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Abstract

Background: Digital transformation, particularly the integration of medical imaging with clinical data, is vital in personalized
medicine. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standardizes health data.
However, integrating medical imaging remains a challenge.

Objective: This study proposes a method for combining medical imaging data with the OMOP CDM to improve multimodal
research.

Methods: Our approach included the analysis and selection of digital imaging and communications in medicine header tags,
validation of data formats, and alignment according to the OMOP CDM framework. The Fast Healthcare Interoperability Resources
ImagingStudy profile guided our consistency in column naming and definitions. Imaging Common Data Model (I-CDM),
constructed using the entity-attribute-value model, facilitates scalable and efficient medical imaging data management. For patients
with lung cancer diagnosed between 2010 and 2017, we introduced 4 new tables—IMAGING_STUDY, IMAGING_SERIES,
IMAGING_ANNOTATION, and FILEPATH—to standardize various imaging-related data and link to clinical data.

Results: This framework underscores the effectiveness of I-CDM in enhancing our understanding of lung cancer diagnostics
and treatment strategies. The implementation of the I-CDM tables enabled the structured organization of a comprehensive data
set, including 282,098 IMAGING_STUDY, 5,674,425 IMAGING_SERIES, and 48,536 IMAGING_ANNOTATION records,
illustrating the extensive scope and depth of the approach. A scenario-based analysis using actual data from patients with lung
cancer underscored the feasibility of our approach. A data quality check applying 44 specific rules confirmed the high integrity
of the constructed data set, with all checks successfully passed, underscoring the reliability of our findings.

Conclusions: These findings indicate that I-CDM can improve the integration and analysis of medical imaging and clinical
data. By addressing the challenges in data standardization and management, our approach contributes toward enhancing diagnostics
and treatment strategies. Future research should expand the application of I-CDM to diverse disease populations and explore its
wide-ranging utility for medical conditions.
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Introduction

The accessibility and use of health information in various
formats and standards are limited, further limiting the
development of advanced data analytics technologies, especially
in an era where machine learning and other cutting-edge
technologies have become essential for medical research.
Integrating these sophisticated analytical tools requires a
paradigm shift toward the standardization and harmonization
of health care data [1,2]. Standardized data structures are not
only beneficial but essential for the effective application of
machine learning algorithms as they ensure consistent data
quality (DQ), interoperability, and comprehensive analysis
across different health care domains. By moving to standardized
data formats, we laid the foundation for a more powerful and
scalable application of emerging technologies, opening up new
possibilities in medical research and patient care.

Several standardization projects and technologies have emerged
in response to the demand for integrated approaches [3,4].
Among these, the Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM) is noteworthy for its
advantages in converting diverse sources of data into a consistent
format [5,6]. It harmonizes the structure and content of various
clinical data sets, facilitating consistent analytical approaches
in multi-institutional research. These characteristics ensure high
efficiency and accuracy of data interpretation and use, thereby
enhancing both the quality and pace of research in the rapidly
evolving field of medicine.

Digital Imaging and Communications in Medicine (DICOM)
is a universal standard for managing, storing, and transmitting
medical images, ensuring interoperability and improved
exchange of medical image data and associated information
between health care systems. Recent research has focused on
the integrated analysis of DICOM and OMOP CDM to promote
accessibility to complex medical imaging data and electronic
health records [7-11]. These efforts aim to combine detailed
imaging metrics with diverse clinical data to contribute to the
development of diagnostic and therapeutic strategies through
comprehensive data analysis. However, the data duplication
problem caused by constructing an instance-level table and the
absence of a table that can store annotation data such as labeling
(commonly used in image analysis) are major limitations. These
limitations must be addressed to effectively manage the complex
characteristics of medical imaging data and perform an

integrated analysis with clinical information in the OMOP CDM.
As the complexity of medical imaging data and the range of
DICOM tags increase, effective solutions are required to
integrate data seamlessly and consistently.

Lung cancer is the leading cause of cancer-related deaths
worldwide and accounts for >20% of all cancer fatalities in
South Korea. The etiology, progression, and therapeutic
response of lung cancer are intricately linked to a myriad of
biological and genetic factors. Therefore, a systematic
understanding of the characteristics of lung cancer is paramount
for its early detection, prevention, and construction of
personalized treatment strategies [12,13]. However, this requires
an approach that efficiently integrates high-resolution data across
various fields.

In this study, we propose a method to integrate medical imaging
data with the OMOP CDM, aimed at enhancing multimodal
research capabilities. This approach involves converting DICOM
metadata and its annotation data to fit within the OMOP CDM
framework and subsequently integrating it into a designed
Imaging Common Data Model (I-CDM). We applied this
integrated framework to a specific cohort of patients with lung
cancer and brain metastases to not only test the feasibility and
utility of our approach but also demonstrate its practical
application through a series of research scenarios. Additionally,
the use of scenarios was intended to showcase use cases that
validate the operational functionality of our proposed model
within real-world research settings.

Methods

Overview
We systematically analyzed and selected the DICOM header
tags, verified their data formats, and mapped them to the OMOP
CDM framework. To ensure consistency and interoperability
in the column naming and definitions, we referenced the Fast
Healthcare Interoperability Resources (FHIR) image study
profiles, constructed I-CDM tables incorporating an
entity-attribute-value (EAV) model for scalability, and
performed data preprocessing to maintain data integrity. This
allowed us to construct and validate a series of scenarios that
combined clinical and imaging information from patients with
lung cancer using a structured approach while ensuring
interoperability. Figure 1 provides a visual overview of the
processes used.
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Figure 1. Workflow for I-CDM implementation in lung cancer research. CDM: Common Data Model; DICOM: Digital Imaging and Communications
in Medicine; I-CDM: Imaging Common Data Model; OMOP: Observational Medical Outcomes Partnership.

DICOM Header Analysis
We selected preliminary DICOM header tags that are universally
applicable across a spectrum of modalities through a systematic
procedure. To ensure the relevance and appropriateness of these
tags, we sought consultation with radiology specialists [14-16].
While the DICOM standard provides a framework, it does not
enforce a uniform data format. This lack of uniformity has led
to variations in data formats across medical institutions and
modalities. Accordingly, we validated the extractable data
formats, ensuring that only data from nonempty DICOM header
tags are extracted to maintain DQ and relevance. For data values
where no standard concepts were unavailable, we introduced
new custom concepts that are used consistently and
comprehensively within the Observational Health Data Sciences
and Informatics (OHDSI) framework. Concurrently, we
examined the FHIR standard’s ImagingStudy profile of
radiological image data to determine the appropriate table and
column names [17]. This approach was adopted to ensure that
the selected header tags provided comprehensive coverage with
respect to established imaging information standards.

I-CDM Table Modeling
Our database architecture was designed to consolidate a variety
of medical imaging data types, including DICOM header tags,
study and series-level preprocessing information, and annotation
information through labeling. The organization of
IMAGING_STUDY, IMAGING_SERIES,
IMAGING_ANNOTATION, and FILEPATH tables ensured
structured and accessible data collection. The
IMAGING_STUDY table refers to the CDM
PROCEDURE_OCCURRENCE table associated with the
corresponding imaging-order information.

To understand the significance of series-level analysis in medical
imaging with reference to the ImagingStudy profile of the FHIR
standard, we modeled the IMAGING_SERIES table [18-20] to
house values derived from DICOM header tags pertinent to the
series. Considering the potential variability in series-specific
details owing to distinct imaging equipment or research
requirements, we adopted the EAV format. The EAV model
provides a data representation framework for the scalable and
flexible storage of entities, in which the number and types of
attributes (properties and parameters) can vary [21,22]. Using
EAV, each attribute-value pair is stored as a separate record,
making it easier to populate new data rows without altering the
foundational database schema. This model facilitates data
expansion without necessitating changes to the foundational
table structure.

To observe the emergence and ubiquity of automated labeling
tools in radiology, we designed an IMAGING_ANNOTATION
table [23-26] structured to retain minimal metadata originating
from the tools. Similar to the IMAGING_SERIES table, we
used an EAV approach to promote the extension of the metadata.
Finally, in response to the importance of the file size in
image-oriented research and artificial intelligence
implementations, we designed a FILEPATH table. This database
captured fundamental attributes, such as file size, location, and
specific format. Figure 2 shows the diagram constructed
according to the I-CDM table definition. In Multimedia
Appendix 1, we provide detailed definitions for each column
in the IMAGING_STUDY, IMAGING_SERIES,
IMAGING_ANNOTATION, and FILEPATH tables for I-CDM.
Multimedia Appendix 1 elucidates the data format and captures
broadly the attributes of the I-CDM framework. In addition, it
specifies whether a column is mandatory, ensuring
comprehensive documentation and consistency across data sets.

JMIR Med Inform 2024 | vol. 12 | e59187 | p. 3https://medinform.jmir.org/2024/1/e59187
(page number not for citation purposes)

Ji et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Diagram of Imaging Common Data Model workflow and attributes.

We analyzed and mapped the categorically constructed columns
to the corresponding CDM concept IDs where feasible. The
modality information was mapped to the concept IDs of the
Procedure class in the CDM specifically related to the imaging
equipment. This mapping enabled cross-validation using the
method attributes of the linked procedure. The body part
category was also aligned with the CDM concept, resulting in
terms like “chest” being mapped to the Procedure class as “chest
imaging.” For the IMAGING_ANNOTATION table, attributes

such as the labeling plane and area were harmoniously mapped
to the standard CDM concept IDs. In instances where mapping
to standard CDM codes proved challenging, custom concepts
were designated without limiting the classes and domains. Here,
the original data extracted from the images were consistently
included in the source-value column to ensure data fidelity.
Additionally, in anticipation of RadLex potentially being
adopted as a standard vocabulary within the OHDSI framework,
we have also suggested additional RadLex mappings for our
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data set. RadLex, developed by the Radiological Society of
North America, is a comprehensive terminology system
designed to standardize the names of radiological diagnoses,
findings, and procedures. It encompasses a wide range of terms
used in medical imaging, making it an invaluable resource for
enhancing the comprehensiveness of medical imaging
vocabularies within our data set. Multimedia Appendix 2
provides a detailed map of the standard terminology used in our
I-CDM with their corresponding OMOP CDM concept IDs.

We expanded our methodological framework by developing a
Python-based tool, publicly available on GitHub, for automatic
conversion and integration of DICOM files into our I-CDM
[27]. This tool was designed to work in conjunction with
PostgreSQL to effectively create and populate essential tables
such as IMAGING_STUDY, IMAGING_SERIES, and
FILEPATH directly from specified DICOM file directories.
Notably, the tool includes an algorithm to map the extracted
DICOM header data systematically to the corresponding CDM
concept IDs. This functionality ensures that the medical image
data are not only accurately integrated into the I-CDM but also
aligned with the standardized terminologies and classifications
of the OMOP CDM. For practical applications, we chose the
NSCLC-Radiomics open data set from The Cancer Imaging
Archive. The NSCLC-Radiomics data set was used solely and
only for the purpose of testing our DICOM file–to-PostgreSQL
conversion tool, confirming its functionality with generic
DICOM files, and providing a publicly shareable example of
the processed output. After reading DICOM files from the
NSCLC-Radiomics data set, our tool methodically constructs
I-CDM tables within PostgreSQL, thereby streamlining the data
integration process.

Data Preprocessing for I-CDM Table Construction
Before data preprocessing, all personal identifiers were removed
to maintain patient confidentiality and protect personal
information. Our first step was to ID and categorize the images
into a series, ensuring that each series-specific folder contained
only pertinent images, thereby maintaining a hierarchical
directory structure. The Series Description in a DICOM header
often comprises terms and abbreviations that describe the image
characteristics. We performed a detailed analysis of the Series
Descriptions of selected images to discern imaging attributes,
such as the image plane, the presence of enhanced contrast, and
designations such as low-dose, T1, or T2, among others. Based
on a combination of these criteria, we designed rule-based
naming conventions for folders, aiming for descriptive and
meaningful names. Furthermore, we extracted information on
the presence of “Black Blood” imaging in magnetic resonance
imaging (MRI) scans using DICOM header data, which assisted
in preparing data for the construction of the imaging series table.

To construct the imaging annotation table, 2 radiology experts
identified and labeled the lesions on the chest computed
tomography (CT) and brain MRI scans. Subsequently, we
extracted metadata related to the labeled regions, such as area
dimensions and characteristics.

Validation of I-CDM for Lung Cancer Studies

Overview
This study sought to define a research cohort comprising patients
aged 18 years and older with primary lung cancer and structure
the metadata of all chest x-ray, chest CT, and brain MRI images
using I-CDM. Using the structured data, we aimed to elucidate
the unique and major characteristics of patients with lung cancer
by analyzing various scenarios.

Scenario 1: Association of Hypertension on Imaging
Frequency in Patients With Epidermal Growth Factor
Receptor Mutation-Positive Lung Cancer Receiving
Osimertinib
We investigated the association of hypertension on imaging
frequency in patients with lung cancer who were prescribed
osimertinib, an epidermal growth factor receptor tyrosine kinase
inhibitor. By comparing the frequency of CT imaging between
groups with and without hypertension, this study aimed to
determine whether the presence of hypertension affects imaging
frequency in patients undergoing osimertinib treatment.

Scenario 2: Correlation Between Ground-Glass Nodules
and Solid Tumor Volume in Lung Cancer
Using annotated data from chest CT scans to compare tumor
volumes in patients with lung cancer who have ground-glass
nodules (GGNs) with those who have solid nodules, we aimed
to explore the relationship between ground-glass opacity nodules
and tumor volume in lung cancer.

Scenario 3: Use of Low-Dose CT in Diagnostic Imaging
for Lung Cancer
This scenario investigates the number of CT series, each
consisting of more than 150 image instances, in patients who
have undergone low-dose CT for lung cancer diagnosis. This
study aimed to evaluate the adequacy of low-dose CT for
providing diagnostic information while minimizing radiation
exposure in patients.

Scenario 4: Number of Enhanced T1-Weighted MRI
Images With a Slice Thickness of <1 mm in Patients
With Lung Cancer Diagnosed at Younger Than 60 Years
This scenario targets patients with lung cancer diagnosed at
younger than 60 years of age and involves quantifying the
number of enhanced T1-weighted MRI images with a slice
thickness of <1 mm. The collected data highlighted the volume
of images available for subsequent annotation, and facilitated
an in-depth radiological analysis of patient demographics.

Ethical Considerations
This study was approved by the Institutional Review Board of
Seoul National University Bundang Hospital (approval
B-2202-738-004; date: April 14, 2022). All procedures
performed in this study involving human participants were in
accordance with the ethical standards of the institutional and/or
national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical
standards.

JMIR Med Inform 2024 | vol. 12 | e59187 | p. 5https://medinform.jmir.org/2024/1/e59187
(page number not for citation purposes)

Ji et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Statistical Analysis
Statistical analyses were performed using R software (version
4.2.2; The R Foundation for Statistical Computing). Descriptive
statistics were used to summarize the data, including the
calculation of means for continuous variables and frequency
counts for categorical variables. The data were categorized as
necessary to facilitate further analysis.

Results

Conversion of DICOM Data to the OMOP CDM
Format: Realization and Integration in the I-CDM
Framework
To systematically organize and efficiently manage the extensive
collection of imaging data for the cohort of patients with lung

cancer diagnosed between 2010 and 2017, sourced at Seoul
National University Bundang Hospital, we structured the I-CDM
into 4 basic tables: IMAGING_STUDY, IMAGING_SERIES,
IMAGING_ANNOTATION, and FILEPATH (Table 1). The
data set included imaging data from follow-ups in 2003-2021.

The I-CDM categorized 282,098 IMAGING_STUDY records,
which were systematically linked to OMOP. This link provides
an extensive overview of patient imaging trajectories and clinical
data. The database contains 5,674,425 image series
encompassing 47,381,027 individual image instances. Of the
282,098 records in the data set, 282,028 records contained
information across various modalities, each containing a
corresponding “number of series and instance” columns within
the database.

Table 1. Imaging Common Data Model (I-CDM) data summary for lung cancer cohort (number of tables and records for data from 2003 to 2021 for
patients diagnosed with lung cancer from 2010 to 2017).

Unique valuesRecords with data, n (%)Record count, nI-CDM table or column name

282,098IMAGING_STUDY

3282,028 (99.9)282,098Modality

265281,940 (99.9)282,098Manufacturer

35282,098 (100)282,098Number of series

1825282,098 (100)282,098Number of instance

5,674,425IMAGING_SERIES

25382,517 (100)382,517Body part examined

385,118 (100)85,118Laterality

1099411,351 (100)411,351Slice thickness

12,535635,208 (100)654,247Series description

29,815685,526 (100)685,526Window center

31,393685,848 (100)685,848Window width

11444,770 (100)458,770Patient position

2020717,154 (100)717,154Columns

2066717,154 (100)717,154Rows

626717,169 (100)717,169Number of instance

212,943 (100)12,943BBa/non-BB

48,536IMAGING_ANNOTATION

548,536 (100)48,536Annotation system

692689 (100)3013Annotation text

329811,153 (100)11,153Volume

15931,333 (100)31,353Long axis

24923009 (100)3009Surface

1,000,361FILEPATH

998,8441,000,361 (100)1,000,361File path

681,0261,000,361 (100)1,000,361File size

aBB: blood-brain barrier contrast.
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The IMAGING_SERIES data represents a testament to the scale
and complexity of the data set, with the 5,674,425 series
illustrating the vast range of radiological examinations included
in this framework. A total of 382,517 records detailing the
examined body parts underscored the targeted nature of
radiological diagnostics. The data set was also characterized by
an array of parameters, with 685,526 records for window centers
and 685,848 for window widths. The structural resolution was
meticulously captured with 717,154 data points for both the
columns and rows, reflecting the intricate images. Each series
was contextualized with descriptions recording the purpose and
context of the imaging sequence in 654,247 data records. In
total, 12,943 images were classified into blood-brain barrier
contrast (BB)/non-BB categories to indicate the presence or
absence of BB, highlighting the usefulness of specialized
imaging sequences for detailed neurovascular assessments.

Table 2 displays the distribution of DICOM data across different
modalities for patients with lung cancer, indicating the number
of studies and series for each modality. X-ray examinations
usually consist of a single series, whereas MRI and CT scans
frequently include multiple series per study to accommodate a
variety of imaging sequences. This highlights the detailed and
complex nature of lung cancer diagnosis and monitoring. The
structured categorization within the IMAGING_SERIES table
using an EAV model, where the MRI data comprise 11
categories, including the BB/non-BB distinction. This implies
a detailed classification of the MRI data, unlike the x-ray data,
which are classified into 7 categories representing the variability
of the desired parameters for each imaging modality. For x-ray
images (n=1,410,844), the features are distributed as follows:
number of instances (n=201,755, 14.3%), columns (n=201,755,
14.3%), rows (n=201,755, 14.3%), window width (n=200,938,
14.2%), window center (n=201,755, 14.3%), series description
(n=201,755, 14.3%), patient position (n=200,938, 14.2%), slice
thickness (n=200,938, 14.2%), body part examined (n=201,755,

14.3%), laterality (n=201,755, 14.3%), and BB_NonBB
(n=201,755, 14.3%).

CT images (n=2,982,176) show the following feature
distribution: number of instances (n=360,845, 12.1%), columns
(n=360,845, 12.1%), rows (n=360,845, 12.1%), window width
(n=360,845, 12.1%), window center (n=360,845, 12.1%), series
description (n=360,845, 12.1%), patient position (n=360,845,
12.1%), slice thickness (n=360,845, 12.1%), body part examined
(n=360,845, 12.1%), laterality (n=286,281, 9.6%), and
BB_NonBB (n=116,305, 3.9%).

For MRI images (n=1,281,432), the distribution is: number of
instances (n=140,958, 11%), columns (n=140,958, 11%), rows
(n=140,958, 11%), window width (n=138,395, 10.8%), window
center (n=138,395, 10.8%), series description (n=139,686,
10.9%), patient position (n=142,235, 11.1%), slice thickness
(n=142,235, 11.1%), body part examined (n=142,235, 11.1%),
laterality (n=80,733, 6.3%), and BB_NonBB (n=91,984, 7.1%).

The IMAGING_ANNOTATION table had 48,536 annotations
predominantly sourced from CT and MRI scans. These
annotations offer a detailed exploration of the examined regions,
with volumetric and long-axis measurements documented. This
granular level of detail is critical for the precise characterization
and monitoring of diseases supported by a comprehensive
understanding of the annotated regions. The FILETATH records
within the I-CDM table (totaling 1,000,361) served as a bridge
between the CDM tables and actual image file paths, spanning
approximately 9.6 terabytes of image data. This illustrates not
only the substantial volume of image data but also the expansive
nature of our image repository within the I-CDM framework.
In addition, DICOM folders were organized in a series, and
common imaging characteristics were identified through series
descriptions to assign meaningful folder names, further
streamlining the data structure for efficient management and
retrieval.

Table 2. Count data based on modality and type.

Series countStudy countModality

201,770201,569X-ray

373,11665,923CTa

142,25414,590MRIb

aCT: computed tomography.
bMRI: magnetic resonance imaging.

Validation of I-CDM Scenarios for Enhanced Imaging
and Treatment Classification in Patients With Lung
Cancer

Scenario 1: Hypertension and Imaging Frequency in
Patients Treated With Osimertinib
Among the total cohort of 7842 patients with lung cancer, 176
(2.24% of the total) prescribed osimertinib were diagnosed with

hypertension. In the osimertinib arm, 28 (0.36%) patients had
hypertension. The average number of CT scans in patients with
and without hypertension was 19.5 and 20.3, respectively,
indicating that hypertension did not significantly affect the
frequency of CT imaging in patients with lung cancer receiving
osimertinib treatment. Figure 3 shows this comparison of CT
scan frequency over hypertension status among patients treated
with osimertinib.
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Figure 3. Diagram of CT scan frequency comparison according to hypertension status among osimertinib-treated patients with lung cancer. CT:
computed tomography.

Scenario 2: Nodule Characterization and Volume
Measurement in CT Imaging
We evaluated 1947 annotated CT scans from 1929 patients and
observed that a significant number of GGNs contained solid
components, necessitating labeling of both components within
the GGNs. Our comparative analysis focused on the mean
volume of solid nodules within GGNs compared with those
without GGNs. In total, 673 GGNs were identified in 626
patients, of which 649 were classified as having solid nodules.

The average volume of the GGN was 8135.616 mm3, whereas
the volume of solid nodules within the GGN was 2578.006

mm3. In contrast, 1343 solid nodules without GGN were found

in 1319 patients, with an average volume of 34,712.58 mm3.
This corroborates the findings of previous studies indicating
that solid nodules, especially those not associated with GGNs,
tended to be more abundant [28]. Our results provide additional
evidence supporting these observations on the nodal nature of
lung pathologies.

Scenario 3: Use of Low-Dose CT and Instance Range
Among the 63,446 CT studies conducted in the cohort of patients
with lung cancer, which included 2,725,899 series, 48,587 were

identified as low-dose imaging studies. Of these, 41,336
included >150 instances. The instance count in the 3 low-dose
CT images varied significantly, with the smallest and largest
series consisting of three and 633 instances, respectively. This
highlights the need for low-dose imaging to capture extensive
data while minimizing radiation exposure.

Scenario 4: MRI Imaging With 1-mm Thick Slice and
T1 Enhancement
In Scenario 4, which focused on MRIs of 1-mm thick slices
under T1 enhancement, our analysis of 137,566 MRI series
identified 31,851 series using T1-weighting at the specified
slice thickness, 5235 of which were associated with patients
aged ≤60 years. This scenario allows the preemptive
examination of images to be labeled, integrating image patterns
and nodule characteristics with clinical data. This approach not
only facilitates the identification of the scale of target images
to be annotated but also enables precise quantification of the
images that meet the specified criteria. Table 3 shows the
categorization of the MRI series using I-CDM, providing a
visual summary of the data refined by slice thickness and T1
enhancement and further filtered to include patients aged ≤60
years within the studied patient cohort.

Table 3. Magnetic resonance imaging series analysis using Imaging Common Data Model.

CountMRIa series type

137,566Total MRI series

74,692T1 weighted

51,582Contrast enhanced

31,851Slice thickness ≤1 mm

5235Age of 60 years or younger

aMRI: magnetic resonance imaging.

I-CDM Data Quality Check
We ensured DQ based on a set of 44 comprehensive DQ rules
(outlined in Multimedia Appendix 3), focusing on the Radiation
CDM quality assurance framework. These rules encompassed
a broad spectrum of checks, including the evaluation of DICOM
series and instance counts, data type consistency, and the
accuracy of the linkage between the data set and existing clinical

tables within the CDM. All data entries successfully met these
criteria, indicating compliance with quality standards. Among
these rules, those pertaining to interdata relationships and outlier
detection were instrumental in validating the integrity of the
data set. A selection of these quality checks and their outcomes
are presented in Table 4, highlighting the importance of ensuring
data quality and integrity within I-CDM.
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Table 4. Selected data quality assurance rules and outlier analysis results from Multimedia Appendix 3.

Error (n)Result (%)ThresholdCDM_TABLE, CONTCEPT_NAME, and check description

IMAGING_STUDY

NUMBER_OF_SERIES

202PASS
(99.9)

At least 95% matchThe NUMBER_OF_SERIES must be equal to the number of series in the IMAG-
ING_SERIES table with the same IMAGING_STUDY_ID. This ensures that the
number of series recorded in the IMAGING_STUDY matches the actual series entries
in the related table

NUMBER_OF_INSTANCE

109PASS
(99.9)

At least 95% matchThe NUMBER_OF_INSTANCE must equal the sum of VALUE_AS_NUMBER for
entries in the IMAGING_SERIES table where SERIES_CONCEPT_ID equals
NUMBER_OF_INSTANCE, under the condition that they are mapped between the
2 tables. This is to verify that the number of instances (images) reported in the
IMAGING_STUDY corresponds to the aggregated count of instances from the series
data

NUMBER_OF_SERIES, NUMBER_OF_INSTANCE

1PASS
(99.9)

At least 95% matchThe presence of a Rule of NUMBER_OF_SERIES necessitates the presence of a Rule
of NUMBER_OF_INSTANCE.

IMAGING_SERIES

SERIES_CONCEPT_ID = SliceThickness

496PASS
(99.8)

At least 99% of records
must have a nonmissing

VALUE_AS_NUMBER must exist and be a numeric value for at least 99% of the
records

SERIES_CONCEPT_ID = Rows

100PASS
(100)

At least 99% of records
must have a nonmissing

VALUE_AS_NUMBER must exist and be a numeric value for at least 99% of the
records

8952PASS (1.2)Outliers should be under
5%

Outliers, defined as values beyond the 1st and 99th percentiles, should be reviewed

SERIES_CONCEPT_ID = Columns

—aPASS
(100)

At least 99% of records
must have a nonmissing

VALUE_AS_NUMBER must exist and be a numeric value for at least 99% of the
records

7251PASS (1.0)Outliers should be under
5%

Outliers, defined as values beyond the 1st and 99th percentiles, should be reviewed

SERIES_CONCEPT_ID = BB/non-BB

—PASS
(100)

100% of records must
have as one of the speci-
fied valid IDs

Values must be exclusively “Positive” or “Negative”, ensuring they represent these
specific states without including the concept IDs 45884084 and 45878583

IMAGING_ANNOTATION

ANNOTATION_ CONCEPT_ID = Long axis

—PASS
(100)

No missing values for
VALUE_AS_NUMBER

VALUE_AS_NUMBER must exist and be a numeric value

77PASS (0.2)Outliers should be under
5%

Outliers, defined as values beyond the 1st and 99th percentiles, should be identified
and reviewed to ensure they accurately reflect the intended measurements.

ANNOTATION_ CONCEPT_ID = Volume

—PASS
(100)

100% of records must be
numeric and nonnull

VALUE_AS_NUMBER must exist and be a numeric value

ANNOTATION_ CONCEPT_ID = annotation_text

—PASS
(100)

100% of records must be
numeric and nonnull

VALUE_SOURCE_VALUE must contain a nonempty text value

ANNOTATION_ CONCEPT_ID = surface area

—PASS
(100)

100% of records must be
numeric and nonnull

VALUE_AS_NUMBER must exist and be a numeric value
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aNot applicable.

Discussion

Principal Results
This study proposes a method for integrating clinical and
imaging data using I-CDM. By converting DICOM data into
the OMOP CDM format and integrating it into the I-CDM
framework, we implemented a systematic approach to efficiently
manage medical imaging data. This approach enabled the
connection and analysis of clinical and imaging data in different
contexts. Additionally, detailed schema overviews for the use
cases of integrating I-CDM can be found in Multimedia
Appendix 4, and a comparison between MI-CDM and I-CDM
is provided in Multimedia Appendix 5.

Limitations
The limitation of this study is its lack of consideration for the
resources required for processing DICOM images and
integrating annotation information. To customize and add data
according to researcher needs using the EAV model,
comprehensive knowledge and expertise on DICOM standards
and tags are required [29]. Furthermore, integrating image
annotation data within the I-CDM framework not only demands
sufficient resources [30-32], but also requires advanced data
management strategies to expand the integration and
harmonization of data sets from various imaging modalities
beyond chest CT, x-ray, and brain MRI [33,34]. Moreover,
focusing exclusively on a cohort of patients with lung cancer
narrowed the scope of the study. Additionally, in our study, the
scenarios were designed to validate the functionality of the
proposed model using actual medical data. These scenarios were
deliberately simplified to ensure effective management within
the capabilities of the implemented I-CDM framework. Future
research will benefit from the incorporation of expanded
annotation data, enabling more complex analyses, such as
longitudinal comparisons of tumor sizes pre and posttreatment
in individual patients.

Comparison With Prior Work
In this study, diverging from previous Radiology-CDM research,
we refined the integration of imaging examination data by
linking them with the PROCEDURE_OCCURRENCE table,
which enables a more efficient analysis through improved data
connectivity. Moreover, unlike previous research that relied on
RadLex for standard terminology, this study directly mapped
DICOM terms to OMOP CDM standard terminologies. This
direct mapping simplifies the process and enables the use of
custom codes, thus facilitating a deeper analytical integration
of clinical and imaging data. And this study takes a distinct
approach compared with recent I-CDM studies [35,36]. Our
method enhances the analytical scope by facilitating the storage
and management of annotation information. This ensures that
imaging-related data, including annotations, can be
comprehensively managed within the I-CDM framework. By
using the EAV model, our study introduced flexibility in
managing various data types and structures, rendering our
approach adaptable to evolving research needs and data
characteristics. Consequently, it exhibits good flexibility and

adaptability, especially in research requiring integrated analysis
of clinical and imaging data. Considering the file sizes
associated with imaging data, effective file management is
essential. Our study used the FILEPATH table to connect
I-CDM with the original imaging data, including file extension
and size information, to ensure quick access to file details and
facilitate efficient management.

Scalability and Applicability of the I-CDM
The lung cancer cohort in this study was initially used to validate
the functionality of the proposed I-CDM tables using actual
medical image data. In future studies, the model is not only
adaptable to lung cancer but also designed to accommodate a
wider spectrum of medical conditions, including various tumor
types and cardiovascular diseases. By leveraging OMOP CDM’s
standard vocabulary for “modality_concept_id” and “body part
examined” (“value_as_concept_id”), the model can be broadly
adapted to accommodate various diseases or different settings
beyond lung cancer. This adaptability ensures that any additional
data items users might require can be seamlessly integrated by
aligning with OMOP CDM standard vocabulary, underlining
the framework’s potential for broad application across diverse
medical data and settings. Furthermore, while RadLex is
extensively used in medical imaging vocabularies, it is not yet
included as a standard vocabulary in the OHDSI framework.
Even if RadLex were incorporated, it would not cover all
concepts related to imaging. Therefore, we had to consider
various vocabularies to ensure comprehensive coverage.
Recognizing this, we aimed to build the I-CDM by maximizing
the use of existing OHDSI vocabularies according to OHDSI
principles, rather than proposing new vocabularies. We have
proactively suggested mapping terms compatible with RadLex
within our study wherever possible. In the new scenario, the
principle for term selection involves mapping the standard
concept to the granularity level of the source data. This is
achieved by selecting the term from the standard vocabulary
that most accurately represents the clinical meaning. In addition
to the features we have currently mapped, our study focused on
lung cancer, but for other diseases, there are important concepts
in imaging that should be considered. For instance:

• Ultrasound image tags: Commonly used tags include
“Transducer Frequency,” “Gain,” and “Depth of Field,”
which are critical for analyzing the quality and
characteristics of ultrasound images.

• Spine x-ray tags: Relevant tags such as “KVP” (Kilovoltage
Peak), “Exposure Time,” and “Focal Spot Size” are essential
for understanding the technical parameters that affect image
quality.

• Body part imaging concepts: Terms like “Entire Thorax,”
“Entire Liver,” and “Entire Pelvis” are crucial for precisely
describing the anatomical region being imaged, which can
vary significantly depending on the disease or condition
being studied.

These examples ensure that the I-CDM framework is adaptable
and capable of integrating a wide range of imaging data
characteristics and supporting diverse medical conditions and
research scenarios.
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Conclusions
This study implemented a systematic approach for the efficient
management of medical imaging data, achieving integration of
clinical and imaging data through the development of the I-CDM
framework and the conversion of DICOM data into the OMOP
CDM format. Future efforts should strive to broaden the
application of the I-CDM framework to encompass various

disease populations and include diverse imaging techniques for
different body parts, such as abdominal CT, spine MRI, and
liver MRI, thereby enhancing its applicability. Expanding its
scope to incorporate these imaging modalities is crucial for
conducting more comprehensive investigations into the utility
of merging clinical and imaging data across different health
conditions.
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