
Original Paper

Predictive Models for Sustained, Uncontrolled Hypertension
and Hypertensive Crisis Based on Electronic Health Record
Data: Algorithm Development and Validation

Hieu Minh Nguyen1, MS; William Anderson2, MS; Shih-Hsiung Chou3, PhD; Andrew McWilliams4,5, MD, MPH;
Jing Zhao6, PhD; Nicholas Pajewski1,7, PhD; Yhenneko Taylor1,8, PhD
1Center for Health System Sciences (CHASSIS), Atrium Health, Charlotte, NC, United States
2Statistics and Data Management, Elanco, Greenfield, IN, United States
3Enterprise Data Management, Atrium Health, Charlotte, NC, United States
4Information Technology, Atrium Health, Charlotte, NC, United States
5Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
6GSCO Market Access Analytics and Real World Evidence, Johnson & Johnson, Raritan, NJ, United States
7Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
8Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, United States

Corresponding Author:
Hieu Minh Nguyen, MS
Center for Health System Sciences (CHASSIS)
Atrium Health
1300 Scott Ave
Charlotte, NC, 28204
United States
Phone: 1 704-355-2000
Email: hieu.nguyen@atriumhealth.org

Abstract
Background: Assessing disease progression among patients with uncontrolled hypertension is important for identifying
opportunities for intervention.
Objective: We aim to develop and validate 2 models, one to predict sustained, uncontrolled hypertension (≥2 blood pres-
sure [BP] readings ≥140/90 mm Hg or ≥1 BP reading ≥180/120 mm Hg) and one to predict hypertensive crisis (≥1 BP
reading ≥180/120 mm Hg) within 1 year of an index visit (outpatient or ambulatory encounter in which an uncontrolled BP
reading was recorded).
Methods: Data from 142,897 patients with uncontrolled hypertension within Atrium Health Greater Charlotte in 2018 were
used. Electronic health record–based predictors were based on the 1-year period before a patient’s index visit. The dataset
was randomly split (80:20) into a training set and a validation set. In total, 4 machine learning frameworks were considered:
L2-regularized logistic regression, multilayer perceptron, gradient boosting machines, and random forest. Model selection
was performed with 10-fold cross-validation. The final models were assessed on discrimination (C-statistic), calibration (eg,
integrated calibration index), and net benefit (with decision curve analysis). Additionally, internal-external cross-validation
was performed at the county level to assess performance with new populations and summarized using random-effect meta-
analyses.
Results: In internal validation, the C-statistic and integrated calibration index were 0.72 (95% CI 0.71‐0.72) and 0.015
(95% CI 0.012‐0.020) for the sustained, uncontrolled hypertension model, and 0.81 (95% CI 0.79‐0.82) and 0.009 (95% CI
0.007‐0.011) for the hypertensive crisis model. The models had higher net benefit than the default policies (ie, treat-all and
treat-none) across different decision thresholds. In internal-external cross-validation, the pooled performance was consistent
with internal validation results; in particular, the pooled C-statistics were 0.70 (95% CI 0.69‐0.71) and 0.79 (95% CI
0.78‐0.81) for the sustained, uncontrolled hypertension model and hypertensive crisis model, respectively.
Conclusions: An electronic health record–based model predicted hypertensive crisis reasonably well in internal and inter-
nal-external validations. The model can potentially be used to support population health surveillance and hypertension
management. Further studies are needed to improve the ability to predict sustained, uncontrolled hypertension.
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Introduction
Hypertension is a major chronic disease affecting nearly half
of the adults in the United States, of whom less than half
have their blood pressure (BP) under control [1]. Uncon-
trolled hypertension, defined as BP ≥140/90 mm Hg may
lead to major cardiovascular diseases, organ damage, stroke,
or even death, if not properly managed over time [2,3].
Effective treatment for uncontrolled hypertension requires
proper monitoring so that further disease progression can be
detected and prevented.

Numerous studies have examined the risk factors related
to hypertension. Surveillance data show that hypertension is
more prevalent in men than in women and in older adults
than in younger persons [4]. Racial or ethnic disparities
in BP control have been described, owing to risk factors
that include racism-related stress, and social barriers such
as low health literacy, poverty, and limited access to care
[5-7]. Prior studies have also revealed other clinical predictors
of hypertension such as comorbidities (eg, coronary heart
disease and diabetes), laboratory biomarkers (eg, cholesterol
levels), and BMI [8-10]. Leveraging the extensive knowl-
edge base about hypertension risk factors, various prediction
models, based on statistical and machine learning methods,
have been developed to assess the risk of hypertension
onset in the general population [11,12]. However, literature
searches revealed a lack of research involving risk prediction
for clinically important hypertension states, such as future
BP measurements that are consistently elevated, also called
sustained uncontrolled hypertension, or hypertensive crisis
(ie, BP ≥180/120 mm Hg) in patients with uncontrolled
hypertension [13,14].

Predictive models of sustained, uncontrolled hypertension
and hypertensive crisis within 1-year following an index visit
could inform clinical decision support prompting discussions
between patients and clinicians about medication intensifica-
tion. This index visit can be designated as an outpatient
or ambulatory clinic appointment in which the patient had
an uncontrolled BP reading and did not have a new anti-
hypertensive medication class added. These specifications
can identify a targeted population who may benefit from
additional consideration to intensity hypertension medica-
tions. From a design perspective, the intended use case for
the proposed risk models is to either serve as a real-time
nudge that informs a shared decision-making conversation
between provider and patient at the index visit or to be
deployed as a tool for population health surveillance to help
guide timely, proactive outreach. For instance, a care manager
may reach out to a patient who is at high risk and did
not have medication intensification to schedule a follow-up
visit sooner, address barriers to medication adherence, or
inquire with the care team about enrolling the patient in a
hypertension management program. Furthermore, a valid risk

score may aid patients in understanding the importance of
treatment decisions; thereby helping to address nonadherence
to medications, which is a major risk factor for subopti-
mal BP control [15]. This study presents the development
and validation of 2 risk models, one to predict sustained,
uncontrolled hypertension, and one to predict hypertensive
crisis within 1 year following an index visit.

Methods
Study Population
This study’s cohort consisted of patients aged 18 years or
older who had an uncontrolled BP reading (systolic BP ≥140
mm Hg or diastolic BP ≥90 mm Hg) during an ambulatory
or outpatient encounter in 2018 at a Greater Charlotte facility
of Atrium Health, a large hospital network in the southeast-
ern United States. This study’s cohort only included active
patients in the health system, that is, those having at least
one encounter during the following year, 2019. The first
ambulatory or outpatient encounter during 2018 showing an
uncontrolled BP reading was considered the patient’s index
visit. Patients were excluded if, on the index visit, they were
prescribed a new antihypertensive drug class that was not
present in the 1-year historical medication records. Patients
on more than 4 drug classes of antihypertensive medication
were excluded. Patients were also excluded if they were
in hospice care, were pregnant during 2018 or 2019, were
diagnosed with end-stage renal disease, received dialysis, had
a renal transplant, or died before December 31, 2019.
Study Variables
Sustained, uncontrolled hypertension in a patient was a
binary outcome indicating the presence of ≥2 uncontrolled
BP readings (≥140/90 mm Hg) or ≥1 particularly high BP
reading (≥180/120 mm Hg) within 1 year following an index
visit. The hypertensive crisis outcome was a binary indicator
showing whether a patient had any BP reading ≥180/120 mm
Hg within 1 year following the index visit.

We determined that using a 1-year look-back window
prior to index visit would be appropriate to capture recent,
clinically relevant predictor data from the health system’s
electronic health records (EHRs). This decision also relied on
previous observations of models predicting 1-year hyperten-
sion status demonstrating successes when they were also
using 1-year-old data prior to prediction [16,17]. We collected
basic data at the index visit including the patient’s age,
gender, race and ethnicity, medical insurance, and the last
systolic and diastolic BP measurements. Based on a patient’s
primary address, we determined census tract-level neigh-
borhood socioeconomic disadvantage indicators: the Area
Deprivation Index (ADI, national-level percentile), based on
the 2016‐2020 American Community Survey, and the Centers
for Disease Control and Prevention’s Social Vulnerability
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Index (version 2020; overall score, national-level percen-
tile) [18,19]. Health care–related predictors included the
presence of individual Elixhauser Comorbidities, antihy-
pertensive drug classes prescribed, and number of visits
within different clinical settings [20]. We considered several
biological measurements including total cholesterol, high-
density lipoprotein cholesterol, and low-density lipoprotein
cholesterol, triglycerides, and creatinine, as well as weight
and BMI. BP measurements in the past 1 year of index
visit were aggregated into prediction features (eg, count of
BP readings ≥140/90 mm Hg). A detailed description of all
prediction features can be found in Table S3 in Multimedia
Appendix 1.
Statistical Analyses
We calculated the required sample size of a validation dataset
so that the 95% CI for validation C-statistics had a width
of 0.05 or less [21]. A sample size of 11,520 patients is
adequate for an outcome prevalence between 5%‐50% and a
C-statistics between 0.6‐0.8.

We randomly split the dataset into a training set and
an internal validation set according to an 80:20 ratio. We
performed median imputation for numerical variables and
used imputed median values from the training set for
subsequent imputation with the validation set. To handle
considerable missingness with laboratory tests, we catego-
rized the variables using standard cutoff values for their
normal ranges and applied the “missing” category to the
variable when the value was not available. Once categorical
variables were 1-hot encoded, we performed data standardi-
zation, subtracting the variables by the sample mean then
dividing by the sample SD. No variable selection procedure
was conducted. Further, 4 machine learning frameworks were
considered: (L2) regularized logistic regression, multilayer
perceptron (with 1 hidden layer), gradient boosting machines,
and random forest. For hyperparameter tuning, we used
grid search strategy with discrimination power (C-statistic)
as the selection criteria and performed 10-fold cross-valida-
tion on the training set. Hyperparameter-tuned models were
identified, one for each modeling framework, and further
compared on their cross-validation performance for the final
model.

For internal validation, in addition to discrimination, we
assessed calibration performance of the 2 final models,
one for each outcome, using smoothed calibration curves,
estimated with generalized additive models. Based on the
calibration curves, we computed the average (ie, integra-
ted calibration index [ICI]), median (E50), 90th percentile
(E90) of the absolute difference between expected event
rate and predicted risk to summarize calibration errors [22].
We computed 95% CIs using standard methods for C-sta-
tistics (DeLong method) and calibration metrics (simulation-
based inference) [23]. Additionally, we reported sensitivity,
specificity, and positive or negative predictive values and
95% CIs (using exact binomial method) with respect to

different decision thresholds. We performed decision curve
analysis with the validation set to assess the models’ net
benefit in comparison with the default policies, that is,
treating all and treating no patients [24]. We evaluated net
benefit within a range of probability decision threshold,
which was 50%‐70% for the outcome sustained, uncontrolled
hypertension and ≤20% for the outcome hypertensive crisis.

Finally, we carried out internal-external cross-validation
(IECV) at the county level to examine the final models’
predictive ability in new patient cohorts, using the existing
data [25]. With this approach, we used data from patients
receiving care within a given county to validate models
developed with the data of all other patients. For reliable
validation, we only validated the counties yielding suffi-
cient sample size of at least 200 events [26]. Using random-
effect meta-analyses, we estimated the pooled performance
measures, that is, the C-statistic, and ICI, across validations.
We assessed heterogeneity across validations using the SD of
the random effect, denoted as τ, and a chi-square test with a
significance level of .05.

Model building was performed using Python (Python
Software Foundation, eg, “scikit-learn” package). Other
analyses were conducted using R (R Foundation, eg,
“pROC,” “pmcalibration,” and “meta” packages).

Ethical Considerations
The Atrium Health institutional review board approved our
research protocol. Informed consent was waived as there were
no more than minimal risks to study participants. The study
data will not be made available publicly to ensure patient
confidentiality and privacy.

Results
Patient Characteristics
This study’s cohort consisted of 142,897 patients, almost all
of whom received care in 13 North Carolina counties and 1
South Carolina county in the year 2018. The patients were
72.33% (n=103,361) White and 22.52% (n=32,174) Black,
had a median age of 61 (IQR 49-71) years and a median
national-level ADI ranking of 55 (IQR 35-73). All patients
were observed with known sustained, uncontrolled hyperten-
sion and hypertensive crisis status during follow-up period.
The observed prevalence of sustained, uncontrolled hyperten-
sion and hypertensive crisis were 41.67% (n=59,547) and
4.53% (n=6,470), respectively. Across the counties, there
were notable racial and socioeconomic differences (Table
1). Except for 1 county, the percentage of White patients
ranged between 62.64% and 93.13% and the median of ADI
ranking ranged between 39 and 88. The observed prevalence
of outcomes among the counties ranged between 37.35% and
47.26% for sustained, uncontrolled hypertension, and, except
for 1 county, between 3.89% and 6.06% for hypertensive
crisis.
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Final Models
For each prediction problem, the hyperparameter-tuned
models from different modeling frameworks achieved
practically equivalent 10-fold cross-validated C-statistics of
around 0.71‐0.72 for the outcome sustained, controlled
hypertension and 0.79‐0.80 for hypertensive crisis, respec-
tively (Table 2). Given that the L2-regularized logistic
regression (LR) was a simpler and more computationally
efficient framework, we selected the hyperparameter-tuned
LR models for training and final validations. Additionally,

we examined the relative variable importance in a trained
LR model via the magnitude of predictor coefficients and
investigated each model’s top 10 variables (Table S1 in
Multimedia Appendix 1). Notably, increases in systolic BP
at index visit, the number of encounters with systolic BP≥140
mm Hg and the number of encounters with BP≥140/90 mm
Hg in the past 1 year, age, as well as a prior diagnosis of
hypertension and higher ADI ranking, predicted both higher
risk of sustained, uncontrolled hypertension and hypertensive
crisis.

Table 2. Optimized hyperparameters and 10-fold cross-validated C-statistics of the hyperparameter-tuned models.
Framework and hyperparameter optionsa Sustained, uncontrolled hypertension Hypertensive crisis

Optimal value Cross-validated C-stat (SE) Optimal value Cross-validated C-stat (SE)
L2 regularized logistic regression 0.713 (0.002) 0.793 (0.002)

 

Table 1. Patient characteristics.
Location of care, county
(sample size)

ADIa, median
(IQR)

Age, median
(IQR) Female, n (%) White, n (%) Black, n (%)

SUHTNb, n
(%) HCc, n (%)

Overall
(n=142,897)

55 (35-73) 61 (49-71) 85,113 (59.56) 103,361 (72.33) 32,174 (22.52) 59,547 (41.67) 6470 (4.53)

Mecklenburg
(n=64,811)

44 (25-65) 60 (49-71) 39,347 (60.71) 40,595 (62.64) 19,746 (30.47) 26,338 (40.64) 2704 (4.17)

Cabarrus
(n=31,403)

57 (42-72) 61 (49-71) 18,421 (58.66) 25,175 (80.17) 4891 (15.57) 13,854 (44.12) 1567 (4.99)

Union
(n=9882)

54 (43-74) 60 (49-71) 5569 (56.35) 7400 (74.88) 1873 (18.95) 3963 (40.10) 443 (4.48)

York
(n=8963)

51 (39-68) 61 (49-72) 5319 (59.34) 6991 (78.00) 1652 (18.43) 3694 (41.21) 384 (4.28)

Cleveland
(n=6866)

78 (71-85) 63 (52-73) 4486 (65.33) 5347 (77.88) 1410 (20.54) 2918 (42.50) 416 (6.06)

Lincoln
(n=4230)

71 (63-77) 63 (51-72) 2362 (55.84) 3852 (91.06) 266 (6.29) 1999 (47.26) 226 (5.34)

Gaston
(n=3756)

67 (50-80) 60 (49-70) 1941 (51.68) 3145 (83.73) 507 (13.50) 1403 (37.35) 146 (3.89)

Stanly
(n=2478)

68 (58-78) 64 (51-74) 1524 (61.50) 2148 (86.68) 304 (12.27) 1116 (45.04) 135 (5.45)

Iredell
(n=2411)

39 (21-57) 70 (59-77) 1159 (48.07) 2169 (89.96) 148 (6.14) 953 (39.53) 96 (3.98)

Rutherford
(n=1922)

82 (66-88) 67 (57-75) 1163 (60.51) 1645 (85.59) 245 (12.75) 771 (40.11) 82 (4.27)

Burke
(n=1462)

79 (72-83) 58 (45-69) 1113 (76.13) 1332 (91.11) 91 (6.22) 608 (41.59) 52 (3.57)

Caldwell
(n=1324)

84 (72-90) 64 (52-73) 728 (54.98) 1233 (93.13) 72 (5.44) 521 (39.35) 51 (3.85)

Rowan
(n=1121)

69 (63-78) 59 (49-69) 635 (56.65) 868 (77.43) 219 (19.54) 500 (44.60) 45 (4.01)

Anson
(n=625)

88 (80-96) 58 (50-69) 362 (57.92) 186 (29.76) 425 (68.00) 272 (43.52) 53 (8.48)

aADI: Area Deprivation Index.
bSUHTN: sustained, uncontrolled hypertension.
cHC: hypertensive crisis.
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Framework and hyperparameter optionsa Sustained, uncontrolled hypertension Hypertensive crisis

Optimal value Cross-validated C-stat (SE) Optimal value Cross-validated C-stat (SE)
Cb: 0.001, 0.01, …, 1000 0.001 0.001

Gradient boosting 0.716 (0.001) 0.799 (0.002)
n_estimators: 50, 100, 150 100 100
learning_rate: 0.05, 0.1, 0.2 0.2 0.2
max_depth: 3, 5, 8 5 3

Multilayer perceptron 0.713 (0.002) 0.794 (0.002)
hidden_layer_size: 5, 10, 20 5 5
learning_rate_init: 0.001, 0.01, 0.1 0.01 0.01
alphac: 0.00001, 0.0001, 0.001 0.001 0.001

Random forest 0.708 (0.002) 0.785 (0.003)
n_estimators: 50, 100, 150 50 50
max_depth: 3, 5, 7 7 7
max_featuresd: “sqrt,” “log2,” none “sqrt” None

aHyperpameters in scikit-learn Python package.
bC: inverse of regularization strength.
calpha: strength of L2 regularization.
dmax_features: number of features (function of n_features) to consider when looking for best split.

Internal and Internal-External Validations
In the internal validation dataset, the LR models achieved
acceptable discrimination power for predicting sustained,
uncontrolled hypertension with a C-statistic of 0.72 (95%
CI 0.71‐0.72), and reasonably good discrimination power for
predicting hypertensive crisis with a C-statistic of 0.81 (95%
CI 0.79‐0.82). Both sustained, uncontrolled hypertension and
hypertensive crisis models had accurate risk estimates with
an ICI of 0.015 (95% CI 0.012‐0.020) and 0.009 (95%
CI 0.007‐0.011), respectively. Other metrics (E50 and E90)
and calibration curves can be examined in Table 3 and
Figure 1. Sensitivity, specificity, and predictive values of the
final models across potential decision thresholds were also
reported in Table S2 in Multimedia Appendix 1. Further, in
decision curve analyses, the models demonstrated higher net

benefit than treat-all and treat-none policies within the ranges
of plausible decision thresholds (Figure 2).

From IECV of the sustained, uncontrolled hypertension
model, the pooled estimates were 0.70 (95% CI 0.69‐0.71)
for C-statistic and 0.021 (95% CI 0.016‐0.026) for ICI;
additionally, there was a small or moderate heterogeneity in
C-statistic (τ=0.02, 95% CI 0.01‐0.03, P<.001) and a small
heterogeneity in ICI (τ=0.01, 95% CI 0.01‐0.01, P<.001).
From IECV of the hypertensive crisis model, the pooled
estimates were 0.79 (95% CI 0.78‐0.81) for C-statistic and
0.007 (95% CI 0.005‐0.009) for ICI; across validations,
variation in C-statistic was small or moderate (τ=0.01, 95%
CI 0.00‐0.04, P=.004) and variation in ICI was small (τ=0.00,
95% CI 0.00‐0.01, P=.009).

Table 3. Discrimination and calibration performance (with 95% CIs) of the final models on training and internal validation datasets.

Model and dataset
Sample size
(missinga) n C-stat ICIb E50 E90

Sustained, uncontrolled hypertension
Training 114,317

(7730)
0.71 0.015 0.015 0.030

Internal validation 28,580
(1959)

0.72
(0.71-0.72)c

0.015
(0.011‐0.020)c

0.009
(0.005‐0.017)c

0.040
(0.030‐0.047)c

Hypertensive crisis
Training 114,317

(7730)
0.80 0.006 0.005 0.013

Internal validation 28,580
(1959)

0.81
(0.79-0.82)c

0.009
(0.007‐0.011)c

0.006
(0.004‐0.007)c

0.021
(0.014‐0.028)c

aMissing: number of observations containing any missing feature.
bICI: integrated calibration index.
c95% CI.
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Figure 1. Smoothed calibration plots (with 95% CIs; top) and histograms showing distribution of the predicted probability (bottom) for the sustained,
uncontrolled hypertension model (left) and the hypertensive crisis model (right) from internal validation.

Figure 2. Decision curve analyses of the final models predicting sustained, uncontrolled hypertension (left) and hypertensive crisis (right) from
internal validation.
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Discussion
Principal Results
Using a large, diverse (in terms of geography, race, and
socioeconomic status) patient cohort in the Greater Charlotte
area of the United States, we developed and validated risk
models to predict sustained, uncontrolled hypertension and
hypertensive crisis occurring within 1 year following an index
ambulatory or outpatient encounter in which an uncontrol-
led BP reading was documented. Internal validation showed
discrimination performance that was reasonably good for the
hypertensive crisis model and lower but acceptable for the
sustained, uncontrolled hypertension model. Overall, both
models predicted the risks accurately (calibration perform-
ance) in the internal validation dataset and further demonstra-
ted clinical utility through decision curve analyses. Using the
existing data, IECV assessed the models’ predictive ability
with new patient cohorts and showed that the models’ overall
discrimination and calibration performance across validations
were consistent with internal validation results. In addition,
across validations, we observed small to moderate variation in
discrimination performance and a small variation in calibra-
tion performance.

Our findings show that the risk of hypertensive crisis
in patients with uncontrolled hypertension can be predicted
well. The hypertensive crisis model, in particular, showed
satisfactory performance to serve patients within Atrium
Health’s North and South Carolina markets, and potentially
patients from other nearby areas. Based on the model’s
internal and internal-external validation performance, it also
has the potential to be applicable to other health systems. For
our final models to be further validated and used elsewhere,
the complete specifications of the models can be found in
Table S3 in Multimedia Appendix 1.

Therapeutic inertia (TI), that is, the failure of providers to
initiate or intensify medication therapy when patients fail to
achieve their treatment goals, is a well-known barrier to better
clinical outcomes [27]. Among patients with hypertension, TI
contributes to worse short- and long-term BP control [28,29].
While the causes of TI are multifactorial, interventions that
include provider and patient education and leverage health
care data to guide clinical decision-making at the point of
care are promising approaches for reducing TI. Within this
context, our prediction models can provide useful data to
facilitate clinician-patient discussions on the potential need
to intensify medications. Our expectation is that the use of
these models will ultimately improve medication adherence
and BP control in patients with uncontrolled hypertension.
Future studies will be needed to assess the models’ clinical
impacts to support implementation into routine clinical care.

While models such as ours are becoming increasingly
more common as clinical decision support tools, several
challenges to implementation can be expected. First, there
is a need to continuously monitor for potential drifts from
the models’ expected behaviors, at regular intervals [30]. This
may include monitoring for changes in predictive perform-
ance, model usefulness, patient population, and predictor

data being applied to the models. Substantial efforts may
be required for monitoring, investigation of model issues,
and model updating. Additionally, based on the 5 rights of
clinical decision support framework (ie, right information,
right person, right format, right channel, and right time) other
challenges can be foreseen [31]. For example, alert fatigue
is an issue where a high volume of alerts can overwhelm
users and result in total disregard of the information provided.
There is also a need to build clinical trust through proper
presentation of the models’ facts to end users, such as the
approved use case, potential risks and benefits of the model,
and validation data on performance and clinical utility. All
of these factors require careful attention in implementation
studies to guide the proper use of the models in practice.

Our study also found that even with a comprehen-
sive set of EHR-based predictors, predicting sustained,
uncontrolled hypertension remains a challenging prob-
lem. The marginally acceptable discrimination performance
results indicate a need to improve further our ability to
predict this outcome. As we already attempted complex
machine learning methods and a large sample size, more
powerful predictors are needed to improve predictive
performance. One future direction is to increase our ability
to monitor and collect BP data, as BP-related predic-
tors had relatively large impacts on risk scores. Weara-
ble devices, such as fitness trackers, for example, are
increasingly popular and can be used to collect BP data
and support BP monitoring and management [32].
Limitations
Our study has several limitations. First, our models, while
adequate, have room for improvement by adding impor-
tant predictor variables that were either unavailable or not
considered. For example, modifiable risk factors, such as
lifestyle behaviors, medication adherence, and medication
dosing, are known to be associated with BP control, but
these data were either not accessible from the EHR or came
from unstructured data sources (eg, clinical notes), which
can be challenging to process for prediction. Second, because
patients without a BP reading in the prediction window were
excluded, and models can only be developed and validated
for patients who had some follow-up BP measurements, there
is a risk for bias. Fortunately, a relatively small number of
patients had no BP reading during the follow-up period, thus,
the extent of bias, if any, can be deemed minor. Third, the
models were developed for patients on 4 or less antihyperten-
sive drug classes and may not generalize beyond this patient
group. Fourth, additional prospective studies are needed to
understand how our models would perform when implemen-
ted in real-world clinical settings.
Comparison With Prior Work
Our study presented novel applications of predictive
modeling to the area of hypertension management. From a
design perspective, the prediction outcomes, targeted patient
cohort, and intended use case were carefully chosen to
optimize models’ usefulness for managing hypertension.
We noted that while little research was performed about
predicting clinically important hypertension states in patients

JMIR MEDICAL INFORMATICS Nguyen et al

https://medinform.jmir.org/2024/1/e58732 JMIR Med Inform 2024 | vol. 12 | e58732 | p. 7
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e58732


with hypertensiveness, a much larger amount of literature
was devoted toward predicting hypertension onset in the
general population [11-13]. Comparing with other hyperten-
sion prediction studies, ours made use of a relatively diverse
set of predictors, including EHR-based data that were not
often considered, such as usage of different health services,
drug classes prescribed, and social determinants of health
[11]. In terms of performance, the C-statistics in our models
were similar to those from existing prediction models of
hypertension onset, which were between 0.63‐0.84 according
to a meta-analysis [11]. A more recent, published prediction
model of uncontrolled hypertension demonstrated a C-statis-
tics of 0.76 [16]. Finally, a large and geographically diverse
patient sample allowed us to assess (weak) generalizability
through IECV, as well as to assess internal validity with
confidence. In contrast, the vast majority of hypertension
prediction studies were only internally validated and had
smaller sample sizes [11].

Conclusions
We developed and validated risk models for sustained,
uncontrolled hypertension, and hypertensive crisis, within 1
year of an index visit showing an uncontrolled BP reading.
The hypertensive crisis risk model showed good predictive
performance with internal validation and new patient cohorts
during IECV. This model could be prospectively validated
as a next step. If validity and clinical utility are confirmed,
it could then be used within our health system, and poten-
tially elsewhere, as a public health surveillance tool for early
detection of hypertensive crises and for supporting physi-
cians with treatment decisions. Further efforts are required
to improve the ability to predict sustained, uncontrolled
hypertension, particularly by adding and improving predictor
variables.
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