that used the CTMC approach to model
progressions of various diseases. The diseases studied in these
papers are chronic or complex, requiring long-term observation
and management, such as fibrosis, myelodysplastic syndromes,
diabetic foot complications, Alzheimer disease, and chronic
kidney disease. Each of these papers addresses a gap in
understanding disease progression. For example, Meyer et al
[23] aim to estimate progression time in fibrosis stages; Nicora
et al [24] used simulation to generate longitudinal event data
from cross-sectional patient data and build a CTMC model to
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arrive at the transition probabilities representing various stages
of myelodysplastic syndrome progression. Begun et al [25] note
the lack of knowledge about diabetic foot progression dynamics.

This analysis indicates that although researchers clearly
recognize the need and clinical benefits of time-variant
stochastic models to understand the progression of chronic
diseases, only a few papers have applied the CTMC approach
to model disease progression, and notably, none applied CTMC
to CVDs. Most of these papers are limited in scope, focused on
the disease progression encompassing a limited number of states
of a single disease, and do not provide any framework for
application to other chronic diseases. Furthermore, within the
scope of CVDs, to the best of our knowledge, there is no paper
providing actionable cohort-level analytical tools based on a
comprehensive, 10-state, CTMC model to unveil complex
progression patterns from real-world patient data and support
clinical decision-making. Thus, our paper aims to address this
crucial limitation in extant health informatics literature.
Specifically, our proposed CTMC model aims not only to offer
tools for clinicians to make informed intervention and treatment
decisions for patients with CVDs, based on objective data-driven
insights from real patient data, but also be adaptable for studying
the progression of other chronic and complex diseases that
require monitoring over time.

Novelties and contributions of this paper include the following:

• Application of advanced stochastic modeling, CTMC, to
real-life patient cohort data can uncover new knowledge
about CVD progression patterns and transition probabilities.

• Physicians can potentially use the digital data visualization
system as an eHealth cohort analytics tool in CVD
management, and we have found 9 impactful application
use cases externally validated by a panel of 7 cardiologists.

• The proposed model can unveil progression patterns of any
chronic disease of interest by inputting only 3 data elements:
a synthetic patient identifier, episode name, and episode
time in days from a baseline date. This would allow future
researchers to generate and study disease progression
patterns for other chronic diseases.

• The CVD transition probabilities can help health care
administrators calculate the anticipated patient mix at
different CVD states for a future planning period. This can

facilitate predictive resource planning, improved patient
care, and cost savings.

• Results are reproducible and extendable as the data, code,
and development framework are shared with the audience
via a web-based repository.

Methods

Data
The data applied in this research were from a multicenter cohort
study implemented by the National Heart Lung and Blood
Institute (NHLBI), collected from 9 epidemiological studies
(Sleep Heart Health Study) on heart and respiratory diseases
comprising 5804 patient records and 4839 CVD episodes
associated with 1274 patients [26]. These longitudinal data were
collected in 3 cycles across 16 years, with the first collection
in 1995 and 2 subsequent collections between 1995 and 2003.
CVD events, including death, were tracked until 2011. The
inclusion criteria of the cohort members were aged 40 years or
older, with no history of sleep apnea treatment, no tracheostomy,
and no current oxygen therapy.

Table 1 provides a snapshot of occurrences of various CVD
episodes or states for 2 patients (patients IDs 200453 and
201195) randomly selected from the NHLBI data used in this
research. CVD “states” in our model represent specific CVD
events or episodes in the patient’s history. For this reason, in
our model, we define CVD states as “episodic” states or events.

It is noteworthy in the above table that multiple CVD events
occurred on the same day. These are examples of comorbidity
and multimorbidity in real life for patients with CVD. In the
Markov process, 1 patient can be only in 1 state at a time. Hence,
for the same patient, every instance of comorbidity and
multimorbidity event occurring simultaneously is defined as a
single Markov state. Many patients can be in any of these
Markov states for a patient population with CVD, but 1 patient
can only be in 1 state at any given time. Based on this Markov
principle and the time of occurrence of patients’ CVD episodes
in our dataset, we began with 14 unique CVD Markov states as
found in our data. However, 4 states were dropped as their
occurrences were negligible compared to the others. This led
us to a final set of 10 unique CVD states for further development
of our model. The details of the record counts in the dataset for
all 14 states are presented in Multimedia Appendix 3.
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Table 1. Snapshot of cardiovascular disease episodes of 2 patients from the National Heart Lung and Blood Institute dataset.

Episode time (days from baseline)Patient ID and episode name

200453

572Myocardial infarction

2064Congestive heart failure

2562Congestive heart failure

2562Myocardial infarction

2593Congestive heart failure

201195

1343Congestive heart failure

1426Congestive heart failure

3086Angina

3086Congestive heart failure

3086Myocardial infarction

3143Congestive heart failure

3183Congestive heart failure

Modeling Assumptions and Approximations
The modeling assumptions and approximations can be
generalized into 2 categories—Markovian assumptions and
CVD data–related assumptions. They are addressed in detail
below.

1. Finite number of Markovian states: There is a limited or
finite number of possible states. States are collectively
exhaustive and mutually exclusive. In CVDs, the same
patient cannot be in 2 Markov states simultaneously. In our
dataset of actual patients with CVD, we have found
multimorbidity situations where a patient can have multiple
events simultaneously. To comply with this Markovian
rule, we have deliberately treated such multimorbidity
events as single and unique Markov states (eg, simultaneous
occurrences of angina and MI is defined as a separate
unique state designated as “ANMI”).

2. Memory-less property of Markovian states: Markov states
do not retain the memory of previous cycles or information
from previous states leading to the future state. For example,
in our model, we assume that all patients in the MI state,
at the same time, have the same probability of transitioning
to the angina state, irrespective of their previous history or
path of reaching the previous MI state.

3. No immediate transition to the same state: Our dataset has
patient instances where a patient reported the same CVD
episode (eg, stroke) occurring consecutively with a time
gap. In such cases, we preprocessed the data to combine
them into 1 continuous state, as due to the nature of CVDs,
it might not be accurate to assume that the patient had a
complete remission during the interim period. For example,
if a patient reported a stroke episode in day number 100
and reported a consecutive stroke again in day number 110,
we assume that the patient was in the stroke state for the

interim period of 10 days as well. In other words, the patient
was continuously in the stroke state from 100th day to 110th
day and this is counted as a single continuous disease state
with longer wait time during the data preprocessing.
However, if after a stroke the patient had an angina episode
had a stroke again, our model state diagram would show a
return to a stroke state again after the angina episode.

4. Exponential distribution approximation of wait times:
Several studies and reviews support the use of exponential
distribution approximations in time-to-event modeling for
CVDs. For example, Sullivan [27] highlights that the
exponential distribution is a common choice for modeling
the time to cardiovascular events. In the application of the
CTMC process in disease progression modeling for CVDs,
holding time or wait time in a given state is approximated
to be exponentially distributed.

Stochastic Modeling Theoretical Underpinnings
A stochastic process is a collection of random variables indexed
by a variable t, usually representing time. A Markov Chain or
Markov process is a stochastic model representing
time-dependent cyclic processes. The primary advantage of a
Markov process is the ability to describe, in a mathematically
convenient form, the time-dependent transitions between health
states [28].

As discussed in the previous section, in a disease progression
process, the random time variable t—“wait time” or “hold
time”—is known to follow an exponential distribution. As a
validation, we computed our dataset’s “wait time” frequency
distribution and found it to have an approximate exponential
frequency distribution pattern (Figure 1), although literature
indicates that it is not strictly followed in the medical field, but
necessary for modeling disease progressions successfully [29].
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Figure 1. Wait time–frequency distribution in the research data set.

Operational Behavior of CTMC
The operational behavior of a process modeled after CTMC can
be described in the following steps, where a patient:

1. Stays Xi units of time in state i, where Xi is the random
variable with an exponential distribution. The unit of time
was measured in days in our study.

2. Jumps to a random next state j in a single step with
probability P(i,j)

3. The behavior repeats across subsequent jumps.

Mathematically, CTMC can be defined by a tuple of 2 matrices:
[S, R], where S is a matrix of s number of countable CTMC
states and R is a transition rate matrix of (s×s) size. The value
of R(i,j) equals the rate at which a patient moves from state i to
state j in 1 step. This R matrix is also known as the generator
matrix (denoted by Q in later sections), which we will explain
in the following subsection.

Generator Matrix—Q
The generator matrix, a fundamental matrix in CTMC
calculations, is known by many names, such as infinitesimal
generator matrix, transition rate matrix, intensity matrix,
Q-matrix, etc. The generator matrix represents the rate (eg,
number of transitions per day) at which transitions happen
between states in 1 step. We denote it as Q-matrix with its
elements as qi,j, where

For diagonal matrix elements, q(i,i) is the negative sum of the
rest of the row so that the row sum of each row is equal to zero.
There are several methods of calculating the generator matrix.
For this study, we applied the Maximum Likelihood Estimator
method, which Metzner et al [30] discussed in their paper named
“Generator Estimation of Markov Jump Processes.” In this
method, for each state i of a finite number of states s, the
generator matrix is computed as follows:

1. Calculate: ni.j = total number of transitions between state i
to j for i≠j

2. Calculate: ri.j = total wait time or hold time at state i before
transitioning to j for i≠j

3.
Calculate: 

4. Place the negative of the row sum of nondiagonal positions
as the diagonal entry so that the row sum of each row is
zero. An infinitesimal generator matrix generates a
continuous-time Markov process if and only if all
off-diagonal entries are nonnegative and the sum over each
row equals zero [30].

For example, if the current disease state is MI, as per our data,
there are 31 cases (ni,j) where patients have transitioned from
MI to CHF state in 1 step. During the hold time or wait time
computations, we found that these patients, involving 31
MI-CHF transitions, waited a total of 16,633 days (ri,j) in the
MI state before jumping to the CHF state. From these data
points, qi,j (i=MI and j=CHF) can be calculated as 31 ÷ 16,633,
which is 0.001864. This Q-matrix value is used to calculate the
CTMC transition probability from MI to CHF at time t in the
next step of the process.
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CTMC Transition Probabilities
Transition probabilities from state i to j after waiting time t at
state i are obtained by using the generator matrix, Q, computed

earlier as Pi,j (t)=eQt, where the exponent of e is calculated by
multiplying each element of Q matrix (or qi,j) by the value of

time t. Continuing the computation example from the previous
section, if a patient is at a current state MI for 90 days, the
probability of the patient transitioning to state CHF at the current
time (t=90 days) can be calculated using the above exponential
function. The calculated transition probability value from the
Pi,j (90) matrix (i=MI and j=CHF) will be 4.53% (Table 2).

Table 2. Continuous-time Markov chain (CTMC) transition probability matrix from state i to state j at a time of 90 days.

Immediate next state (%)Beginning
state

TotalCHANgANMIfCHANMIeAnginaCHSTdCHMIcCHFbDeathStrokeMIa

1005.211.271.7420.235.471.154.5319.6040.180.63MI

1005.361.291.7820.855.631.174.5118.1840.600.64Stroke

100000000010000Death

1006.551.551.9614.513.141.7533.2713.8422.750.67CHF

1004.871.251.7225.197.931.165.3118.3333.540.69CHMI

1002.520.740.938.7211.350.677.0543.5823.900.53CHST

1004.291.171.6230.4911.431.125.6419.5823.910.76Angina

1007.941.332.3723.526.281.546.5017.1732.670.69CHANMI

1007.321.341.8819.945.141.294.8518.5639.050.64ANMI

10019.881.512.3719.694.571.996.1116.4526.710.72CHAN

aMI: myocardial infarction.
bCHF: congestive heart failure.
cCHMI: congestive heart failure and myocardial infarction.
dCHST: congestive heart failure and stroke.
eCHANMI: congestive heart failure, angina, and myocardial infarction.
fANMI: angina and myocardial infarction.
gCHAN: congestive heart failure and angina.

Model Development Technical Process
At this point, we want to highlight that, unlike the machine
learning approach where the event probabilities are derived by
training machine learning algorithms with historical data
(supervised training), our approach uses a Markov Model,
CTMC, which is a mathematical stochastic method to determine
event probabilities and does not involve any sorts of training

mechanism. Figure 2 illustrates our method used to generate a
CTMC-based disease progression model for the CVDs. We
have used all publicly available, open-source software tools and
libraries for server-side module development (Python, Python
Software Foundation, and R, R Foundation) and the widely used
Microsoft Excel for front-end visualization artifacts. The Results
section discusses further details.
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Figure 2. Development process for disease progression pattern generation and digital visualization. the circled numbers indicate the sequence of
development steps and outputs. CTMC: continuous-time Markov chain; CVD: cardiovascular disease.

Deployment and User Interaction
Our developed system can be deployed as an eHealth solution
for CVD clinics. In Figure 3, we present the high-level
architecture of the proposed deployment configuration. Our
proposed deployment design provides end users with the

flexibility to use the system in real-time with an active internet
or network connection using browsers, as well as the option of
downloading the outputs as Excel artifacts and using them
offline. We have provided the data, code, and Excel artifact
(option B) via the web-based Mendeley repository [31] for
reproducibility and reusability.

Figure 3. Proposed architecture for deployment of our system as an internet-based eHealth application for CVD clinicians with configurable monitoring
time intervals. The architecture allows for synchronous web-based use (option A) as well as offline use via prior Excel (Microsoft Corp) artifact download
(option B). CTMC: continuous-time Markov chain; CVD: cardiovascular disease.

JMIR Med Inform 2024 | vol. 12 | e59392 | p. 7https://medinform.jmir.org/2024/1/e59392
(page number not for citation purposes)

Brahma et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Ethical Considerations
As discussed in this paper, cohort-level disease progression
analytic tools are useful in many strategic clinical decisions.
However, these are data-driven methods. Hence, ethical
considerations applicable for data-driven clinical
decision-making systems are important. Such considerations
might include, but are not limited to, ensuring accuracy,
bias-removal, fairness and equity, patient autonomy and consent,
transparency and accountability, and privacy and data protection.

A Data Access and Use Agreement (the “DAUA”) is executed
between The Brigham and Women’s Hospital, Inc., through its
Division of Sleep and Circadian Disorders (“BWH”) and Arin
Brahma (“Data User”) to facilitate access to and use of the
de-identified sleep study and related covariate data originating
from past NHLBI-funded research studies (the “Data”), by
third-party researchers to conduct sleep research in accordance
with NHLBI and BWH policies, procedures, and to the extent
permitted by its Institutional Review Board (IRB) and
institutional policies. The Data agreement can be made available
by the authors upon request when deemed appropriate. The
author has also received approval for the use of the Data for

Cardiovascular Disease (CVD) research from the Institutional
Review Board of Claremont Graduate University, CA, USA
(Protocol ID is 3351; 01/11/2019).

Results

The results comprise the computational outputs from the method
described in the previous section. They include the CVD Markov
state model, various probability matrices, and the progression
pattern visualization results. These are explained in detail below.

CVD Progression State Model
We generated the Markov state transition graph (see Figure 4)
based on the jump frequency matrix (Table 3) information. The
direction of the arrows indicates the direction of disease
transition, and the thickness indicates the proportion of the
patients transitioning between the states.

Figure 4 visually illustrates the chronic nature of CVDs
involving various morbidity, comorbidity, and multimorbidity
states. It can be observed that the state death only has incoming
arrows. This property makes death an “absorbing state” in a
Markov model.

Figure 4. Markov state diagram (generated from jump frequency matrix). Ang: angina; CHF: congestive heart failure; MI: myocardial infarction.
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Table 3. Jump frequency matrix.

Immediate next stateBeginning state

TotalCHANgANMIfCHANMIeAnginaCHSTdCHMIcCHFbDeathStrokeMIa

86001720314410MI

1312763921874010Stroke

00000000000Death

18711913110301012514CHF

181002006810CHMI

140000004361CHST

10114770113912119Angina

624401301191047CHANMI

51306160015443ANMI

4401580219621CHAN

—a352838601291512625445Total

aMI: myocardial infarction.
bCHF: congestive heart failure.
cCHMI: congestive heart failure and myocardial infarction.
dCHST: congestive heart failure and stroke.
eCHANMI: congestive heart failure, angina, and myocardial infarction.
fANMI: angina and myocardial infarction.
gCHAN: congestive heart failure and angina.
hNot applicable.

CVD State Jump Probabilities
The jump probability matrix is computed from the jump
frequency matrix in Table 3 and displayed in Table 4. This
matrix provides the probability of a patient jumping from state

i to state j, without accounting for the effect of wait time or hold
time at the current state on the transition probability. The cells
with a transition probability of 0% indicate that no patient
transitioned between those states.
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Table 4. Jump probability matrix.

Immediate next state (%)Beginning state

TotalCHANgANMIfCHANMIeAnginaCHSTdCHMIcCHFbDeathStrokeMIa

100001.28.12.303651.21.20MI

1001.55.34.62.36.91.513.756.507.6Stroke

100000000010000Death

1005.94.875.901.605413.47.5CHF

1005.60011.10033.344.45.60CHMI

10000000028.621.442.97.1CHST

10013.96.96.901138.611.910.98.9Angina

1006.56.502101.630.616.16.511.3CHANMI

1005.9011.831.40029.47.87.85.9ANMI

10002.311.418.204.543.213.64.52.3CHAN

aMI: myocardial infarction.
bCHF: congestive heart failure.
cCHMI: congestive heart failure and myocardial infarction.
dCHST: congestive heart failure and stroke.
eCHANMI: congestive heart failure, angina, and myocardial infarction.
fANMI: angina and myocardial infarction.
gCHAN: congestive heart failure and angina.

CVD Continuous Time Transition Probabilities
Transition probabilities from state i to j after waiting time t at
state i are obtained by using the generator matrix (Q) computed

earlier as Pi,j (t)=eQt, where the exponent of e is calculated by
multiplying each element of Q matrix (or qi,j) by the value of
time t. The generator matrix (Q) essentially represents the
transition rates concerning time (eg, number of transitions per
day) and is calculated before this step using the jump frequency
and transition wait times.

If a patient is at a current state MI for 90 days, the probability
of the patient transitioning to state CHF at the current time (t=90
days) can be calculated using the above exponential function.
The calculated transition probability value from the Pi,j (90)
matrix (i=MI and j=CHF) will be 4.53% (Table 2).

This is the final set of matrices of the CTMC model that leads
to the digital data visualization of the temporal progression
pattern of CVDs. In CTMC, the transition probability from state
i to state j depends on the current value of time, as the transition
probability changes depending on how long a patient is at the
initial state i. For every such value of t (time), a different CTMC
transition probability matrix exists for all state i to state j
transitions.

CVD Progression Pattern (Including Digital Data
Visualization)
The CTMC transition probability matrix described above
captures the transition probabilities at a specific recurring time
interval scale of 3 months (90 days), as we assumed that, in

general, CVD practitioners would review their patients’progress
every 3 months. However, the model allows the generation of
the above matrix in any granularity (continuous) time scale,
such as by days, weeks, or months. Our model autogenerated
the CTMC probability matrices for every current state at a
3-month incremental progression scale for 5 years. This led to
twenty 10-states by 10-states transition probability matrices.
We developed a data aggregation and visualization method that
automatically combines and organizes the probabilities from
20 matrices for each disease on a 5-year running time scale.
This transformation presents each interstate transition probability
matrix (Figures 5 and 6 left) in a “heat map” style with a
value-based color scale (green is lowest, yellow is medium, and
red is severe). Furthermore, this also automatically generates a
time series trend graph (Figures 5 and 6 right) of transition
probabilities that reveal the disease progression patterns
graphically over 5 years when the current disease state of a
patient is inputted by a clinician through the digital interface.
Using this system, a CVD practitioner can visualize the temporal
pattern and various “what if” scenarios to assist in
decision-making regarding treatment or intervention strategies.
For example, a CVD practitioner might be interested in
knowing: if a patient had MI 3 months back (means current
time t=3 months), what would be the probability of the patient
transitioning to stroke or angina? From the following CTMC
matrix generated for t=3 months, or 90 days by our model (Table
2), one can observe that if the current state of the patient is MI
(rows), the probability of having a stroke is 40.18% (highest)
and angina 20.23% (next highest). Hence, the CVD practitioner
might recommend treatment or lifestyle interventions so that
the risk of stroke or angina can be reduced.
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Figure 5. Digital data visualization: 3-month interval transition probabilities (left) and graphical progression pattern (right). Current state entered is 1
(MI)—best viewed in color. ANMI: angina and myocardial infarction; CHAN: congestive heart failure and angina; CHANMI: congestive heart failure,
angina, and myocardial infarction; CHF: congestive heart failure; CHMI: congestive heart failure and myocardial infarction; CHST: congestive heart
failure and stroke; CTMC: continuous-time Markov chain; MI: myocardial infarction.

Figure 6. Digital data visualization: 3-month interval transition probabilities (left) and graphical progression pattern (right). Current state entered is 2
(stroke)—best viewed in color. ANMI: angina and myocardial infarction; CHAN: congestive heart failure and angina; CHANMI: congestive heart
failure, angina, and myocardial infarction; CHF: congestive heart failure; CHMI: congestive heart failure and myocardial infarction; CHST: congestive
heart failure and stroke; CTMC: continuous-time Markov chain; MI: myocardial infarction.

Analysis of CVD Progression Pattern
We explain our observations using an illustrative example
(Figure 5—left and right), where the current CVD state of a
hypothetical patient (representing population CVD progression
pattern) is MI at t=1 (day 1 of month 1), the probability of
staying in that state drops rapidly with time. In contrast, the
probability of stroke, death, and CHF keeps increasing. Among
these states, the probability of stroke starts with a higher
probability of 28% at t=month 1. Continuing the analysis from
Figure 5, the probability of death and angina starts at near zero
but increases at a higher rate. At t=month 3, the probability of
stroke, angina, death, and CHF peak at 40%, 20%, 20%, and
5%, respectively. At this point, if the patient transitions to stroke
(40%), there is a 36% probability of death at t=month 6,
compared to an 18% probability of angina and a 6% probability
of CHF. If the patient escapes death and continues to be in the
stroke state, then the probability of death crosses the 50% mark
at t=month 9, and the death probability increases rapidly from

then onwards. In 21 months, the death probability crosses the
80% mark, signifying a high probability of mortality.

Although the above findings meet the core objectives of this
study, we performed further analysis of the dataset, which
contributed additional interesting findings on CVD patterns.
We use only 4 states—CHF, stroke, MI, and angina—for this
analysis as they collectively account for 88.2% (231/262) of all
CVD-related deaths (101/262, 38.6%; 74/262, 28.2%; 44/262,
16.8%; and 12/262, 4.6%, respectively). The details of this
analysis are presented in Multimedia Appendix 4, and a
summary of the key findings from this analysis is presented.

1. Transition rates and mean transition times: The fastest
transition rate is from MI to stroke (mean transition time
3, SD 0 days, because only 1 patient had myocardial
infarction to stroke transition in the dataset), and the slowest
is from MI to angina (mean transition time 1457, SD 1449
days).
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2. First CVD episodes: CHF is the most probable first episode
(371/840, 44.2%), followed by stroke (216/840, 25.7%),
angina (140/840, 16.7%), and MI (113/840, 13.5%).

3. Most dominant CVD episodes immediately after an episode:
CHF is the most dominant episode after an occurrence of
angina, whereas after CHF, stroke, and MI, death is the
most dominant episode.

Model Validation
As practiced commonly in validating empirical models, such
as machine learning predictive models, one would ideally hold
some testing data out to compare to a model built on training
data. Fitzpatrick [31], in his paper “Issues in Reproducible
Simulation Research,” states that the problem context of
probabilistic models can often make this type of testing difficult.
He discussed this aspect of stochastic model validations and
laid a guideline for researchers working with such models. In
the paper, Fitzpatrick refers to a multistage validation model
from North and Macal [32] that includes validation of
requirements, data, face, process, theory, and output. We used
this model for internal evaluations during our model
development cycles, as described in detail in Multimedia
Appendix 5.

Model Artifacts, Reproducibility, and Generalizability
One of the significant outputs of this research is the CTMC
model embedded visualization artifact that CVD clinicians can
use as a cohort-level decision-support tool for several
applications and use cases as described in detail in Multimedia
Appendix 6. The user interface of this 10-state model artifact
has an input field (pointed out by the text “Enter Current State#
here ” in Figures 5 and 6), where a clinician can be informed
of the transition probability values and graphical progression
patterns by entering the current CVD state of a cohort under
investigation. This Excel artifact is self-contained, ready to use,
and can be operated by having just the Microsoft Excel
application on any computer. The artifact can be downloaded
from the code repository [29].

Multimedia Appendix 7 provides more detailed information
and instructions for future researchers interested in reusing these
research methods, codes, and outputs to investigate the
progression patterns of other chronic diseases or CVDs from
different population datasets.

Discussion

Principal Findings
This research applies a well-established stochastic
modeling—CTMC models on real-life patient cohort data to
uncover previously unknown knowledge about CVD transition
probabilities and complex progression patterns. The choice of
CTMC overcame DTMC’s limitations on time quantification
for disease progression modeling. There are other types of
Markov models applied for stochastic modeling in the disease
domain. The choice of appropriate modeling method is often
driven by the model’s application goals (eg, patient-specific
decisions vs cohort-level decisions). We have provided a
detailed comparison of our choice of CTMC with 6 other
methods in Multimedia Appendix 1. For complex chronic

diseases such as CVDs, the availability of population-level
transition probability matrices of all 10 disease states and
respective progression patterns close a crucial gap in the
literature and opens the door for future research on the disease
progression of CVDs.

We find that the transition from MI to stroke has the fastest
transition rate (mean transition time 3, SD 0 days, because only
1 patient had myocardial infarction to stroke transition in the
dataset), and MI to angina is the slowest (mean transition time
1457, SD 1449 days). CHF is the most probable first episode
(371/840, 44.2%), followed by stroke (216/840, 25.7%). This
result reflects the epidemiological characteristics of our study
cohort. However, if a dataset from a different cohort is inputted
in our model, the patterns might differ.

External Validations of Clinical Applications and
Usefulness
The research also has many practical implications. We organized
an expert panel of 7 practicing cardiologists and conducted a
combination of presentations, open-ended interviews, and
structured web-based surveys to validate the applications and
usefulness of our model. We have discussed the methods,
results, and analysis of this external validation process in detail
in Multimedia Appendix 6. Here, we are presenting 9 clinical
applications and use cases that were evident from the interviews
and survey.

1. This tool can help cardiologic clinics understand the
effectiveness of their intervention strategies related to
quality metrics, such as blood pressure thresholds for
interventions.

2. Comparing the clinic-level transition rates with
population-level rates built into this tool, clinics can identify
a specific cohort that has significantly higher rates for
certain transitions (eg, angina-to-death) and then
back-identify the patients for analysis of variables leading
to such outcomes.

3. Clinics can use the transition probabilities generated by this
tool based on their patient cohort data to compute the patient
state mix for a future period. This can allow predictive
resource planning, improved patient care, and cost savings.

4. This system can be populated with CVD episode data of
various clinic cohorts and subcohorts and their patterns
(frequency, transition rates, probabilities, etc) can be
compared. This can reveal the trend differences concerning
various cohort control features such as demographics,
education, nutrition profile, treatment alternatives, etc.

5. Such intercohort benchmarking can delineate best practices
concerning cost-effectiveness, manpower economy, and
fund allocations (eg, Affordable Care Act incentives) when
the candidate cohorts are selected from disparate clinics.

6. The utility can be further extended to understand
epidemiological trends of different geographical and
population segments, leading to valuable inputs for the
health care policymakers and administrators enabling them
to target specific regions based on pattern differences.

7. This tool can also help comparison of CVD characteristics
at a national level, for example, some countries might have
more stroke compared to others having more CHF. This
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can lead to necessary preventive measures and national
health policies.

8. It can help identify temporal changes in CVD trends in
patients because of shifts in major treatment paradigms (eg,
prestatin vs statin period pattern changes)

9. This tool can be potentially integrated with clinic electronic
health record systems to continually monitor temporal
pattern shifts over time and send out automated notifications
and reports based on preset quality metrics thresholds.

Study of Impact of Various Risk and Control Factors
on Epidemiological Trends
The clinical applications suggested by the expert panel point to
the tool’s general ability to reveal epidemiological trend
differences across various subcategories within a given cohort
or across different cohorts. Such subcategories might include
various population risk factor groups (age, gender, smoking
behavior, education levels, etc), geographical attributes (urban,
rural, coastal, inland, state, country, etc), treatment policies
(quality metrics), interventions (medication or procedures), and
so on.

To demonstrate this key capability of our tool, we chose a
population risk factor—“gender”—as an example and used the
tool to visualize the CVD progression trend differences between
male and female patients from our research cohort. To
accomplish this, we partitioned the input dataset based on the
“gender” subcategory. The data partitioning based on “gender”
resulted in 278 male patients involved in 471 CVD episodes
and 355 female patients involved in 592 CVD episodes. We
then applied our research tool to generate 2 separate outputs
corresponding to each of the genders. The visualization of the
results (Figure 7) reveals distinct and interesting differences in
the progression patterns between male and female patients
within the cohort. In the following paragraph, we briefly outline

some of the significant trend differences revealed between male
and female patients when the current CVD state is “MI.”

First, we observe that the transition rate to state “death” (in red
color) is significantly slower for the female patients compared
to the male patients. The progression curve for females is
noticeably flatter compared to their male counterparts. Thus,
the female patients take almost 15 months to cross the
probability threshold of 50%, whereas the male patients cross
that threshold in just about 2.5 months. Another key observable
difference is revealed in the progression pattern of the
multimorbidity state “CHST” (congestive heart failure and
stroke in blue color). The graph shows that female patients have
more than a 50% probability of transitioning to “CHST”
immediately following their current “MI” state over the next 4
months. In contrast, male patients have negligible probabilities
of transitioning to “CHST” following the current “MI” state.
Also, the probabilities of transitioning out of the current “MI”
state (in green color) to any other state have distinctly different
patterns between the male and female patient groups. Such trend
comparisons between subgroups or different cohorts might
trigger further study and analysis by the clinicians leading to
improved treatment strategies, quality metrics, or interventions.

In the Deployment and User Interaction section, we have also
provided a proposed deployment architecture that will allow
health care providers to implement the solution as an eHealth
application over the internet. Furthermore, our cohort-level
clinical decision support system can be used for other chronic
diseases to unveil their progression patterns, requiring only 3
data elements as inputs: a synthetic patient identifier, disease
episode name, and episode time in days from a baseline date.
This approach can encourage and facilitate further studies on
disease progression patterns of other chronic diseases, not
limited to CVDs by future researchers.

Figure 7. CVD transition probability pattern differences between male and female patients when the patients’ current state is “MI.” CHF: congestive
heart failure; CHST: congestive heart failure and stroke; CTMC: continuous-time Markov chain; MI: myocardial infarction.

Limitations
Our study has a few limitations. As per the Markovian
assumptions, the process’s behavior after any cycle is solely

based on its state within that cycle, indicating that it does not
retain the memory of previous cycles. This assumption about
the memory-less state is tenuous in medicine since a patient’s
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history may give the physician important information about
their condition in the present and future. Hence, this is an
approximation in our model. It is noted from the literature that
although the Markovian assumption is necessary to model
prognosis with a finite number of states, it is not followed
strictly in medical problems [33]. Next, the data used for this
research comprised CVD episode records of 1274 patients. The
generalizability of this model will significantly improve with a
larger number of diverse patients with CVD data. The CTMC
approach has its limitations as well for patient-specific decision
support applications. Since a patient is likely to be associated
with a specific medical history, medication, interventions,
demographic risk factors, etc, each of the Markov states must
be unique for all such combinations. This makes the design and
computation of the CTMC model very complex, less
interpretable, and computationally heavy. Other Markov
methods such as the Markov decision process can model
patient-specific sequential treatment decision-making processes
more efficiently. These limitations also lead to future
opportunities for research. Since the framework and the tool
developed in this research are disease agnostic,
reproducibility-tested, and the reproducible package has been
publicly shared, future researchers can use this tool to populate
with episodic data of any chronic disease of interest and apply

them to similar clinical use cases and applications. Additionally,
to improve the generalizability of its application for CVDs, data
from various other cohorts can be modeled and validated by
simply reusing our model with new datasets.

Conclusion
Stochastic disease progression models developed from fully
observed real patient cohort data to compare a patient’s CVD
progression with a population pattern can provide better
intervention-based decision-making capabilities to physicians.
However, such models do not currently exist. This research uses
CTMC methods to develop a disease progression model from
the population data of 1274 patients associated with 4839 CVD
episodes across 16 years. This study unveiled distinct CVD
progression patterns and characteristics from the fully observed
longitudinal data of patient cohorts. The results are actionable
with the code and data framework shared with the audience.
The model also serves as an eHealth decision support tool with
digital visualization of progression patterns and opens the door
for many practical applications, including proactive resource
planning at hospitals. Our study results are reproducible and
extendable to other chronic diseases. Despite certain limitations,
this research contributes significantly to the literature and
possible practical clinical applications.
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