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Abstract

Background: The optimization of patient care pathways is crucial for hospital managers in the context of a scarcity of medical
resources. Assuming unlimited capacities, the pathway of a patient would only be governed by pure medical logic to meet at best
the patient’s needs. However, logistical limitations (eg, resources such as inpatient beds) are often associated with delayed
treatments and may ultimately affect patient pathways. This is especially true for unscheduled patients—when a patient in the
emergency department needs to be admitted to another medical unit without disturbing the flow of planned hospitalizations.

Objective: In this study, we proposed a new framework to automatically detect activities in patient pathways that may be
unrelated to patients’ needs but rather induced by logistical limitations.

Methods: The scientific contribution lies in a method that transforms a database of historical pathways with bias into 2 databases:
a labeled pathway database where each activity is labeled as relevant (related to a patient’s needs) or irrelevant (induced by
logistical limitations) and a corrected pathway database where each activity corresponds to the activity that would occur assuming
unlimited resources. The labeling algorithm was assessed through medical expertise. In total, 2 case studies quantified the impact
of our method of preprocessing health care data using process mining and discrete event simulation.

Results: Focusing on unscheduled patient pathways, we collected data covering 12 months of activity at the Groupe Hospitalier
Bretagne Sud in France. Our algorithm had 87% accuracy and demonstrated its usefulness for preprocessing traces and obtaining
a clean database. The 2 case studies showed the importance of our preprocessing step before any analysis. The process graphs of
the processed data had, on average, 40% (SD 10%) fewer variants than the raw data. The simulation revealed that 30% of the
medical units had >1 bed difference in capacity between the processed and raw data.

Conclusions: Patient pathway data reflect the actual activity of hospitals that is governed by medical requirements and logistical
limitations. Before using these data, these limitations should be identified and corrected. We anticipate that our approach can be
generalized to obtain unbiased analyses of patient pathways for other hospitals.

(JMIR Med Inform 2024;12:e58978) doi: 10.2196/58978
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Introduction

Context
Bed management is a critical task for hospitals to provide
coherent care pathways. Daily bed management consists of
finding beds for patients coming from the emergency department
(ED) in appropriate medical units without canceling planned
hospitalizations. Therefore, bed management involves 2 distinct
flows: unscheduled flow (life-threatening emergencies and
patients coming to the ED) and scheduled flow (planned
hospitalizations). Despite the complexity of the task, bed
management is most often organized without the help of any
decision support tools and involves multiple phone calls to find
a bed in a medical unit matching the patient’s needs [1]. When
medical units are facing high occupation rates, it is not always
possible to find a bed to match patient needs.

In these situations, patients are either kept in the short-stay
hospitalization unit of the ED or transferred to an overflow
medical unit to wait for a bed. Consequently, the medical units
visited by a patient do not always correspond to their medical
needs. For example, a patient from the ED can be transferred
to a surgery unit and then to a cardiology unit. This is the
pathway observed in the data. The patient did not receive any
surgical treatment. He was admitted to the surgery unit waiting
for a cardiology unit bed. Therefore, the location of the patient
does not always match the cause of hospitalization. The
succession of medical units is called a patient pathway.
Unscheduled pathways describe the pathways of patients coming
from the ED. In this work, we only considered patients who
visited the ED and were subsequently hospitalized.

The study of patient pathways reveals several challenges due
to the variety of pathways, the lack of complete guidelines and
references, and the heterogeneity of patient management
between hospitals (due to equipment and organizational
differences). Unscheduled pathways are difficult to explain
because management rules or clear indicators are not available
to identify them. In addition, the high number of pathway
variants makes individual studies of each pathway impossible
(eg, >1000 variants for French hospitals of average size) [2].
Process mining is an interesting tool for studying a set of
pathways with several variants because a pathway can be seen
as a patient care process [2,3]. Nevertheless, a large variance
in pathways leads to uninterpretable process graphs. Strategies
exist to make a process graph easier to read, such as trace
clustering or graph size reduction using filters or aggregation
[2], but these methods cannot identify which activities are
relevant and which activities are induced by logistical
limitations.

In this study, we sought to develop a method to assess observed
pathways extracted from a hospital information system. We
wanted to identify which medical units matched the cause of
hospitalization (relevant) or not (irrelevant) in a patient pathway.
The medical relevance or the relevance of treatments was not
evaluated, nor was the choice of the bed manager. Only the
relevance of the patient’s location was evaluated. An irrelevant
medical unit means that the patient would have been hospitalized
in another unit if there were an infinite number of beds. The

identification of such irrelevance is important to avoid any
misinterpretation of further analysis results. In this paper, we
often use the word bias to denote a wrong, inaccurate, or
incomplete interpretation of a real situation because the data do
not represent reality. We use the expression bias in pathways
or data bias to refer to data that represent pathways that do not
always correspond to patients’ medical needs.

Related Work
We did not find proper literature on the task of assessing
pathways but, rather, heterogeneous papers dealing with bias
or phases of a pathway. In 1989, Selker et al [4] designed the
“Delay Tool,” which detects medically unnecessary hospital
days. It is based on a taxonomy of delays. Each stay was
manually evaluated using patient records with the Delay Tool
method. In an article on the prediction of the disposition of ED
patients, El-Bouri et al [5] considered the fact that ED patients
can be admitted to an inpatient unit inappropriate for their
diagnosis. Patients were filtered according to whether their
primary diagnosis code for the ED visit clearly corresponded
to the admission inpatient unit. Their aim was to avoid learning
from biased data. These methods require a thesaurus of all
possible diagnoses linked to appropriate wards. To study patient
pathways, Franck et al [6] designed a generic framework to
model pathways and distinguished 3 different phases: (1) a
waiting phase—the patient waits in the ED (unscheduled) or at
home (scheduled) to be admitted to the relevant medical unit,
(2) an acute phase—the patient receives care in the medical
unit, and (3) a rehabilitative phase—rehabilitative care of the
patient. They also differentiated scheduled patients from
unscheduled patients. To analyze the clinical pathways, they
defined relevant pathways for each type of patient by
considering only the acute phase and substitution options. To
identify the relevant pathways and substitutions, they used
process mining on administrative data. This method is very
accurate but time-consuming given that a relevant pathway and
substitutions must be defined for each pathology. They applied
this method exclusively to patients with stroke.

Data quality in health research is a shared problem, and solutions
have been proposed to improve several dimensions of quality
[7]. However, methods are often not suggested to correct specific
bias in health care data due to missing details about a piece of
information.

Patient pathways can be seen as processes, with the succession
of medical units being the succession of events. Therefore,
pathways can be studied using process mining techniques. “The
goal of process mining is to use event data to extract
process-related information” [8]. The first rough representation
of patient pathways using process discovery algorithms provides
a spaghettilike process model. Indeed, process discovery
algorithms are not successful with event logs that involve
numerous variants and many events [2]. A typical solution to
untangle a spaghettilike model is to cluster the whole set of
traces (trace clustering) and represent each cluster using a
process model that should be smaller and more comprehensive.
The main challenges of the clustering of patient pathways are
the integration of medical knowledge (medical logic) and the
evaluation of the resulting clusters. In the literature, several
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methods for trace clustering have been proposed. Some of these
methods are distance-based clustering algorithms. The core of
these methods is to compute distances between traces to apply
classic clustering algorithms (trace clustering [9], trace
clustering based on conserved patterns [10], context-aware
clustering [11], and the method by Delias et al [12]). Others are
model based; these methods gradually build a process model
that represents a cluster, and a trace is assigned to the cluster
with the nearest process model (sequence clustering [13], active
trace clustering [14], disjunctive workflow schema [15],
graph-based approach and Markov models [16], and behavioral
topic analysis [17]). In terms of cluster evaluation, different
metrics are used. Some metrics analyze cluster
intrahomogeneity, and others analyze the complexity of the
process model of each cluster. There is no consensus on these
metrics, and they do not guarantee that the clusters computed
using the algorithm have an expert logic. Hence, trace clustering
does not give us complete satisfaction in characterizing
pathways. Another approach for simplifying process models
was proposed by Fahland and Van der Aalst [18] based on
unfolding.

Some data preparation techniques can also reduce the
“spaghettiness” of process models. Data preparation is an
unavoidable step in a process mining project and impacts on
the resulting process graph, as highlighted by De Roock and
Martin [19] in their most recent state-of-the-art study. Several
methods have been suggested in the literature to simplify process
models. Semantic log purging was proposed by Ly et al [20] in
2012 to clean log data. This method is based on the identification
of “fundamental constraints that a process has to obey” thanks
to experts. Only a qualitative evaluation and 1 experiment using
1 dataset were performed. Van Zelst et al [21] reviewed the
literature on event abstraction in process mining. However, this
technique is not related to the problem addressed in this study
because our dataset did not provide information on the
granularity of events. Several papers address the issue of time
stamp inaccuracy.

Martin et al [22] proposed interactive data cleaning. Dixit et al
[23] created a method to detect and repair event ordering
mistakes. Rogge-Solti et al [24] presented a similar approach
to repairing missing events based on alignment. In addition,
these researchers created a method for time repairing.

To rigorously prepare the data and event log, different
frameworks have been developed. Andrews et al [25] applied
the Cross-Industry Standard Process for Data Mining method
to identify data quality issues. The data quality dimensions used
in data mining are also useful for assessing data quality in
process mining. Nevertheless, the researchers do not consider
dimensions specific to processes, such as trace coherence.
Therefore, the fourth step, namely, prestudy process mining
analysis, is important to assess this dimension. Bose et al [26]
noted 27 event log quality issues based on 4 categories (missing
data, incorrect data, imprecise data, and irrelevant data) and 9
components of an event log (case, event, belongs to, case
attributes, event attributes, position, activity name, time stamp,
and resource). The researchers also distinguished 4 process
characteristics: (1) voluminous data, which refers to a large
number of cases or events; (2) case heterogeneity, which refers

to a large number of distinct traces; (3) event granularity, which
refers to a large number of distinct activities; and (4) process
flexibility and concept drifts. The issues caused by case
heterogeneity are a part of the problem we attempted to address

in this study. Van Eck et al [27] suggested PM2, a process
mining project methodology. Data processing is the third step
and consists of creating views (creating the event log),
aggregating events, enriching logs (addition of attributes), and
filtering logs. Vanbrabant et al [28] presented a data quality
framework based on 3 previous frameworks and applied it to a
case study—pretreatment of ED data before simulation. These
researchers divided quality problems into hierarchical classes.
Verhulst [29] defined very precisely the different data quality
dimensions for process mining and their scoring methods. All
these papers on data preparation are general to process mining
datasets and do not answer the question of pathway bias.

Process mining is not the only method used to analyze patient
pathways, and this method can be combined with other methods
such as discrete event simulation (DES). Prodel et al [30,31]
developed a framework to automatically convert a process model
discovered using process mining into a simulation model of
clinical pathways. Abohamad et al [32] used process mining to
discover ED processes and then used DES to study bottlenecks.
Wood and Murch [33] modeled patient pathways using Markov
chains to study transfer delays between medical units and
discharge delays. Karakra et al [34] also used a DES to model
an ED and added a real-time connection to real-time patient
data to create a digital twin. The digital twin of the patient
enables the monitoring of their pathway and activities as well
as near-future predictions. Some models reproduce an entire
hospital. Holm et al [35] used a DES to model an entire hospital
and patient flows through the wards and determine bed use.
Demir et al [36] used a similar model to anticipate an increase
in the number of patients and adapt resources. Ordu et al [37]
achieved an even more complete model of a hospital and patient
flows.

To conclude, this review of the literature reveals that process
mining and simulation are the principal methods used to study
patient pathways. Process mining is a standard tool for
discovering patient pathways (or other health care processes),
but important limitations are noted in the literature, especially
the complexity of the model graphs. Data preparation techniques
and clustering methods are suggested to compensate for this
issue. Some methods are based on expert interviews or expert
knowledge integration. This is similar to our construction of
rules. Several papers focus on time stamp correction or missing
events or labels, but none of the studies focus on our problem
of biased events. Simulations do not consider input data quality.
In this study, we focused on enriching the log by adding an
attribute that can define an event as relevant or irrelevant.

Objectives
The objective of this paper was twofold: (1) building a
framework to model and analyze patient pathways and (2)
proposing a method to automatically identify bias in patient
pathway data. In other words, this method turns a database of
observed pathways with bias into 2 databases: one database
includes labeled pathways (identified bias), and one database
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includes corrected pathways (without bias). Such a method is
intended to ease the preprocessing of real data for data analysts
or hospital managers who seek a clean database with unbiased
medical pathways.

The scientific contributions of this paper are as follows:

1. This study provides a new framework to model patient
pathways considering hospital management constraints (eg,
bed occupancy and resource availability). This framework
is used to assess patient pathways.

2. This study develops a new method to automatically label
and correct pathways based on hospital data. Pathway
labeling aims to identify the steps in a patient pathway due
to a difficult bed management, and path correction aims to
correct irrelevant activities. The labeling algorithm was
assessed by comparing its outputs with experts’ answers.

3. Two case studies are reported: (1) a quantitative comparison
of the observed pathway database and the corrected pathway
database was performed based on process mining using
process model comparison and classical process mining
indicators, and (2) a DES model based on the observed
pathway database and the corrected pathway database was
used to evaluate the impacts of data correction on the
occupation of medical units.

Methods

Unscheduled Hospital Pathway Modeling Framework

Formal Definition of the Framework for the Study
Patient Pathway

Overview

In this section, we propose a set of definitions that will be used
to formalize the unscheduled hospital pathway modeling
framework.

In this study, we were interested in the medicine, surgery,
obstetrics, and odontology (MCO). In French, the initials MCO
stand for Médecine, Chirurgie, Obstétrique et Odontologie
(medicine, surgery, obstetrics, and odontology). The medical
units belong to a hospital that itself can belong to a hospital
group. Figure 1 represents the dependencies among the hospital
group, site, and medical unit. Here, we are interested in the
pathways inside the same hospital group, which we call the
MCO-stay. Multimedia Appendix 1 provides detailed definitions
of the aforementioned concepts.

The hospital pathways are defined using a process mining
formalism [8].

Figure 1. Hospital group (HG; {s1,..., sn}) structure. MU: medical unit.

Definition 1 (Event)

Let E be the event universe (ie, the set of all possible event
identifiers), E* be the set of all sequences over E, and T be the
time domain. We assume that events are defined by several
attributes; however, the case ID, time stamp, and activity name
are mandatory for case identification, trace ordering, and event
labeling, respectively.

Let AN be a set of attribute names. For any event e ∈ E and
name z ∈ AN, #n(e) is the value of the attribute z for event e.
We consider #activity ∈ E → A and #time ∈ E → T functions that
assign an activity name from a finite set of process activities A
and a time stamp, respectively, to each event. For convenience,
we assume the following standard attributes: (1) #activity(e) is
the activity associated with event e, (2) #time(e) is the time stamp

of event e, and (3) #trans(e) is the transaction type associated
with event e (eg, schedule, start, complete, and suspend).

The transaction type attribute #trans(e) refers to the life cycle of
activities. In most situations, activities take time. Therefore,
events may point out, for example, the start or completion of
activities.

Definition 2 (Trace)

A trace is a finite sequence of events denoted as σ =< e1, e2,...,

en > ∀ei ∈ E∗ such that each event appears only once: ei ≠ej for
1≤i<j≤|σ|.

Specifically, |σ| denotes the length of the trace. In this case, |σ|
= n.
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Definition 3 (Stage)

In a trace, several events can have the same activity name. In
the following, the subset of events with the same activity name
that contains a single start event and a single completion event
subsequent to the start event is referred to as a stage.

Let ei and em such that (1) #activity(ei) = #activity(em)=a; (2)
#trans(ei)=start and #trans(em)=complete; (3) #time(ei)=ti ≤
#time(em)=tm; and (4)   ej such that #time(ej)=tj≥ti, tj≤tm,
#activity(ej)=a, and #trans(ej)=complete or #trans(ej)=start.

Stage = {ej|#activity(ej) = a and ti ≤ tj ≤ tm}

The duration of a stage is defined as the time between the start
of the stage and its completion:

#duration(s) = #time(em) – #time(ei)

In the following, we will note ex1, ex2,..., exi as all the events that
compose stage x.

Furthermore, the duration of the trace σ of length n is determined
as follows:

duration(σ) = #time(en) – #time(e1)

In our study framework, a trace always begins at the ED stage
and ends at the last unit of the MCO stay (the unit before the
MCO discharge).

Definition 4 (Event Log)

An event log is a set of traces representing the execution of the
underlying process. An event can only occur in 1 trace; however,
events from different traces can share the same activity.

Definition 5 (Patient Pathway)

A patient pathway describes the succession of medical events
inside a health care facility. In this work, each pathway is linked
to an MCO stay.

A patient pathway is a set (p, s, σ, d) where p ∈ N is the
identifier of the patient, s ∈ N is the identifier of the MCO stay,
σ is the trace of the MCO stay, and d is the MCO discharge
disposition.

We consider two types of pathways:

1. Scheduled pathways
: these pathways are planned before patient admission.

2. Unscheduled pathways
: neither the admissions nor the pathways are planned. The
patients are hospitalized from the ED or admitted to a
specific unit for life-threatening emergencies.

Definition 6 (Relevance of Stage)

A stage of a patient pathway is relevant if it is adequate that, at
this moment, the patient is still hospitalized (first condition)
and if the patient is in the medical unit intended to care for their
pathology (second condition).

We consider 3 levels of relevance: level 2 (both conditions are
met), level 1 (the second condition is not met; ie, the patient is
not hospitalized in the ideal medical unit for their pathology),

and level 0 (no condition is met, and there is no medical reason
that justifies the patient being still hospitalized in this discipline).

Definition 7 (Bias)

In our context, a bias in the data is noted when some details
about a piece of information are missing, which leads to a
misinterpretation of a situation.

For example, a pathway {ED, Surgery, Geriatrics} without
additional information suggests that the patient needs surgery
after the ED followed by geriatric care. The bias is that the
patient just stays in surgery while waiting for a bed in geriatrics.

Definition 8 (Activity Labels)

In this study, we consider 2 levels of activity names.

In level 1, U is the set of labels corresponding to all the names
or IDs of the medical units constituting the hospital group.
Consequently, an event activity is a medical unit that a patient
has visited.

GH = {mu1,..., mun}

U = {id(mui)} with i ∈ [1, n]

#activity(ex) = id(mum)

In level 2, let L be the set of labels corresponding to the
relevance levels. A is the set of labels corresponding to the
product of U and L:

L = {level 0, level 1, level 2}

A = U × L

#activity(ex) = (id(mum), level l)

Hence, level 1 characterizes the activity of an event based on
the ID of the medical unit, and level 2 adds a level of relevance.
For more convenient reading, in the following sections, the
activity of an event will be noted using the name of the medical
unit.

Motivation
The pathway of a patient is governed not only by pure medical
logic (health care needs) but also by logistical limitations. In
other words, the pathway of a patient depends not only on their
medical needs but also on the availability of inpatient beds and
the possibility of discharge. Therefore, a patient can go to an
unsuitable medical unit (unit b) because of a lack of beds in the
suitable unit (unit a). The patient can later be transferred to unit
a. Discharge also has an impact on patient pathways. Indeed,
patients do not always immediately leave the hospital when
they are medically fit for discharge because they are waiting
for a discharge disposition. The challenge is to automatically
identify these irrelevant steps in any MCO pathway. Indeed,
these pathways are not clearly identified in the electronic health
records (EHRs), and there is no generally applicable thesaurus
of ideal pathways and no clear indicator of the adequacy of a
unit in the EHR. The same medical unit can have different
functions (see Textbox 1 for an example), and identical patients
in terms of pathology can have different pathways according to
hospital occupancy [6].
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Our objective was to find a function (an algorithm) that
evaluates the relevance of each stage. It is important to
understand the word relevance as defined in the previous
sections (Definition 6: Relevance of Stage section). Medical
practices or medications were not judged here. Only the

relevance of the patient’s location was evaluated. In our
framework, an input trace with event labels comprising only
the activity name is converted into an output trace with event
labels comprising the activity name and the level of relevance.

Textbox 1. Example of the different roles that a medical unit can play in a patient pathway.

Examples

• Emergency department (ED) to neurology: acute care in neurology

• ED to neurology to neurovascular intensive care: waiting in neurology for a bed in neurovascular intensive care

• ED to neurovascular intensive care to neurology: waiting for a discharge solution in neurology

Definition of the Function Evaluating the Relevance of
Stages
Let σ =< e11, e12, enx > ∀exi, #activity(exi) ∈ U, and σ’ =< e’11,
e’12,..., e’nx > ∀e’xi, #activity(e’xi) ∈ A.

σ and σ′ are 2 traces of the same case: σ is the historical trace
and σ′ is the labeled trace.

f: σ → σ′ with | {e′i|#acte′i = a} |∀ e′j ∈ σ′ ≥ | {ei|#actei = a} |∀ ei∈ σ

The function f identifies the relevance levels of each stage in a
trace. A stage can be divided into several phases with distinct
levels of relevance. Therefore, the number of events that
correspond to activity a in the trace σ is smaller or equal to the

number of events that correspond to the activity a in trace σ′.

Example
This paragraph illustrates the definitions and the transformation
of a pathway using the function f. In the following fictive
example, the hospital group is named Groupe Hospitalier
Bretagne Sud (GHBS) and is composed of 2 sites, named Scorff
and Villeneuve. One patient arrived on January 4 at 5:36 AM
at the ED of the Scorff Hospital. At 10:13 AM, he was admitted
to the observation unit (OU), but the patient was actually waiting
for a bed in the geriatric unit. On January 5 at 9:45 AM, the
patient was transferred to the geriatric unit of the Villeneuve
Hospital, another site of the hospital group. He arrived at 10:15
AM. On January 10 at 2 PM, the patient was medically fit for
discharge. On January 12 at 1:30 PM, the patient was
discharged, and he returned home with additional community
nursing services. Figure 2 illustrates the pathway of the patient
according to the framework defined previously.

The pathway of patient 00000056098 can be formalized as
follows:

σ =< e11, e12, e21, e22, e31, e32 > with

#activity(e11) = ED, #trans(e11) = start

#activity(e12) = ED, #trans(e12) = end

#activity(e21) = OU, #trans(e21) = start

#activity(e22) = OU, #trans(e22) = end

#activity(e31) = GERIATRICS, #trans(e31) = start

#activity(e32) = GERIATRICS, #trans(e32) = end

The function f takes the trace σ as input and returns the trace
σ’ =< e’11, e’12, e’21, e’22, e’31, e’32 > with the following features:

#activity(e’11) = (ED, level2), #trans(e’11) = start

#activity(e’12) = (ED, level3), #trans(e’12) = end

#activity(e’21) = (OU, level1), #trans(e’21) = start

#activity(e’22) = (OU, level1), #trans(e’22) = end

#activity(e’31) = (GERIATRICS, level2), #trans(e’31) = start

#activity(e’32) = (GERIATRICS, level2), #trans(e’32) = end

#activity(e’41) = (GERIATRICS, level0), #trans(e’41) = start

#activity(e’42) = (GERIATRICS, level0), #trans(e’42) = end

The succession of stages is described by level-2 activity labels.
The initial stage Geriatrics has been divided into a relevant
phase (level 2) and an irrelevant phase (level 0).
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Figure 2. Illustration of the framework using a fictive pathway and patient. ED: emergency department; GHBS: Groupe Hospitalier Bretagne Sud;
MCO: medicine, surgery, obstetrics, and odontology.

Automatic Pathway Labeling and Correction

Overview
In this section, the method for identifying bias in patient pathway
data and the method for building an algorithm to label the stages
of the pathways as relevant or irrelevant are described. We then

present an algorithm for automatically transforming a historical
trace into a labeled trace and an algorithm for automatically
transforming a labeled trace into a corrected trace. These
algorithms are based on a symbolic approach. In other words,
the rules are if, then propositions. Our approach can be
visualized in Figure 3.

Figure 3. Pathway-labeling method.

Identification of Bias and Rule Definition

Overview
The methodology for identifying the bias and then defining the
rules consists of three steps, which are described as follows:

1. Description of the pathway dataset: the objective was to
distinguish the different pathways and identify frequent and
rare patterns.

2. Identification of bias with expert interpretation: the
objective was to analyze the patterns with experts to
determine the bias.

3. Definition of rules: the rules are defined based on the
experts’ analysis.

The first step can be achieved by computing the frequency and
representativeness of each pathway variant and the number of
events per variant, grouping some events, and computing the
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new variants to identify repetitive patterns. The second step
enables us to identify bias through discussions with experts.
Preferably, the discussions are conducted with several physicians
to obtain different opinions. The third step requires the
translation of the analyses of physicians into rules. A rule
deduces whether an event is relevant from the EHR data.
According to our definition of relevance (cf Definition 6), we
consider three levels: (1) level 0, in which the stage is
completely irrelevant (none of the conditions are met); (2) level
1, in which the stage is not totally relevant (only the first
condition is met); and (3) level 2, in which the stage is relevant
(both conditions are met). The aim of the rules is to identify in
a pathway the phases with various levels of relevance. We
remind the reader that only the hospitalization ward (patient
location) is evaluated.

Example
A rule states that, if the first stage of the trace lasts <10 units,
then the stage is completely irrelevant (level 0).

Let σ =< e11, e12, e21, e22 > be a trace with 2 activities a1 and a2

such that the following conditions are met: (1) #activity(e11) =

#activity(e12)=a1; (2) #activity(e21) = #activity(e22)=a2; and (3)
#time(e11)=0, (4) #time(e12)=7, and (5) #time(e21)=7,
#time(e22)=20.

The first stage is a1 and lasts 7 units; therefore, e11 and e12 are
labeled as level 0.

Algorithm 1: Pathway Labeling
Once the rules have been defined, algorithm 1 (Textbox 2) labels
a pathway according to these rules (lines 6-9). A level of 1 or
0 is assigned if a stage is identified as irrelevant, and a level of
2 is assigned if the stage is relevant (lines 7-9). A stage can be
labeled through several rules. In this case, the worst label is
applied (ie, level 0 has a priority over level 1, and level 1 has a
priority over level 2 [lines 10-12]).

We want to emphasize that this algorithm is purely based on
logic and administrative rules. It does not include medical
reasoning and is, therefore, inaccurate. However, the aim of the
next section is to evaluate this inaccuracy (ie, the number of
errors between an algorithm with simple rules and the complex
reasoning of an expert [expert knowledge]).

Textbox 2. Algorithm 1—pathway labeling.

1: Let ex be an event of the historical pathway

2: Let e’x be an event of the labeled pathway

3: Let t1 be the start date of the stay.

4: Let tn be the end date of the stay.

5: Let σ =< e11, e12,..., en1, en2 > be the trace representing the historical pathway.

6: Let L be a list that stores the result of each rule.

7: for each rule rk do

8: Add rk(σ) to L

9: end for

10: for each ex ∈ σ do

11: Apply the modification of each rule that has changed ex. The lowest relevance level has priority.

12: end for

13: Return σ’ =< e’11, e’12,..., e’m1, e’m2 >, the labeled trace.

Algorithm 2: Pathway Correction
We also implemented an algorithm to correct the pathways
labeled using algorithm 1 (Textbox 3). The idea is to transform
the observed pathway into a theoretical pathway by correcting
irrelevant stages. The different corrections applied to a labeled
pathway are deduced from the rules. The irrelevant activities
are replaced with the relevant activities (lines 4-6). Only the

label of an event is changed, and the time stamp remains the
same. At the end of the correction, subsequent identical activities
are merged (lines 7-13). For example, let us note a stage (activity
name, relevance level, start, or end). The pathway <(ED, level2,
t1, t2), (OU, level1, t2, t3), (Geriatrics, level2, t3, t4)> is
corrected and becomes <(ED, t1, t2), (Geriatrics, t2, t3),
(Geriatrics, t3, t4)>. In addition, the pathway can be merged
to become <(ED, t1, t2), (Geriatrics, t2, t4)>.
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Textbox 3. Algorithm 2—pathway correction.

1: Let σ’ =< e’11, e’12,..., e’m1, e’m2 > be the labeled trace.

2: Let r be the rule applied at e’x.

3: Let σ’’ =< e’’11, e’’12,..., e’’m1, e’’m2 > be a copy of σ’.

4: for each e’’x ∈ σ’’ do

5: #activity(e’’x) = the corrected activity according to the rules of correction

6: end for

7: for each e’’x ∈ σ’’ with tx < tm do

8: if #activity(e’’x1) = #activity(e’’x+1,1) then

9: #time(e’’x2) = #time(e’’x+1,2) with #trans(e’’x+1,2) = complete and all the events of stage x+1 are deleted from σ’’

10: end if

11: end for

12: Return σ’’ =< e’’11, e’’12,..., e’’p1, e’’p2 >, the corrected trace.

Evaluation of the Performance of the Labeling
Algorithm
This subsection describes the method used to assess the labeling
algorithm. Because there is no reference to compare the results
of the algorithm with a ground truth, the evaluation of the
algorithm has to be made by comparing its results with the
analyses of experts. The methodology used for this study is
inspired by the framework developed by the French think tank
Ethik IA for its humane oversight board (Ethik-IA, unpublished
data, April 2021). A representative sample of patient pathways
was analyzed by 2 experts. They had access to information from
the electronic patient records. Each expert performed the
analysis separately. The results of the first expert were compared
with those of the second expert. When the results did not match,
the medical experts discussed them to find a common answer.
Their answers were then compared with the algorithms’answers.
For each difference, a discussion with the experts allowed us
to determine whether the algorithm was wrong and, if so, qualify
the errors.

The method presented in this paper is general and can be applied
at any hospital. In the next section, we apply these methods to
a real case study to create rules to label and correct a real dataset
extracted from a hospital database, and we evaluate the accuracy
of these rules.

Ethical Considerations
This study was approved by the French Data Protection
Authority (Commission Nationale de l’Informatique et des
Libertés) under the number 922243. French and European rules
about access to health care data for research were respected and
ethical standards also.

Results

Data
This work was performed with the GHBS, a French hospital
group located in the Lorient area. It has 2 general hospital sites
with an ED and 6 other sites. In total, there were 89,791 ED

visits and 108,875 hospitalizations and sessions (values for
2021). This study was based on data collected at the GHBS.
Data were retrospectively collected for the period from July
2020 to July 2021. The data cover 12 months of activity and
only adults, 54,850 different ED visits and 41,161 unique
patients, including 19,905 MCO stays. Multiple MCO stays of
the same patient were treated as separate instances. Three
sources of data were used: (1) electronic patient records, (2)
administrative health care databases, and (3) data from the
software used for rehabilitation and home hospitalization. Only
structured data were used to save time in the data analyses; no
plug-and-play natural language processing tool was available
for our data. The pediatric and obstetric pathways were excluded
from the study dataset, as were the pathways with only a visit
to the ED.

Identification of Bias and Rule Definition
In this section, we detail the results obtained using our method
to identify bias from our data.

Results of Step 1: Description of the Pathway Dataset
In our dataset, there were 19,905 pathways and 1013 trace
variants. Some variants were very frequent, such as (ED, OU)
representing 22.75% (4528/19,905) of the pathways, and others
were very rare, such as (ED, neurology intensive care,
cardiology) occurring just once.

We observed that most pathways had only 1 stage after the ED
visit (60/1013, 5.92% of the variants and 15,699/19,905, 78.87%
of the pathways). Pathways with >3 stages after the ED were
rare. They appeared between 1 and 3 times in the dataset and
represented 0.98% (195/19,905) of the pathways but 18.85%
(191/1013) of the variants. Therefore, the diversity of pathways
was mainly due to pathways with many activities. We identified
five types of pathways at the GHBS: (1) mono-disease pathways,
which include 1 necessary medical unit; (2) pathways for
patients who were seriously ill, which include transfer to an
intensive care unit (ICU); (3) older person pathways, which
include geriatric units; (4) frequent and processed pathways,
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which include strokes; and (5) multi-disease and complex
pathways, which include several medical units.

The most frequent medical units were OUs, polyvalent medicine
units, geriatric medicine units, postemergency units, surgery
units, and specialized medical units. By categorizing the medical
units into 4 groups (ED, medicine, surgery, and ICU), we
obtained 165 patterns, and the 10 most frequent structures of
the pathways are listed in Table 1.

Within the pathways (MEDICINE, MEDICINE), several
patterns were frequently observed. Pathways such as heart
failure or stroke pathways were normally composed of 2 steps
after the ED: admission to a cardiology (or neurology,
respectively) ICU followed by cardiology (or neurology,
respectively). The second type of pattern is the pathway with
an admission to a polyvalent unit before an admission to a
specialized unit or another polyvalent unit. In this case, a
polyvalent unit is a medical unit, such as an OU, polyvalent
medicine unit, or postemergency unit, where patients with
multiple diseases or who do not require specialized treatment

are treated. We also observed a few transfers between
specialized units. Finally, patients could be transferred between
the weekly hospitalization unit and the full hospitalization unit.

For most of the pathways that followed the pattern (SURGERY,
MEDICINE), the activity of surgery was noted as an overflow
bed. For the few others, a surgical act was performed before a
transfer for medical reasons to a medicine unit.

The pattern (MEDICINE, SURGERY) mainly concerned an
admission to an OU (while waiting for surgery) followed by a
surgery unit. In the other pathways, patients were first admitted
to a specialized unit (eg, hepatogastroenterology) before surgery.

Hence, we obtained four patterns for the pathways in 2 steps:
(1) a polyvalent unit followed by a specialized unit (pattern 1),
(2) a surgery unit followed by a medical unit (pattern 2), (3) a
daily or weekly hospitalization unit followed by a full
hospitalization unit of the same specialty (pattern 3), and (4) a
specialized unit followed by another specialized unit (pattern
4).

Table 1. Main structures of historical pathways and occurrence differences for corrected pathways.

Occurrence (%)Variant

CorrectedHistorical

68.5768.68EDa, MEDICINE

7.2410.67ED, MEDICINE, MEDICINE

10.909.66ED, SURGERY

0.332.88ED, SURGERY, MEDICINE

0.631.7ED, MEDICINE, SURGERY

0.801.2ED, MEDICINE, MEDICINE, MEDICINE

1.050.88ED, ICUb, MEDICINE

0.560.53ED, ICU

0.160.47ED, SURGERY, SURGERY

0.220.39ED, ED, MED

7.18—cED

aED: emergency department.
bICU: intensive care unit.
cNot present in historical pathways.

Results of Step 2: Interpretation of Patterns by Experts
We discussed the patterns identified in the first step with the
experts. According to the experts, pattern 1 (a polyvalent unit
followed by another unit) usually indicates that the polyvalent
unit is used as a buffer. In fact, when beds are lacking, patients
can be admitted to a polyvalent unit to begin their treatment
while waiting for a bed in the ideal unit. The second pattern has
the same explanation—a patient requiring medical treatment is
placed in a surgery unit while waiting for a bed in the ideal unit.
Pattern 3 (transfers between daily or weekly hospitalization
units and full hospitalization units) is explained by a lack of
beds in the full hospitalization unit. The last pattern (transfers
between specialized units) has no general explanation.

Occasionally, a specialized unit can also be used as a buffer,
but the transfer can also be medically explained.

The length of stay (LoS) was also an aspect of the pathway
discussed with the experts. Some pathways are too long because
patients cannot be discharged as soon as they are medically fit
for MCO discharge. The delay is mainly due to a back home
impossible without community care or a lack of beds in
rehabilitation centers. LoS can be compared with a national
reference. In France, the national reference is the average LoS
used for hospital stay invoicing (durée moyenne de séjour in
French). It is defined for each diagnosis-related group. However,
each pathway is unique, and an LoS above the national reference
does not guarantee that the stay was too long because of
discharge difficulties. For example, longer stays for patients
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receiving palliative care are frequent and normal. Occasionally,
the diagnosis-related group does not correctly report the
seriousness of the patient because the patient was transferred
to another hospital.

The LoS in the ED was also discussed. According to the experts,
the LoS in the ED is occasionally too long because patients are
waiting to be hospitalized. The ED LoS should not exceed 5 to
10 hours.

Results of Step 3: Rule Construction
From these observations and discussions, we deduced several
dimensions to investigate in a pathway:

1. Time spent in the ED: ED LoS can be prolonged because
of a lack of inpatient beds in acute care units. Rule 1
evaluates whether the time spent in the ED is too long.

2. LoS: the LoS can be prolonged because of a delayed
discharge. Rules 2 and 3 evaluate this condition.

3. Overflow bed: occasionally, patients are admitted to a
medical unit but are treated by the physicians of another
unit. The location of the patient is entered (ie, the activity
name) in the hospital data, and the unit medically
responsible for the patient is also indicated. For example,
when a patient is in surgery and awaits a bed in cardiology,
the activity is surgery and the medically responsible unit is
cardiology.

4. Sequence of activities: a typical pattern is the transfer
between a polyvalent unit and a specialized unit. According

to physician experience, when the transfer occurs within 1
week, in general, the polyvalent unit stage is irrelevant. In
rule 5, the threshold is 7 and a half days to consider the
transfer time. Rule 6 is dedicated to the OU because, in our
dataset, a transfer in the OU is labeled as “back home within
24 h,” “observation,” or “awaiting bed.” The label “awaiting
bed” indicates an irrelevant stage because the patient should
have been transferred immediately to the appropriate unit.

The challenge was to identify which structured data could be
used to investigate these different dimensions and, therefore,
to create the rules. We detail the rules obtained from our dataset
in Multimedia Appendix 2, as well as the algorithms of the 7
rules.

From these rules, we deduced how to correct the labeled
pathways. The different corrections are listed in Table S1 in
Multimedia Appendix 2.

Example
Figure 4 illustrates the labeling and correction of a pathway. In
total, 2 phases are considered irrelevant by the algorithm: the
OU (rule 6) and the end of the stay in the geriatric unit (rule 3).
To correct the pathway, the time spent in the OU is replaced by
the time spent in the geriatric unit, which is the relevant stage
following the OU, and the patient is discharged earlier at the
presumed discharge date.

Figure 4. Example of the correction of a pathway. ED: emergency department.

Accuracy of the Labeling Algorithm
A total of 118 different pathways were analyzed by 6 different
duos of physicians from the GHBS (only 1/12, 8% had
previously participated in the discussion to define the rules) and
compared with the algorithm output. Only rules 3, 4, 5, 6, and
7 could be evaluated because the physicians could not reach a
consensus on either the ideal LoS or the ideal length of ED visit
within the allotted time. The physicians had access to the
patient’s pathway, their age, the chief complaint, the diagnoses,
the national LoS reference for the diagnosis-related groups, the
discharge destination, and requests for rehabilitation and home

hospitalization. They also had access to patient records if more
information was needed.

We counted the number of errors per stage (except for the first
ED visit) and per pathway. For example, the pathway (ED, OU,
CARDIOLOGY) has 2 stages (we do not count the ED), and
the experts assessed that OU was not relevant and that
CARDIOLOGY was relevant, but the algorithm assessed that
the 2 stages were relevant. Therefore, we identified 1 pathway
error per 1 pathway and 1 stage error per 2 stages. Table 2
presents the results of the evaluation of the 118 pathways. The
algorithm failed to evaluate 19.5% (23/118) of the pathways
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and 12.9% (30/232) of the stages. Among these errors,
false-positive errors were 5 and 3 times more important,
respectively, than false-negative errors. This means that the
main error of the algorithm was considering a pathway or a
stage as relevant when it was actually irrelevant.

The main errors were related to medical knowledge. When
patients were hospitalized in a specialized medical unit (eg,

oncology) but pertained to another specialized medical unit (eg,
cardiology), the algorithm did not detect this irrelevance.
Similarly, hospitalization in the general ICU before transfer to
the cardiology ICU was occasionally irrelevant but not detected
by the algorithm. In addition, the algorithm considered that a
polyvalent unit following a specialized unit was irrelevant;
however, in some cases, it was wrong.

Table 2. Performance of the algorithm based on rules 3, 4, 5, 6, and 7.

RecallPrecisionActual values

Negative bPositive a

0.930.75Pathways

Predicted values

1956Positive

394Negative

0.950.88Stages

Predicted values

22162Positive

408Negative

aRelevant pathway or stage (level 2).
bIrrelevant pathway or stage (level 0 and level 1).

Preprocessing of Pathway Data
In this section, we use only rules 3 to 7 to preprocess our data
given that rules 1 and 2 could not be assessed. We evaluated
19,832 pathways, including 24,989 stages (excluding the first
ED stage). Of these 19,832 pathways, 2669 (13.46%) were
evaluated as irrelevant, and 11.21% (2802/24,989) of stages
were also evaluated as irrelevant. Considering the error margin,
between 2162 and 3176 pathways were irrelevant, and between
2438 and 3166 stages were irrelevant. The main irrelevant
movements detected by the algorithm were overflow bed in
surgery, overflow bed in polyvalent units, and waiting time in
the OU. The 19,832 historical pathways included 986 (4.97%)
variants. Once corrected, 792 variants were noted. Table 1
details the distribution of the structures of the variants. We
observed that the ED, MEDICINE, MEDICINE and ED,
SURGERY, MEDICINE traces were less frequent than before
correction, which is due to the correction of the overflow beds.
The trace ED appeared because the OU stage was assessed as
irrelevant for several ED, OU (included in ED, MEDICINE)
traces.

Statistical Analysis of Relevant and Irrelevant
Pathways
Once the pathways were labeled, we compared the relevant
pathways with the irrelevant pathways to understand the causes
of irrelevance in the pathways. Several causes were already
known among medical and administrative staff: bed occupation
rates, ED crowding, age, and discharge destination. We tested
these hypotheses using 4 bivariate analyses. The 4 variables to
explain were an ED LoS of >5 hours, an ED LoS of >10 hours,
the presence of overflow beds, and delayed discharge. For
categorical variables, the proportions were compared using a

chi-square test. For quantitative variables, the distributions were
compared using a 2-tailed Student t test. We studied different
explanatory variables: weekday corresponds to the start of the
ED visit or admission to the inpatient unit; the arrival period is
divided into 4 periods (morning from 7 AM to noon, afternoon
from noon to 5 PM, night from 5 PM to 11 PM, and deep night
from 11 PM to 7 AM); the next historical stage is the inpatient
unit where the patient was admitted, and the next corrected stage
is where the patient should have been admitted (based on the
evaluation of the pathways); the last stage is the medical unit
from which the patient was discharged; and the ED crowds are
the number of patients present in the ED when the patient
arrives.

Table 3 reports the bivariate analyses. Tables S2 and S3 in
Multimedia Appendix 3 provide the detailed results. Several
observations can be made from the statistical analysis. First,
the seasons and the irrelevance of the next stage are not
significant for a delay in the ED of >5 hours, but they are
significant for a delay of >10 hours. Second, counterintuitively,
fewer irrelevant post-ED admissions occur for long ED delays.
This finding is probably because patients who stay in the ED
for a long time are ultimately admitted to a relevant unit. Third,
the weekday of patient arrival influences the ED delay. On
Mondays, more patients wait >5 hours, and the proportion
decreases throughout the week and increases again on Sundays.
This phenomenon is caused not only by the greater number of
patients admitted on Monday but also by the difficulty in
hospitalizing patients during the weekend. Therefore, on Sunday,
many patients are waiting for hospitalization. Fourth, this is the
same observation and explanation for the overflow beds; more
patients are admitted to an irrelevant unit on Sunday. Fifth,
crowding in the ED was less important for the longest ED
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delays. Indeed, patients arriving at night or late at night are less
likely to be transferred to an inpatient unit, and this is also the
period during which fewer patients arrive at the ED. Sixth, a
greater number of patients are admitted to irrelevant units when
the ED is more crowded. Seventh, increased age is a factor of
long delays in accessing the ED. Eighth, similar features are
noted for the occupation rate of the next stage. Ninth, the next
corrected stages had an occupation rate (95%) higher than that
of the next historical stages (92%). Tenth, age does not impact
the risk of being in an overflow bed. Eleventh, the season has
an impact on discharge delays. Specifically, in summer, more
discharges are delayed, perhaps because the health care supply
is lower during the summer holidays. Twelfth, the proportion
of delayed discharges varies according to the destination of the
discharge. Discharges at a psychiatric center have the highest
rate of delay (97/203, 47.8% of delayed stays), followed by
discharges at rehabilitation centers (1285/3294, 39.01% of
delayed stays). Delayed discharges for death correspond to

requests for palliative care at home or at another center that
were not accepted in time. Thirteenth, age does not affect the
risk of delayed discharge.

The period of study was impacted by the COVID-19 pandemic.
These results could be more robust with access to a longer period
of study (3 years instead of 1), and the seasons variably could
be assessed several times during a longer time frame.
Furthermore, the quality of the data was imperfect, especially
for the computation of the occupation rate. Therefore, the results
should not be extrapolated to other periods or hospitals.
However, the analysis allowed us to compare the relevant and
irrelevant pathways because they were derived from the same
dataset. Hence, we can conclude that significant differences
(P<.001 for most of the features) were observed between
relevant and irrelevant pathways. Logistic factors such as the
day of the week, the hour of arrival, medical unit occupation,
and the discharge destination influence the risk of overflow.

JMIR Med Inform 2024 | vol. 12 | e58978 | p. 13https://medinform.jmir.org/2024/1/e58978
(page number not for citation purposes)

Uhl et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Bivariate analysis.

P valueVariable to explain and features

EDa,b visit of >5 h

<.001Age

<.001ED crowds

<.001Occupation rate historical next stagec

<.001Occupation rate corrected next stagec

<.001Weekday

.51Season

<.001Arrival period

.05Next stage irrelevant

<.001Next historical stage

<.001Next corrected stage

EDa visit of >10 h

<.001Age

<.001ED crowds

<.001Occupation rate historical next stagec

<.001Occupation rate corrected next stagec

<.001Weekday

<.001Season

<.001Arrival period

<.001Next stage irrelevant

<.001Next historical stage

<.001Next corrected stage

Overflow beds

.03Aged

<.001ED crowdse

<.001Occupation rate corrected unitf

.37Arrival hourf

<.001Weekday

.78Season

<.001Arrival period

Delayed discharge

.72Age

<.001Discharge destination

<.001Last stage

<.001Season

aThe analysis was performed exclusively using the data from the principal site (Scorff) because emergency department crowds and age differ between
the principal site and the smaller site (Villeneuve).
bED: emergency department.
cThe next historical stage is the inpatient unit where the patient was admitted, and the next corrected stage is where the patient should have been admitted
(based on the evaluation of the pathways). Occupation rate is the number of patients already present in the unit over its capacity.
dWe compared the set of pathways without an overflow stage and the set of pathways with at least one overflow stage.
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eIn each pathway, the ED crowds were only computed for the first medical unit subsequent to the ED stage.
fWe compared the sets of relevant and irrelevant stages.

Synthesis of Patient Pathway Labels
To summarize this section, from the analysis of the structure of
the patient pathways and expert knowledge, we built 7 rules
that detect irrelevant stages in a patient pathway (description
of the dataset and construction of rules). On the basis of these
rules, we used a pathway-labeling algorithm that labels the
stages of a pathway according to 3 levels of relevance (pathway
labeling). We then used a pathway correction algorithm that
transforms a labeled pathway into an ideal pathway (pathway
correction). The evaluation of our algorithm showed that it
exhibits 87% accuracy. In our dataset, 13.46% (2669/19,832)
of the pathways were labeled as irrelevant. Finally, a statistical
comparison between relevant and irrelevant pathways
demonstrated that logistic constraints influence the quality of
patient pathways.

The next 2 sections show the importance of this preprocessing
step before analyzing patient pathways using process mining
and of using these data for hospital management.

Case Study 1: Analysis of Patient Pathways Using
Process Mining

Motivation
The first case study investigates the impact of our preprocessing
technique on process discovery. We evaluated the ability of our
preprocessing method to simplify process graphs. We compared
the process graph of an event log comprising historical traces
with the process graph of an event log comprising corrected
traces. We used the ProM framework (version 6.12; ProM Tools)
[38] to discover the graphs and estimate different metrics. The
process graphs were computed using the Fodina algorithm [39],
which outputs a causal graph that was transformed into a Petri
net with the plug-in “Convert Causal net (C-Net) to Petri net”
(F. Mannhardt).

Metrics
The metrics were computed using the plug-in “Show Petri-net
Metrics” (HMW Verbek). This plug-in computes (1) the
extended Cardoso metric (ECaM), (2) the extended Cyclomatic

metric (ECyM), (3) the structuredness [40], and (4) the density
[41].

The ECaM counts the splits (XOR, OR, or AND) in the net and
penalizes each of them. The ECyM is the difference between
the number of edges and vertices plus the number of strongly
connected components. According to Lassen and Van der Aalst
[40], a high ECaM score can be caused by a “high degree of
fan-out from places,” and numerous parallelisms can increase
the ECyM. Structuredness recognizes different types of
structures and scores each structure by giving it a penalty value.
Finally, the density relates the number of arcs to the number of
all possible arcs for a given number of nodes. Therefore, these
4 metrics quantify the different structural characteristics of a
graph.

Quantitative Analysis
The process graph discovered from the whole dataset of
pathways is spaghettilike because the number of variants is
large with or without correction (986 vs 792). To avoid
spaghettilike effects, we reduced the analysis to 1 medical unit
(ie, the event log included only the traces that contained this
activity). Table 4 shows the metrics calculated for 5 medical
units. As expected, the corrected event log contains fewer
variants and activities than the historical event log.
Consequently, the number of arcs, places, and transitions on
the graph also decreases. The historical graph density is greater
than the corrected graph density. This finding indicates that the
corrected graph is more compact than the historical graph. The
ECaM and ECyM of the corrected graph are lower than those
of the historical graph. Indeed, we can observe more places with
many output transitions and more parallelisms in the historical
Petri net. Finally, the structuredness of the historical graph is
also greater than the structuredness of the corrected graph except
for the neurology unit. This means that more complex structures
or more unstructured components are observed in the historical
graphs than in the corrected graph. The neurology exception
can be explained by the fact that a state machine is identified
in the historical graph but only an unstructured component is
identified in the corrected graph. In conclusion, the corrected
Petri nets can be considered simpler than the historical Petri
nets.
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Table 4. Comparison of the historical and corrected process graph.

StructurednessECyMbECaMaDensityTransitions, NPlaces, NArcs, NActivities, NVariants, NProcess graph

Cardiology

6416110.14167321013Historical

221180.171162279Corrected

Visceral surgery

4220120.13218421519Historical

201080.171062068Corrected

Polyvalent medicine

7627330.063816761312Historical

5611130.111492867Corrected

Geriatric medicine

9.5730.25741465Historical

6.5530.25541443Corrected

Neurology

20826210.092611521324Historical

160224170.10181037816Corrected

aECaM: extended Cardoso metric.
bECyM: extended Cyclomatic metric.

Qualitative Analysis
A qualitative analysis can also be performed (see Multimedia
Appendix 4 for the pictures of the graphs). The cardiology
historical graph (Figure S1 in Multimedia Appendix 4) shows
that several activities can occur before admission to cardiology,
but it is not easy to distinguish between groups of patients. The
corrected graph is easier to read, and four groups of patients
can be identified: (1) serious patients who need intensive or
continuous care before being admitted to cardiology, (2) patients
who need to be permanently monitored for cardiac examination,
(3) patients who need pulmonology care before cardiology care,
and (4) patients who do not need other care before transfer and
are directly admitted to cardiology (with eventually a step in
the OU before).

The historical graph of the polyvalent medicine unit (Figure S2
in Multimedia Appendix 4) is complex to read, and several
specialized units are present but not related to the polyvalent
unit in the graph. The corrected graph is much simpler to read.
Three groups of stays are identified: (1) stays with intensive or
continuous care before admission to polyvalent medicine, (2)
stays with direct admission, and (3) stays with a step in the OU
or seasonal unit before admission to polyvalent medicine.

Equivalent analyses can be performed on other medical units
(Figures S3, S4 and S5 in Multimedia Appendix 4). The
neurology graph (Figure S3 in Multimedia Appendix 4) is less
simple than the other graphs, possibly because patients going
to neurology have complex pathways or because the correction
of neurology pathways requires particular rules. However, the
corrected graph is again more interpretable than the historical
one.

Case Study 2: Estimation of Ward Capacity Through
Simulation

Motivation
Computer simulations can be used to estimate the number of
beds necessary in each medical unit to admit unscheduled
patients and help solve capacity planning problems. Indeed, the
actual number of patients admitted to each medical unit does
not include all the patients not admitted because of a lack of
beds, and the number of the patients who should not be admitted
to each unit is considered. Hence, it does not reflect the real
need for beds. To solve this problem, pathway correction can
be used. This method can be useful for estimating capacities
when building or renovating a hospital or for organizing medical
teams.

DES Model
In this case study, we simulate patient flow through the medical
units of one hospital to compute the level of occupation of the
medical units. We compared a simulation with the historical
pathways (scenario 1) and a simulation with the corrected
pathways (scenario 2). To do so, we modeled the medical units
and patient flow using the AnyLogic software (The AnyLogic
Company). Figure 5 shows the DES model.

The model represents 1 general hospital and 20 full
hospitalization units. Each patient has a succession of units to
follow. The model simulates the admissions of patients to
medical units, their stays, and their discharges. A patient exits
the simulation when they have completed their pathway. To
simulate the source of patients, we used the dataset described
in section Data (only patients from the main general hospital
site [named Scorff] were included). We filtered the dataset based
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on the following criterion: only the pathways with at most 3
activities (ED visits plus 1 or 2 units) were included. We
excluded pathways with weekly or daily units, the rare variants

(coverage percentage of <0.001), and patients from sites other
than Scorff. The corrected pathway dataset was filtered to keep
only the stays included.

Figure 5. Modeling of patient flows through medical units.

Experimental Settings
The capacities of the medical units were set to infinity to
calculate how many unscheduled patients needed to be admitted
to each unit each day. The LoS in each unit was randomly
generated according to a probability law. To choose this
probability law, we compared several distributions (normal, β,
γ, log-normal, Weibull, and exponentiated Weibull) and fitted
them on the stays of our dataset (between 150 and 5000 stays
per medical unit). The log-normal distribution best fit the LoSs
in each unit. The parameters of the log-normal distributions
were adjusted for each unit by fitting the distribution to the real
values. The log-normal distribution tends to generate more
extreme values than those observed in reality; thus, the LoS
was limited to 28 days in a unit and 24 hours in the ED. The
simulated patients’ arrival dates were fixed and equal to the real
patients’ arrival dates. The simulated patients either followed
the historical pathways (scenario 1) or the corrected pathways
(scenario 2). The simulation duration was 1 year, and the
simulation run included 13,366 pathways.

To choose the warm-up time, we monitored the mean number
of present patients in each medical unit over the simulation time.
After 50 days, a stable situation was reached (Figure S6 in
Multimedia Appendix 5). The warm-up time was set to 2
months. The number of replications was chosen to have an error
of <10%. In total, 15 replications allowed this target to be
reached and a reasonable simulation time to be
reached—approximately 1 minute is required for 1 run, and the

15 replications take 10 minutes. The results are the mean values
of 15 replications.

The simulation model was validated by comparing the mean
LoS of each medical unit from the simulation results to those
from the real dataset. This was the only source of randomness
in the model as the simulated patients arrive according to the
real dataset and follow a deterministic pathway. The mean
absolute error was 0.6 days, which is <10% of the mean length
of a hospital stay (Table S4 in Multimedia Appendix 5).

Results of DES
Table 5 shows the mean number of acute patients present in
each unit in both scenarios. For several units, the number of
patients differed between scenario 1 and scenario 2. For
example, the polyvalent medicine unit had, on average, 2
patients less with corrected pathways, and the neurovascular
unit had 1 more patient. We also observed that, globally, there
were fewer patients present at the same time with the corrected
pathways compared with the historic pathways. Indeed, there
were fewer stages in the corrected pathways because some were
judged as irrelevant; therefore, in the simulation, the patients
stayed less time in the hospital.

In conclusion, preprocessing pathway data is important for
addressing capacity planning problems in hospitals. In this
example, we observed that using historic pathways can lead to
biased numeric interpretations for the capacity planning of
medical units.
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Table 5. Mean number of acute patients in medical units over 1 year.

DifferenceScenario 2Scenario 1Medical unit

–6.51.1 (0.9-1.2)7.6 (7.3-7.9)3O surgerya, mean (95% CI)

3.113.3 (13.0-13.5)10.1 (9.9-10.3)Orthopedic surgery, mean (95% CI)

–0.75.9 (5.4-6.3)6.5 (6.0-7.1)Visceral surgery, mean (95% CI)

0.114.3 (14.1-14.6)14.2 (14.0-14.4)Pulmonology, mean (95% CI)

0.02.0 (1.8-2.2)2.0 (1.8-2.2)Cardiology ICUb, mean (95% CI)

0.110.1 (9.9-10.3)10.1 (9.8-10.3)Cardiology, mean (95% CI)

–2.514.5 (14.3-14.7)17.0 (16.7-17.3)Postemergency unit, mean (95% CI)

–1.733.9 (33.9-33.9)35.5 (35.5-35.5)Polyvalent medicine, mean (95% CI)

0.03.0 (2.7-3.3)3.0 (2.7-3.3)Neurology ICU, mean (95% CI)

1.25.1 (4.8-5.5)3.9 (3.8-4.1)Neurovascular, mean (95% CI)

–0.73.1 (3.1-3.1)3.7 (3.7-3.7)Neurology, mean (95% CI)

0.413.7 (13.5-13.8)13.3 (12.9-13.6)Hepatogastroenterology, mean (95% CI)

–0.111.3 (11.3-11.3)11.4 (11.2-11.6)Rheumatology, mean (95% CI)

–2.26.5 (6.1-6.9)8.7 (8.4-9.0)Observation unit, mean (95% CI)

–0.538.7 (38.5-38.9)39.3 (39.0-39.5)Geriatric medicine, mean (95% CI)

0.22.0 (1.7-2.3)1.8 (1.5-2.1)ICU, mean (95% CI)

–0.92.0 (1.7-2.3)2.9 (2.5-3.2)Seasonal unitc, mean (95% CI)

0.25.2 (4.8-5.6)5.0 (4.7-5.3)Oncology hematology, mean (95% CI)

–0.13.4 (3.0-3.8)3.5 (2.9-4.0)Nephrology endocrinology, mean (95% CI)

0.00.6 (0.3-0.9)0.6 (0.3-0.9)CCUd, mean (95% CI)

–10190200Total patients, N

aEar, nose, and throat; ophthalmologic; and orthopedic surgery.
bICU: intensive care unit.
cThe seasonal unit is only open during the winter months. Therefore, the occupation figures computed over a year do not reflect reality.
dCCU: continuing care unit.

Discussion

Principal Findings
A framework and a methodology to study patient pathways
were presented in this paper. They were used to develop a
pathway-labeling algorithm that automatically detects whether
a patient pathway is irrelevant (ie, contains stages due to
resource limitations [as defined in the Definition 6: Relevance
of Stage section]). Two main methods are available to achieve
such a task: (1) building a thesaurus with medical experts (or
using supervised learning) that links the main diagnosis (or the
chief complaint) with an ideal pathway and (2) building a
symbolic algorithm. The first method is the most accurate but
is very time-consuming. This method would require hours of
work with experts to build a thesaurus or annotate data for
training a machine. None of these methods provide general
results because the thesaurus and rules need to be adapted to
each hospital. We chose the second option, an algorithm based
on logic and administrative data, because it can be built quickly
and is easily adaptable to organizational changes. We provided
a general method to build this algorithm. We applied our

algorithm to our dataset, and we were able to estimate the gap
between our algorithm and an expert assessment. Our results
demonstrate that a nonnegligible gap exists (13% to 19% of
errors); however, we believe that the error rate was small enough
for globally evaluated pathways. The estimation of this error
also enabled us to identify the source of errors of the algorithm.
On the basis of this labeling, a correction of the pathways was
then performed to represent pathways that would be considered
ideal.

We also demonstrated that resource limitations impact the choice
of pathway using a statistical analysis that compared relevant
and irrelevant pathways. The factors identified as increasing
difficulties in managing patient flows could be included in
hospitals’ strategies to improve patient pathways.

The 2 case studies illustrate the importance of preprocessing
patient pathway data before any analysis. Studying and
representing patient pathways using process mining is
complicated (Related Work section). By focusing on pathways
with a common medical unit, we demonstrated that a corrected
graph is more interpretable than a historical graph. Hence, our
algorithm is an efficient preprocessing tool for the analysis of

JMIR Med Inform 2024 | vol. 12 | e58978 | p. 18https://medinform.jmir.org/2024/1/e58978
(page number not for citation purposes)

Uhl et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


patient pathways using process mining. The simulation of patient
pathways is useful for testing bed management changes, but
numeric results can be false if the input data include bias. In
our example, the determination of the mean number of beds
required for acute patients differed for the historic and corrected
pathways. Some medical units need fewer beds, and others need
more beds.

Pathway labeling should be applied before any analysis, such
as process mining (case study 1), simulation (case study 2), or
training of machine learning models to predict hospital
pathways. In another work, we studied the prediction of the
medical unit where a patient will be admitted after an ED visit.
If raw data are used to train a machine learning model, the
training will be biased. Indeed, the model will learn, for
example, that some patients who do not need surgical treatment
should be transferred to surgery. In contrast, if the model is
trained using relevant pathways, it will learn the ideal medical
unit for the patients [42].

Limitations
We proposed a general method to study patient pathways and
identify bias in the data. However, our approach could only be
tested in 1 dataset because of legal constraints. Therefore,
additional studies with other hospitals should be performed to
validate the generalizability of our approach. Our labeling
algorithm is not 100% accurate. To avoid errors, more rules
could be created by exploiting textual data using natural
language processing. Indeed, to build our algorithm, we only
used structured data because of the unavailability of an adequate
tool to treat textual data in our hospital.

Conclusions
This work suggests a new approach to preprocess data on
pathways of unscheduled patients. To our knowledge, there are
no other studies that have evaluated nonspecific disease
pathways. Our approach has the advantages of being explicable,
simple to implement, and adaptable to each hospital.

Future research could develop process discovery techniques
that consider the relevance labels of the activities.
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