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Abstract

Background: Data models are crucial for clinical research as they enable researchers to fully use the vast amount of clinical
data stored in medical systems. Standardized data and well-defined relationships between data points are necessary to guarantee
semantic interoperability. Using the Fast Healthcare Interoperability Resources (FHIR) standard for clinical data representation
would be a practical methodology to enhance and accelerate interoperability and data availability for research.

Objective: This research aims to provide a comprehensive overview of the state-of-the-art and current landscape in FHIR-based
data models and structures. In addition, we intend to identify and discuss the tools, resources, limitations, and other critical aspects
mentioned in the selected research papers.

Methods: To ensure the extraction of reliable results, we followed the instructions of the PRISMA-ScR (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist. We analyzed the indexed articles
in PubMed, Scopus, Web of Science, IEEE Xplore, the ACM Digital Library, and Google Scholar. After identifying, extracting,
and assessing the quality and relevance of the articles, we synthesized the extracted data to identify common patterns, themes,
and variations in the use of FHIR-based data models and structures across different studies.

Results: On the basis of the reviewed articles, we could identify 2 main themes: dynamic (pipeline-based) and static data models.
The articles were also categorized into health care use cases, including chronic diseases, COVID-19 and infectious diseases,
cancer research, acute or intensive care, random and general medical notes, and other conditions. Furthermore, we summarized
the important or common tools and approaches of the selected papers. These items included FHIR-based tools and frameworks,
machine learning approaches, and data storage and security. The most common resource was “Observation” followed by “Condition”
and “Patient.” The limitations and challenges of developing data models were categorized based on the issues of data integration,
interoperability, standardization, performance, and scalability or generalizability.

Conclusions: FHIR serves as a highly promising interoperability standard for developing real-world health care apps. The
implementation of FHIR modeling for electronic health record data facilitates the integration, transmission, and analysis of data
while also advancing translational research and phenotyping. Generally, FHIR-based exports of local data repositories improve
data interoperability for systems and data warehouses across different settings. However, ongoing efforts to address existing
limitations and challenges are essential for the successful implementation and integration of FHIR data models.

(JMIR Med Inform 2024;12:e58445) doi: 10.2196/58445
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Introduction

Background
In informatics, operations and data structures can be described
by a set of concepts called data models. Because structures and
data points need to be connected to represent connections, data
modeling offers a visual representation of the system, in a whole
or in some parts. For instance, one of the most used conceptual
data models is the entity relationship model which is generally
linked to a relational database [1]. Data modeling is a process
that defines how the data should be maintained in a database.
Data types, constraints, relationships, and metadata definitions
are among the features specified by a data model [2]. Data
models are also crucial for clinical research as they enable
researchers to fully use the vast amount of clinical data stored
in medical systems. Standardized data and well-defined
relationships between data points are necessary to “guarantee
reproducible research findings” [3].

Furthermore, data modeling can facilitate interoperability
between medical systems. Interoperability refers to the ability
to exchange information between computer systems, which is
essential in various fields, such as artificial intelligence (AI),
big data research and analytics, medical communication, and
multinational collaboration. In the medical field, interoperable
systems can reduce errors and documentation workload,
empower patients, and facilitate information retrieval. In
research, real-world information can be collected and used for
data mining and AI to generate new hypotheses [4]. The
management board of the Healthcare Information and
Management Systems Society (HIMSS) defined 3 levels of
interoperability: fundamental, structural, and semantic.
Fundamental interoperability refers to the communication
method between IT firms and devices, while structural
interoperability is the format and structure of data being
communicated. Semantic interoperability, by contrast, involves
the ability of disparate and heterogeneous systems to not only
exchange information but also interpret and use it autonomously
[5]. Developing a data model would enhance structural and
semantic interoperability between medical information systems.
Furthermore, efficient data exchange contributes to the reduction
of time and financial resources [6].

Health Level 7 (HL7) is a standard-developing organization
focused on enhancing information exchange among health care
systems. These standards are fundamental in the adoption of
electronic health records (EHRs). Fast Healthcare
Interoperability Resources (FHIR) is the most recent
interoperability standard, preceded by HL7 version 2 and HL7
version 3 [7]. FHIR aims to advance messaging standards to
enhance semantic interoperability [8]. Using this standard for
clinical data representation is a practical methodology to
enhance and accelerate data availability for research. These
models can also have the potential to be transformed into other
models for analytics purposes [9]. FHIR mapping is the process
of identifying the corresponding FHIR resources to real-world
data elements. This is an essential step in the FHIR data
modeling procedure [10]. When the objective is to maintain
semantic interoperability with legacy applications, performing

manual data transformations and mappings is necessary to
guarantee that the exchanged data are interpreted properly and
as expected by all end points [8].

Because not all health care information is structured, there is a
need to use other approaches for mapping and FHIR modeling.
Natural language processing (NLP) is a branch of AI that deals
with the computerized interpretation, representation, and
analysis of natural (human) language. In the health care domain,
this technology is widely used to interpret and analyze
unstructured health data, such as diagnostic reports, medical
notes, and prescriptions [11]. The extracted information can
then be represented in a structured format, such as a FHIR-based
model. In general, it is possible to formalize and integrate
unstructured and structured EHR data through a FHIR-based
framework [12].

FHIR-based data normalization pipelines are valuable tools in
data capture and EHR phenotyping [13]. For instance, a pipeline
called NLP2FHIR standardizes unstructured EHR data [14].
Concerning the big data domain, workflows of data
harmonization pipelines integrated with FHIR would present a
scalable data modeling of large data sets [15]. It is also feasible
to use FHIR data models to standardize heterogeneous
annotation corpora [16]. All the mentioned potentials will lead
to better semantic interoperability between medical systems.
To the best of our knowledge, no research has been done so far
to comprehensively assess the practical implementations of
FHIR-based models and infrastructures. Thus, in this research,
we aim to review recent advancements in this field, focusing
on the functional data model or structure implementations using
this standard. More specifically, this scoping review focused
on addressing the question, “What insights can be gained from
analyzing the state-of-the-art FHIR-based data modeling
approaches considering technological advancements, application
in the medical domain, and potential limitations?”

Objectives
The research objectives are as follows: (1) to provide a
comprehensive overview of FHIR-based data models in the
context of interoperability, structure, and functionality and
summarize the state of the art for developing FHIR-based data
models and (2) to highlight limitations, challenges, advantages,
and opportunities brought about by FHIR-based data models

Methods

Overview
This review was conducted according to the instructions of the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
checklist [17]. This checklist aims to facilitate the development
of a deeper comprehension of pertinent terminology,
fundamental concepts, and essential items to report for scoping
reviews [17]. The checklist is available in Multimedia Appendix
1.

Study Protocol
We used the PRISMA-P (Preferred Reporting Items for
Systematic Review and Meta-Analysis Protocols) 2015 checklist
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to formulate and draft the review protocol. Protocols for
systematic reviews facilitate the organization and recording of
review procedures, ensuring the reproducibility of research. In
addition, they serve as a safeguard against indecisive judgment
during the review process and allow the readers to determine
whether selective reporting has been applied [18]. The full

checklist and the review protocol are available in Multimedia
Appendix 2.

Eligibility Criteria
To select the papers, we considered the articles that encompass
the FHIR standard in the data model development or
infrastructure design. The inclusion and exclusion criteria were
defined in more detail in Textbox 1.

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Original articles and case studies from journals and conferences

• Articles related to the Fast Healthcare Interoperability Resources (FHIR)-based data models and structures focusing on a health care condition
or using real-world patient data, registries, or data sets

• Articles with high-quality and detailed workflow processes with at least one architecture or data model diagram

• Articles that discuss the barriers, challenges, or limitations of developing FHIR-based data models and infrastructures in a health care domain

Exclusion criteria

• Not written in English

• Not accessible

• Letter to the editors, reviews, editorials, commentary articles, short papers without detailed implementation information, posters, and preprint
articles

• Not relevant to research questions and objectives; in other words, articles not focusing on FHIR-based data model development or not providing
practical and detailed insights into the development or use of FHIR-based data models by a schematic approach

• Papers lacking specific use cases or real-world data sources (practical implementations) or without discussion of limitations and challenges

Information Sources and Search Strategy
We searched academic databases, such as PubMed, Scopus,
Web of Science (standard selection of databases—Web of
Science Core Collection), IEEE Xplore, and the ACM Digital
Library in May 2023.

The search was conducted using database-specific variants of
the basic search term ([“fhir”] AND [“data model” OR
“modelling” OR “minimum data set” OR “data element”]) with
their synonyms, variations, and full forms.

It is worth mentioning that no time limit was applied to the
search to obtain a comprehensive overview of all published
articles in this field. We should clarify that the initial pages of
Google Scholar (9-10 pages) were investigated as a supplement
to the mentioned academic libraries to retrieve additional papers.
Full searches are available in Multimedia Appendix 3.

Study Selection
In a stepwise process, 2 coauthors (PT and MDR) independently
screened the retrieved articles and selected the initial studies by
applying the inclusion and exclusion criteria to the titles or
abstracts or, in some cases, full texts (by rapid skimming).
Inconsistencies in the selection were discussed with other
coauthors until a consensus was reached. EndNote (Endnote
X9; Bld 12062) software was used for article screening and
investigation in each step. The full texts of the initially selected
articles were assessed in the next phase to check compliance
with the eligibility criteria. PT thoroughly reviewed the articles

and then discussed with other authors about inclusions.
Disagreements were resolved after group discussions.

Each selected study was thoroughly investigated for the
appropriateness and clarity of the research methodology and
design. We also assessed them to ensure alignment with the
study objectives. The rigor of the methods, tools, and techniques
used for FHIR-based architectural design was considered in this
phase. The presentation of results and the coherence of model
interpretation were also closely examined.

Data Charting Process and Data Items
Two coauthors (PT and MDR) extracted and analyzed the
selected articles and charted the data. The final analysis was
thoroughly reviewed and confirmed by other coauthors to ensure
reliability and rigor. The collaborative review process among
coauthors further enhanced the robustness of the results’
interpretation, ensuring a comprehensive and well-rounded
analysis of the gathered evidence. The following information
was extracted and collected in a spreadsheet: (1) bibliographic
information, such as title, authors, and year of publication; (2)
data sources; (3) FHIR resources; (4) data transformation and
mapping; (5) standards, tools, terminologies, and models; (6)
data validation and evaluation; (7) use case.

Synthesis of the Results
After extraction, we assessed the information to find themes or
categories. Subsequently, we performed a general analysis of
the papers, based on the overall technical themes and the medical
domains. In addition, any important technologies used most in
the included articles were comprehensively presented and
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discussed afterward. Resource frequency analysis was performed
via the investigation and counting of FHIR resources used in
each data model and infrastructure to find out which resources
were more common in system developments. One of the most
important aims of our research was to extract and categorize
the implementation limitations mentioned by the researchers.
Therefore, these aspects were also addressed subsequently to
provide a thorough viewpoint of challenges that future scientists
may face.

Results

Selection of Sources of Evidence
Of the overall 466 articles found during the comprehensive
search, 238 (51.1%) studies were duplicates. Of the remaining
228 articles, 117 (51.3%) were excluded based on reading titles
or abstracts or skimming some full texts. Of the remaining 111
articles for the next phase (full-text assessment), 31 (27.9%)
articles were eventually selected to be included in this review.
Figure 1 illustrates the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) chart of this study.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection. WoS: Web of Science.

Structural Categorization
After analyzing the full texts of the 31 articles, we categorized
them based on 2 models: dynamic (pipeline-based) and static
data models.

Dynamic Data Models
Data pipelines are chains of functions and activities that lead
the input to the output in an attempt for the flow of data to be
smooth and automated from source to destination [19]. Dynamic

or pipeline-based data models deal with moving, transforming,
and analyzing the data using the FHIR standard in their
approach. In this category, the FHIR standard has been used as
a canonical data model to develop dynamic models. This group
encompasses the articles with processes that go beyond static
representation and include the movement and transformation
of data. Of the 31 articles included, 25 (81%) were related to
the development of dynamic data models using the FHIR
standard. Table 1 summarizes the extracted information about
this category.
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Table 1. Dynamic models.

Use caseValidation and evalua-
tion

Standards, tools, terminolo-
gies, and models

Data transformation
and mapping

Data sourceFHIRa resourcesStudy

Health care
research, es-

By published quality
assessment tools

HL7e version 2.X, OMOP,
PCORnet, Flat file, FHIR

CDRf, and CDMg

Flat file to FHIR,

FHIR to OMOPc,

FHIR to PCORnetd

Epic EHRb, large
academic institu-
tion

Patient, Encounter,
Condition, Procedure,
MedicationRequest,
MedicationAdministra-
tion, and Observation

Lenert et al
[9]

pecially in
the context
of COVID-
19

ObesityPhenotype algorithms
in PheKB and obesity

NLP2FHIR pipeline, CQL,

NLP engines (cTAKESl,
FHIR-based NLPj ex-

tensions to CQLk,

i2b2h Obesity
Challenge data

set, MIMICi III

Composition and Value-
Set

Wen et al
[20]

phenotyping algo-
rithm plus 2 obesity
data sets

MEDXNm, MedTime) and

PheKBn
FHIR extensions to
NLP2FHIR pipelineobesity discharge

summaries

ObesityUsing MIMIC-III
obesity data set as a

NLP tools (cTAKES,
MedXN, MedTime) and

EHR data to FHIR re-
sources

i2b2 obesity chal-
lenge (discharge
summaries)

Composition, Condi-
tion, MedicationState-
ment, Procedure and
FamilyMemberHistory

Hong et al
[13]

second data set, evalu-
ation measures (preci-
sion, recall, and

NLP2FHIR pipeline, ma-
chine learning algorithms
(logistic regression, sup-

F1-score) for perfor-
mance evaluation

port vector machine, deci-
sion tree, and random for-
est)

Random
notes from
EHR

Reusing annotation
corpora, standardizing
annotation corpora,
NLP2FHIR perfor-

NLP2FHIR pipeline,

UIMAo clinical NLP tools
(cTAKES, MedXN, Med-

Time), LOINCp,

Unstructured and
structured EHR data
to FHIR resources

Mayo Clinic’s
unstructured
EHR data

Composition, Condi-
tion, Observation, Pro-
cedure, MedicationState-
ment, Medication and
FamilyMemberHistory

Hong et al
[14]

mance evaluation by
precision, recall, and
F1-score

SNOMED CTq, RxNormr,

and ATCs

Colorectal
cancer

Precision, recall,
F1-score, and accura-
cy

NLP tools and UDPv data
sources

Unstructured reports
to structured reports
and synoptic report to
ACP, and ACP FHIR

model to CRFu

Mayo Clinic pa-
tients with col-
orectal cancer

and ACPt

Questionnaire and
QuestionnaireResponse

Zong et al
[21]

Random
notes from
EHR

Precision, recall, and
F1-score

NLP tools (cTAKES,
MedXN, MedTime), rule-
based approach, SNOMED

CT, CASw, RxNorm,
UIMA, and protégé

Unstructured EHR da-
ta to FHIR, structured
data to FHIR re-
source, and FHIR re-
sources to annotation
schemas

Medication data
from Mayo Clin-
ic’s EHR

MedicationStatementHong et al
[12]

Intensive
care

Openly available
MIMIC-IV database

to test FHIR-DHPz

ETLy framework and
Postgres

Raw hospital records

to AIx-friendly and
harmonized represen-

MIMIC-IV
database for vali-
dation

Patient, Encounter, Ob-
servation, Procedure,
MedicationRequest,
MedicationAdministra-
tion, and Condition

Williams et
al [15]

and syntactic valida-
tion of FHIR mapping

tation, and database
tables to FHIR stan-
dard

Pulmonary
Hyperten-
sion registry

Feasibility assessment
by computation time
and source data cover-
age in the target CDM

ETL process, XSLTab,
XPath, OMOP CDM,
SNOMED CT, LOINC,
ATC, and ICD-10

CSV file to FHIR
bundle collection,
source filed names to
standard terminology
(SNOMED CT,

German Pul-
monary Hyperten-
sion registry

Patient, Encounter, and
Observation

Fischer et
al [22]

LOINC, ATC, and

ICDaa-10) and source
data to OMOP schema

AsthmaComparison of gener-
ated data by the

CDM and FHIR PITacCDM to FHIRi2b2Patient, Encounter,
Condition, Procedure,

Pfaff et al
[23]

pipeline and equiva-Observation, Medica-
lent clinical data of

CDWHad warehouse

tionRequest, and Practi-
tioner

JMIR Med Inform 2024 | vol. 12 | e58445 | p. 5https://medinform.jmir.org/2024/1/e58445
(page number not for citation purposes)

Tabari et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Use caseValidation and evalua-
tion

Standards, tools, terminolo-
gies, and models

Data transformation
and mapping

Data sourceFHIRa resourcesStudy

COVID-19Create test patients
and automated and
manual test

SNOMED CT, LOINC,

ICD-10-GMaf, ATC, CQL,
and ETL processes

Clinical data to FHIR,
structured query to
FHIR search, and
CQL requests

GECCOaeCondition, Observation,
Procedure, Medication-
Statement, Immuniza-
tion, DiagnosticReport,
and Specimen

Rosenau et
al [24]

CancerConventional 10-fold
cross-validation, AU-

ROCah, and AUPRCai

RDF, classification, ma-
chine learning and deep
learning, cTAKES,
MedXN, MedTime,
NLP2FHIR, bag of fea-
tures, Node2vec, ICD-9,
RxNorm, and LOINC

Clinical entries to
FHIR resources, FHIR

to RDFag

Mayo Clinic clin-
ical data ware-
house

Observation, Condition,
Medication, Family-
MemberHistory, and
Patient

Zong et al
[25]

Intensive

care (EDal

data)

Validation by open-
source FHIR server

(HAPIak FHIR) by
bundles

FSHaj, py mimic FHIR
package, PostgreSQL, and
SNOMED CT

MIMIC-IV to FHIRMIMIC-IVCodeSystem, ValueSet,
MedicationRequest,
MedicationDispense,
and MedicationAdmin-
istration

Bennett et
al [26]

Type 1 dia-
betes melli-
tus

Ontology is evaluated
(assessment of correct-
ness, consistency, and
completeness of ontol-
ogy knowledge) and
manual evaluation by
experts

FASTO ontology (using

FHIR, SSNap, BFOaq, and

CPGar), OWLas 2, WBAN,

CDSSat, Protégé, PHRau,
ISO IEEE 11073, LOINC,

SNOMED CT, UoMav,
FHRBase database, FHIR

RESTfulaw, OAuth2ax,

SPARQLay, D2RQ plat-

form, Jena APIaz, and Pal-
let and HermiT reasoners

RDBan to FHIR,
FHIR to RDB, EHR
data to FHIR, and di-
rect mapping of histor-

ical data to FASTOao

ontology

WBANam, pa-
tient profiles in
EHR, and manual
data sent by pa-
tients

Patient, Practitioner,
RelatedPerson, Observa-
tion, Condition, Ad-
verseEvent, AllergyIn-
tolerance, Location,
FamilyMemberHistory,
CarePlan, Goal, Nutri-
tionOrder, Medication,
MedicationRequest,
MedicationStatement,
Device, Encounter,
EpisodeOfCare,
CareTeam, and Proce-
dure

El-Sappagh
et al [27]

Cancer clini-
cal trials-col-
orectal

Precision, recall, and
F1-score

CRF, DMMba model, ETL
process, and topic model-
ing

Structured and unstruc-
tured data to FHIR-
based data profile and
directly-inherited data
element mapping

ACP and clinical
records of Mayo
Clinic’s patients

DiagnosticReport and
Observation

Zong et al
[28]

Ovarian can-
cer

Feasibility and adapt-
ability test using pub-
lic FHIR servers

Shiny web framework,
Shiny apps library, R
packages for FHIR data
visualization, HAPI FHIR
API, LOINC, ICD, and

CPTbb

Local code to standard
code, laboratory test
codes to LOINC
codes, and mapping
between local identi-
fiers and FHIR re-
source identifiers

Ovarian cancer
database, labora-
tory test database,
and CDM
database

Patient, Observation,
Condition, and Proce-
dure

Hong et al
[29]

Annotated
clinical notes

Evaluation with anno-
tation corpora, calcu-
lated precision, recall,
and F1-score

UMLSbc, SNOMED CT,
LOINC, RxNorm, NLP
tasks, support vector ma-
chine, annotation tools
(Knowtator and Anafora),
Protégé ontology editor,
and HAPI FHIR API

Source annotation
schemas and FHIR
annotation schema

Three annotated
corpora from
SHARPn project,
MedXN project,
and active
Mayo’s clinical
NLP project
(Family History
NLP Project)

Condition, FamilyMem-
berHistory, Procedure,
Observation, Medica-
tionStatement, and
Medication

Hong et al
[16]

Pediatric
muscu-
loskeletal
disorders

Qualitative feedback

collection and SUSbg
ETL processes, OMOP
CDM, OMOP-on-FHIR,

PostgreSQL, psqlbe,

SMARTbf on FHIR, and
Synthea Patient Generator

Map OMOP CDM
concepts to FHIR re-
sources by OMOP-on-
FHIR (a novel clinical
infrastructure)

SHCbd data
repositories and
Synthea Patient
Generator

Not definedMarteau et
al [30]

Maternal
health

User study and ques-
tionnaires, generate
requests and view re-
sponses

MongoDB, FHIR RESTful

web services, DAObj,
Google’s REST console
app

Data elements to
FHIR resources

MCHHJbh and

CRMHISbi

Patient, Observation,
Condition, and Practi-
tioner

Ismail et al
[31]
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Use caseValidation and evalua-
tion

Standards, tools, terminolo-
gies, and models

Data transformation
and mapping

Data sourceFHIRa resourcesStudy

PCRbm

SARS-CoV-
2 tests

Performance evalua-
tion (response time,
throughput, process
management time,
main memory storage,
secondary storage),
and usability test

HAPI FHIR libraries,

BPMNbk, Cawemo,
clinFHIR graphBuilder,

JWTbl, and MySQL

Minimum data set
fields to FHIR

UC Christus labo-
ratory

Patient, Specimen, Diag-
nosticReport, and Obser-
vation

Guinez-
Molinos et
al [32]

COVID-19
symptom
tracking

Not statedFHIR RESTful API, FHIR
Search API, Google’s
Flutter, Keycloak, HAPI

FHIR, AWSbn, Docker,
Postgres DB, JWT, and
Apache web server

Data elements to
FHIR

Requirement
analysis outputs
(undergraduate
students were
surveyed)

Patient, Organization,
Communication Con-
sent, Questionnaire,
QuestionnaireResponse,
and CarePlan

Burkhardt
et al [33]

Random
samples of
secure pa-
tient mes-
sages

F1-score to check the
consistency between
annotators

MetaMap, LDAbo, multi-
purpose Annotation Envi-
ronment, and FHIR defini-
tions

Biomedical text to
UMLS and patient se-
cure messages to hid-
den microconcepts

The web-based
patient portal at
the Mayo Clinic
Rochester

Patient, Practitioner,
RelatedPerson, Organi-
zation, HealthcareSer-
vice, Appointment, De-
vice, Encounter, Docu-
mentReference, Allergy-
Intolerance, Ad-
verseEvent, BodyStruc-
ture, Specimen, Proce-
dure, FamilyMember-
History, Observation,
Condition, Medication,
Immunization, Care-
Plan, ExplanationOf-
Benefit, and Account

De et al
[34]

Obesity and
random
notes from
discharge
summaries

Accuracy and
macroaveraged preci-
sion, F1-score, and re-
call

Deep learning models (text

GCNbp, GRUbq, and

CNNbr), scikit-learn, Ten-
sorFlow, Keras, text classi-
fication, NLP2FHIR
pipeline, cTAKES, and
SNOMED CT codes

Clinical text to FHIR
bundle

i2b2 2008 obesity
data set and
MIMIC III data
set

Condition, Procedure,
MedicationStatement,
FamilyMemberHistory,
Composition, and Bun-
dle

Liu et al
[35]

CancerCross-validation and
FHIR specifications

and IGsbv

UMLbt, (ICD-9 and ICD-
10) codes, LOINC, phe-
code, Forge editor, FHIR
profiling, cross- validation,
chi-square distribution as-
sociated allelic P value,

and KSbu test

Mappings of report
data to 3 data ele-
ments (patient clinic
number, name, and
date of birth) and
mappings between el-

ements of PheWASbs

profile and FHIR

Mayo Clinic’s
UDP (a clinical
data warehouse)

Observation, ConditionZong et al
[36]

Intensive
care

Using OMOP CDM-
based MIMIC-III data
set for system evalua-
tion and comparing
patient counts identi-
fied over MIMIC
database and virtual

CKGbz

OWL, Protégé, FHIR

ShExbw, FHIR RDF,

VKGbx (also known as

OBDAby), MIMIC-OMOP
ETL tool, OMOP CDM,
Ontop toolkits, SQL, and
SPARQL

OMOP to RDF map-
pings and OMOP-
FHIR mappings

MIMIC-III data
set (OMOP
CDM-based)

Patient, Encounter, Lo-
cation, Condition,
MedicationStatement,
Observation, Procedure,
Practitioner, and Con-
ceptMap

Xiao et al
[37]
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Use caseValidation and evalua-
tion

Standards, tools, terminolo-
gies, and models

Data transformation
and mapping

Data sourceFHIRa resourcesStudy

Neonatal
bilirubin
management

Feasibility check by
clinicians

EHR web services, FHIR
services, Authorization
services, SMART-on-
FHIR, native EHR FHIR
APIs, SNOMED, and
LOINC

Local codes to
LOINC, local codes
to standard codes, and

QUICKca to different
FHIR versions and
profiles

Epic EHRPatient, Encounter, Ob-
servation, Procedure,
and Related Person

Kukhareva
et al [38]

aFHIR: Fast Healthcare Interoperability Resources.
bEHR: electronic health record.
cOMOP: Observational Medical Outcomes Partnership.
dPCORnet: Patient-Centered Outcomes Research Network.
eHL7: Health Level 7.
fCDR: Clinical Data Repositories.
gCDM: Common Data Model.
hi2b2: informatics for integrating biology and the bedside.
iMIMIC: Medical Information Mart for Intensive Care.
jNLP: natural language processing.
kCQL: Clinical Quality Language.
lcTAKES: clinical Text Analysis and Knowledge Extraction System.
mMedXN: Medication Extraction and Normalization.
nPheKB: Phenotype Knowledge Base.
oUIMA: Unstructured Information Management Architecture.
pLOINC: Logical Observation Identifiers Names and Codes.
qSNOMED CT: Systemized Nomenclature of Medicine–Clinical Terms.
rRxNorm: medical prescription normalized.
sATC: Anatomical Therapeutic Chemical.
tACP: Australian Colorectal Cancer Profile.
uCRF: case report form.
vUPD: Unified Data Platform.
wCAS: Common Analysis System.
xAI: artificial intelligence.
yETL: Extract, Transform, and Load.
zDHP: Data Harmonization Pipeline.
aaICD: International Classification of Diseases.
abXSLT: Extensible Stylesheet Language Transformations.
acPIT: Patient data Integration Tool.
adCDWH: Carolina Data Warehouse for Health.
aeGECCO: German Corona Consensus Dataset.
afICD-10-GM: International Classification of Diseases–German Modification.
agRDF: Resource Description Framework.
ahAUROC: Area Under the Receiver Operating Characteristic Curve.
aiAUPRC: Area Under the Precision-Recall Curve.
ajFSH: FHIR Short Hand.
akHAPI: HL7 application programming interface.
alED: emergency department.
amWBAN: Wireless Body Area Network.
anRDB: Relational Database.
aoFASTO: FHIR And Semantic Sensor Network based Type 1 diabetes Ontology.
apSSN: Semantic Sensor Network.
aqBFO: Basic Formal Ontology
arCPG: clinical practice guideline.
asOWL: Web Ontology Language.
atCDSS: Clinical Decision Support System.
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auPHR: personal health record.
avUoM: units of measurement.
awREST: Representational State Transfer.
axOAuth: open authorization.
aySPARQL: SPARQL Protocol and RDF Query Language.
azAPI: application programming interface.
baDMM: Dirichlet multinomial mixture.
bbCPT: Current Procedural Terminology.
bcUMLS: Unified Medical Language System.
bdSHC: Shriner’s Children.
bepsql: a terminal-based front end to PostgreSQL.
bfSMART: Substitutable Medical Apps and Reusable Technology.
bgSUS: System Usability Scale.
bhMCHHJ: Maternal and Child Health Handbook in Japan.
biCRMHIS: Common Requirements for Maternal Health Information Systems.
bjDAO: Data Access Objects.
bkBPMN: Business Process Model and Notation.
blJWT: JSON Web Token.
bmPCR: polymerase chain reaction.
bnAWS: Amazon Web Service.
boLDA: latent Dirichlet allocation.
bpGCN: graph convolutional network.
bqGRU: Gated Recurrent Unit.
brCNN: Convolutional Neural Network.
bsPheWAS: Phenome-Wide Association Studies.
btUML: Unified Modeling Language.
buKS: Kolmogorov–Smirnov.
bvIG: implementation guide.
bwShEx: Shape Expressions Language.
bxVKG: virtual knowledge graph.
byOBDA: Ontology-Based Data Access.
bzCKG: Clinical Knowledge Graph.
caQUICK: Quality Improvement and Clinical Knowledge.

Static Data Models
Static models do not follow a sequential or linear flow of data
processing; instead, they capture and integrate data in broader
aspects and mainly consider data mappings rather than the flow
of data. These models are more likely to focus on capturing
relationships between variables. They focus on the

representation and organization of data within the FHIR standard
without necessarily addressing the dynamic aspects of data flow
or processing. Out of 31 included articles, 6 (19%) studies were
related to the development of static data models. Table 2
summarizes the important information of the articles that
presented these data models.
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Table 2. Static models.

Use caseValidation and
evaluation

Standards, tools, termi-
nologies, and models

Data transformation
and mapping

Data sourceFHIRa resourcesStudy

Cancer sur-
vivorship

Mapping possibili-
ties check

SNOMEDc, and LOINCdMap data elements
to FHIR resources

Patient medical

records, PGDb
Observation, Device,
Questionnaire, Question-
naireResponse, Family-

González-
Castro et al
[10] (colon and

breast can-
cers)

MemberHistory, Allergy-
Intolerance, Patient, Pro-
cedure, MedicationState-
ment, Condition, and En-
counter

Cardiovascu-
lar

Expert panelCPOE, DigiSurvey plat-
form

Data elements to
FHIR

CPOEe systems,
Shafa Hospital (Ker-
man, Iran)

Patient, Observation,
Condition, Medication,
ServiceRequest, and
Practitioner

Montazeri
et al [39]

Family plan-
ning and sexu-

Iterative validation
of mappings to

ICD-10, SNOMED CT,

LOINC, RxNorm, IGj,

UMLSk, and IPSl

Data mappings to
FHIR and semantic
terminologies

(ICDg-10,

DAKf data dictionar-
ies that contain core
data elements for
recommendations

AllergyIntolerance, Ap-
pointment, CarePlan,
Communication, Condi-
tion, Consent, Cover-
ageEncounter, Healthcare-

Shivers et
al [40]

ally transmit-
ted infections

identify discrepan-
cies gaps, and er-
rors

SNOMED CTh,about family plan-
ning and sexuallyService, Medication,

MedicationAdministra- LOINC, and

RxNormi)
transmitted infec-
tionstion, MedicationState-

ment, Observation, Pa-
tient, Practitioner, Proce-
dure, and ServiceRequest

OncologyFHIR validator to
validate FHIR pro-
files

ICD-10, ICD-O-3o,

TNMp, Forge, Simplifier,
FHIR validator,

FHIR data elements
to corresponding

ADTn and ISO stan-
dard (11179-3
fields)

DKTKmPatient, Organization,
Condition, Clini-
calImpression, Ser-
viceRequest, Encounter,
Observation, Procedure,
and MedicationRequest

Lambarki
et al [41]

clinFHIR, LOINC,
ADT/GEKID schema,

and OIDq

Evidence-
based CPG

Implementation of
a recent COVID-

EBMonFHIR, CPGs-on-

FHIR, FSHt, SUSHIu,

Model’s items to
FHIR resources, in-
formation model to

Members of the
COVID-19 evidence
ecosystem project
(CEOsys)

Composition, Evidence-
Variable, PlanDefinition,
ActivityDefinition, Cita-
tion, ArtifactAssessment,
Evidence, and Group

Lichtner et
al [42]

recommenda-
tions, COVID-
19 intensive
care patients’

19 guideline recom-
mendation to evalu-
ate EBMonFHIR-
based guideline
representation

HL7v FHIR IG Publisher
tool, FHIR core artifacts,

GRADE EtDw frame-

work, PICOx framework,

EBMonFHIRr re-
sources

guideline
(evaluation
phase)

Cochrane PICO ontolo-
gy, SNOMED CT,

LOINC, ICD-10, ATCy,

UCUMz, CEOsys, FE-

vIRaa platform

Genetic labora-
tory tests

Not mentionedFHIR profiling, (FHIR

CG IG STU1ac)

Genetic laboratory
test reports to

KDEsab- KDEs to
FHIR specification

Sample reports from
ARUP laboratory
portal

Patient, Practitioner,
PractitionerRole, Organi-
zation, RiskAssessment,
Task, ServiceRequest,
MedicationRequest,

Khalifa et
al [43]

CarePlan, De-
viceRequest, Nutri-
tionOrder, SupplyRe-
quest, Questionnaire

aFHIR: Fast Healthcare Interoperability Resources.
bPGD: patient-generated data.
cSNOMED: Systemized Nomenclature of Medicine.
dLOINC: Logical Observation Identifiers, Names, and Codes.
eCPOE: computerized physician order entry.
fDAK: Digital Adaptation Kit.
gICD: International Classification of Diseases.
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hSNOMED CT: Systemized Nomenclature of Medicine–Clinical Terms.
iRxNorm: medical prescription normalized.
jIG: implementation guide.
kUMLS: Unified Medical Language System.
lIPS: International Patient Summary.
mDKTK: German Cancer Consortium.
nADT: Association of Comprehensive Cancer Centres (German).
oICD-O: International Classification of Diseases for Oncology.
pTNM: Tumor, Node, Metastasis.
qOID: object identifier.
rEBMonFHIR: Evidence-Based Medicine on Fast Healthcare Interoperability Resources.
sCPG: clinical practice guideline.
tFSH: FHIR Short Hand.
uSUSHI: SUSHI Unshortens Short Hand Inputs.
vHl7: Health Level 7.
wGRADE EtD: Grading of Recommendations Assessment, Development and Evaluation Evidence to Decision.
xPICO: Population, Intervention, Comparison and Outcome.
yATC: Anatomical Therapeutic Chemical.
zUCUM: Unified Code for Units of Measure.
aaFEvIR: Fast Evidence Interoperability Resources.
abKDE: Key Data Elements.
acFHIR CG IG STU1: FHIR Clinical Genomics Implementation Guide–Release 1.

Medical Use Case–Specific Summary of Papers
In this phase, we tried to maintain the medical domain
consistency in summarizing the articles, and there may be some
overlaps between the categories of each article’s health care
domain. In the following sections, the included papers are
summarized and ordered by specific medical use cases and
health care applications.

Chronic Diseases
A standard-driven methodology called Clinical Quality
Language (CQL) 4NLP was developed to integrate a collection
of NLP extensions represented in the HL7 FHIR standard, into
the CQL to enhance EHR-driven phenotyping. Using the FHIR
standard, specifically the FHIRPath system, enhanced metadata
handling and querying by allowing the integration of
NLP-derived metadata (such as hypotheticals and negation)
into queries. The use case of this research was obesity
comorbidities [20]. Another study in the obesity domain used
a normalization pipeline to automatically analyze and understand
the information in medical records. This FHIR-based approach
could detect different sections of medical records and identify
important concepts and states of obesity using discharge
summaries. The methodology enhanced precise data extraction
and portable EHR phenotyping [13]. A similar approach was
followed to conduct a case study with obesity data sets. The
objective was to predict this condition and the related
comorbidities. The sample of adults was categorized into 2
groups called obesity and nonobesity considering their BMI.
The design allowed the sharing of deidentified data because
only higher-level concepts from knowledge bases and clinical
ontologies were included in the FHIR components [35].

In another study, heterogeneous data from a pulmonary
hypertension registry were integrated into the Observational

Medical Outcomes Partnership–Common Data Model (OMOP
CDM) data standard. Common parameters were first identified
and mapped to Logical Observation Identifiers Names and
Codes (LOINC) and Systemized Nomenclature of
Medicine–Clinical Terms (SNOMED CT) as standard
terminologies. Extracted data in the form of FHIR bundles were
then transformed to OMOP CDM using the Extensible
Stylesheet Language Transformations (XSLT). The researchers
claimed that FHIR bundles and XSLT can be efficiently and
simply used as components of an Extract, Transform, and Load
(ETL) process, which can eventually increase data
interoperability and applicability [22]. The goal of another
research in this area was to map source variables and the value
sets to FHIR data elements. The researchers developed a tool
called Clinical Asset Mapping Program for FHIR to read
Common Data Models (such as informatics for integrating
biology and the bedside and Patient-Centered Outcomes
Research Network data models) and map the items to FHIR.
Using FHIR as a Common Data Model can enhance
collaboration, interoperability, and data sharing among health
care centers. The clinical use case in the mentioned study was
“Asthma” [23].

OMOP-on-FHIR is a technology to convert data elements in
OMOP CDM format to the FHIR standard. The researchers
used this framework to implement 2 apps to facilitate cohort
administration in the context of pediatric musculoskeletal disease
research. Accordingly, FHIR can facilitate data access from
OMOP CDM databases, support practical integration into health
care systems, and enable the development of interoperable
clinical applications [30]. For type 1 diabetes mellitus, research
presented an ontology-based Clinical Decision Support System
based on FHIR and Semantic Sensor Network-Based Type 1
Diabetes Ontology (FASTO). The researchers integrated the
FHIR standard, clinical practice guidelines (CPGs), Basic
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Formal Ontology, and Semantic Sensor Network and
implemented a cloud-based interoperable mobile health system
for monitoring and managing patients with this condition.
Broader adoption and seamless integration within existing EHRs
can be achieved through using FHIR and ontology semantics
[27]. A multimethod approach involving the development of a
Minimum Data Set for cardiovascular computerized physician
order entry was presented in another study. The researchers
identified and classified critical data elements by reviewing the
content of medical records and then mapped them to the FHIR
standard. The FHIR standard was used to maintain
interoperability between EHR and computerized physician order
entry, which can eventually avoid duplicate data entries and
redundancies [39].

COVID-19 and Infectious Diseases
In the context of COVID-19, clinical data across sites were
federated by maintaining a single master patient identifier and
consistent demographic information. In addition, this proposed
methodology was used to distribute data across networks and
maintain common data elements, such as mortality status and
social determinants of health data. In the aforementioned
approach, the data were loaded into an FHIR Clinical Data
Repository, which finally produced real-time linked repositories,
including FHIR, OMOP, and Patient-Centered Outcomes
Research Network. The researchers found that using FHIR as
the initial canonical data model and FHIR subscription protocols
for transformation and synchronization of multiple data models
has potential benefits for health care research, including the
automated creation of research data marts for COVID-19
research [9]. An interoperable platform based on the FHIR
standard was developed for convenient reporting and sharing
of the polymerase chain reaction SARS-CoV-2 tests across
countries. The aim was to create a Minimum Data Set for the
tests, followed by modeling associated processes and end points.
Implementation continued with standards and interoperability
design, software development, testing, and implementation [32].
Another COVID-19–related tool called StayHome was
developed for collecting patient-reported outcomes. This
reusable mobile app was designed to collect COVID-19
symptoms and share them with health care organizations. The
FHIR standard was used to ensure interoperability [33]. In
another study on COVID-19, the automatic generation of
research ontologies through a terminology server and FHIR
profiles was analyzed. The researchers also investigated the
process of translating user inputs into FHIR queries. On the
basis of the results, it is possible to automatically generate
mapping files and ontologies for FHIR-based data and profiles
[24]. FHIR-based and evidence-based CPG recommendations
for patients with COVID-19 were outlined in another approach.
Iterative consensus-based mapping of model elements and links
to FHIR correspondences along with modeling of
recommendations were covered in the mentioned framework.
According to the CPG-on-FHIR architecture, the generated
guideline recommendations were represented using FHIR
profiles. Using this FHIR-based architecture facilitates the
creation of computerized guidelines and their seamless
integration into EHR systems [42]. In the fields of family
planning and sexually transmitted infections, the researchers

structured data dictionaries to improve the mapping procedures
to FHIR and multiple terminologies, such as the International
Classification of Diseases 10th Revision. The corresponding
FHIR resources and codes were then identified and mapped to
each data dictionary term. The goal was to prepare inputs
(mappings and data dictionaries) for an implementation guide
(IG) generation tool and enhance the creation of
machine-interpretable guidelines [40]. To clarify, FHIR IG is
a collection of guidelines and rules designed to facilitate the
adaptation of profiles to align with specific care contexts and
promote the standardization of information exchange [44].

Cancer Research
In the context of research in cancer clinical trials, FHIR-based
pipelines can be used to automatically populate the case report
forms (CRFs). The Electronic Data Capture framework was
developed in a study to model colorectal cancer trials as a case
study. With this strategy, real-world trials can be supported
using EHR data [21]. Classification of cancer types and
prediction of cancers from unknown primaries were the aims
of another research in this field. In the mentioned study [25],
genetic data elements (from the oncology reports of patients
with cancer) and the associated phenotyping data (from an EHR)
were extracted. Researchers presented a network-based
infrastructure that modeled the EHR and genetic data with FHIR
and Resource Description Framework (RDF) to enhance cancer
prediction. In this respect, the performance of different machine
learning and deep learning techniques was compared and
analyzed [25]. In a paper related to colorectal cancer, data
elements were extracted from the CRFs of cancer clinical trials
using a data population application. The information was then
mapped to an equivalent element in the FHIR cancer profile
[28]. An interactive statistics and analysis platform called Shiny
FHIR was implemented for ovarian cancer. The system included
related R packages (R Foundation for Statistical Computing),
FHIR resources, and Shiny (a web application framework). In
the FHIR data modeling phase, the ovarian cancer data elements
were mapped to corresponding FHIR resources. On the basis
of the findings, Shiny can be used in parallel with FHIR to
perform interactive analysis [29]. Another interoperable data
model called Cancer Survivorship Interoperable Data Elements
(CASIDE) was developed in the context of cancer survivorship.
The researchers defined data elements and then mapped them
to the corresponding FHIR resources. Patient information was
illustrated by a collection of FHIR resources to enhance
secondary use and sharing of medical data. The research
declared the benefits of using FHIR-based models in conjunction
with machine learning techniques. In addition, data entry tools
can be seamlessly integrated with FHIR-based EHRs [10]. A
harmonized data model was also developed in the context of
cancer research based on FHIR. German cancer care providers
are generally required to report patient data to cancer registries
using a specific schema called ADT/GEKID. Therefore, in the
mentioned research, the XML representation was compared to
the extended version in the German Cancer Consortium
(DKTK), and a codification of the cancer life cycle was created.
The DKTK FHIR-based data model was represented, and the
FHIR resources were identified. Other oncology FHIR profiling
efforts were analyzed for reuse in DKTK. It was proved that
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multiple health care domains can be efficiently modeled using
the FHIR standard and that using embedded mapping
annotations, FHIR can be smoothly integrated with other
standards [41]. The integration of genetic data from
heterogeneous sources, including EHR data and genetic reports,
was provided using another FHIR-based data model. The
objective was to enable the validation of the Phenome-Wide
Association Studies results across different institutions using
the FHIR-based data profile. The researchers used the developed
model to identify cancer genotype-phenotype associations,
followed by validation of the associations according to a
literature review [36].

Random and General Medical Notes
The modeling capability of a data normalization pipeline
(NLP2FHIR) was assessed in a study focusing on core clinical
resources and unstructured EHR data. The researchers attempted
to integrate the unstructured elements to develop an FHIR-based
model that successfully standardized the annotated corpora [14].
Another framework was designed to integrate unstructured and
structured data into an interoperable format by implementing
an NLP-based pipeline using the FHIR-type system. On the
basis of the results, the model facilitates the integration of
NLP-driven EHR data into a standard FHIR format, supports
diverse NLP tools, and provides strong extension capacities
[12]. A framework presented in another research for
standardizing heterogeneous annotation corpora included 2 main
modules (automatic schema mapping module and expert-based
annotation and verification module). The system used annotated
clinical notes and proved that using FHIR with this kind of
heterogeneous data can enhance data reuse as well as integration
in medical NLP research [16]. A data model in the context of
secure patient messages was developed based on FHIR concepts
(related to base, foundation, clinical, and financial categories).
The objective was to define significant information contained
in these sources. After annotating the sentences and creating a
huge corpus, the researchers extracted hidden topics related to
3 microconcepts (fatigue, patient visit, and prednisone as highly
discussed topics) through topic modeling. The presented data
model could distinguish critical concepts in messages and can
be used to identify other narratives on multiple platforms [34].

Acute or Intensive Care
In the field of intensive care, researchers aimed to convert the
Medical Information Mart for Intensive Care (MIMIC)-IV
database elements to FHIR. This database contains patient data
from intensive care departments. To support the use of
MIMIC-IV on FHIR, a resource demo and a FHIR IG were also
created. The benefits of using the FHIR data model are claimed
to be its extensive details, which facilitate mappings and
conversions of data elements [26]. A FHIR Data Harmonization
Pipeline was developed in another study based on an ETL
framework. The harmonization of EHR data was performed in
5 phases, including querying the hospital database, mapping
the retrieved data to the FHIR format, validating the mapping,
transferring the FHIR resources to the patient model database,
and exporting the data to the JSON format. Consequently, raw
clinical records were transformed into AI-friendly and
harmonized representations of data because the hierarchical

structure of FHIR may not be sufficiently accessible and
standard for AI frameworks. The data could then provide the
fast and generic integration of cohort identification methods,
facilitating big data processing [15]. In an application for the
management of bilirubin in neonates, custom FHIR interfaces
were included. After extensive intrainstitutional use, several
strategies were explored to modify the app for cross-institutional
transfer. Adapting the app for cross-institutional dissemination
included clinician-specific implementation using custom FHIR
application programming interfaces (APIs), gathering user
feedback, differentiating functionality based on FHIR
capabilities, implementing gradual replacement with native
FHIR interfaces, and using the HL7 Quality Improvement and
Clinical Knowledge (QUICK) logical data model for mapping
to different FHIR versions and profiles [38]. The QUICK model
encapsulates specific details of FHIR (eg, the differences
between elements and extensions), enabling a more focused
approach to the attributes and classes. This allows for the logical
data model specifications to be identified with greater clarity
[45]. Another research focused on knowledge graphs (KGs) and
semantic modeling. In the mentioned research, the relational
databases of the OMOP were used to develop the
FHIR-Ontop-OMOP system. The aim was to generate virtual
KGs from the databases. The generated KGs were evaluated
for the accuracy of data transformation and compatibility with
FHIR RDF using an intensive care data set (including
medications, vital signs, observations, survival data, and so on).
This semantic system could fully represent an OMOP database
as an FHIR-compliant representation using KGs, thus enhancing
the interoperability of OMOP CDM and FHIR [37].

Other Conditions
A study aimed at implementing a maternal health record system
with a data access model based on RESTful web services. In
the proposed data model, important data elements were mapped
to FHIR resources. Maintaining the related data as FHIR
resources enhanced interoperability, efficient data exchange,
and evidence-based decision-making [31]. Another article dealt
with genetic laboratory tests. The researchers aimed to map the
test elements to FHIR format based on an IG. FHIR clinical
genomic IG is a beneficial and almost comprehensive tool for
sharing genetic test results [43].

Technical Approaches

Overview
Concerning developing data models or infrastructures using the
FHIR standard, several tools have been used in the reviewed
research articles. This section summarizes the important or
common tools and approaches. These items include FHIR-based
tools and frameworks, machine learning approaches, and data
storage and security.

FHIR-Based Tools and Frameworks

NLP2FHIR Pipeline

In the field of NLP, there is a FHIR-related clinical data
normalization pipeline called NLP2FHIR for EHR data
modeling. This pipeline can be used to standardize and integrate
structured and unstructured data stored in EHRs. In other words,
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it can make unstructured EHR data consistent and integrate it
with structured data. This procedure facilitates portable
EHR-driven phenotyping and large-scale data-driven analytics.
Several studies used NLP tools as part of the data model’s
implementation. The NLP2FHIR pipeline was used in 5 articles
[13,14,20,25,35]. As shown in Figure 2, this pipeline receives
the EHR data in various formats (structured, semistructured,
and unstructured) as input. The pipeline itself uses the
FHIR-type system as well as NLP tools. The binaries required

to run this pipeline are MedTagger, clinical Text Analysis and
Knowledge Extraction System (cTAKES), MedTime,
Medication Extraction and Normalization (MedXN), and Unified
Medical Language System Vocabulary and Terminology
Service. The raw clinical data are then transformed into FHIR
bundles. Phenotypes can be created based on FHIR bundles,
and finally, the FHIR-based data are easily integrated into EHR
systems [46].

Figure 2. NLP2FHIR data normalization pipeline and its applications [46]. cTAKES: Clinical Text Analysis and Knowledge Extraction System; EHR:
Electronic Health Record; FHIR: Fast Healthcare Interoperability Resources; MedXN: Medication Extraction and Normalization; ML: Machine Learning;
NLP: Natural Language Processing.

To elaborate more, MedTagger is an open-source NLP pipeline
that underpins the implementation and handling of unstructured
clinical data. The system differentiates between general NLP
processes and task-specific NLP knowledge, enabling experts
to directly encode clinical information using relevant terms and
phrases [47]. cTAKES is another open-source NLP system that
extracts free-text and narrative information from EHRs and
enables semantic processing of this information. It is developed
based on the OpenNLP toolkit and a framework called
Unstructured Information Management Architecture [48].
MedTime is a hybrid framework containing both machine
learning and rule-based approaches for the extraction of
temporal information from unstructured clinical text. This
system has a high performance in recognizing temporal
expressions and clinical incidents [49]. MedXN is a system for
extracting pharmaceutical information from clinical notes,
making it compatible with RxNorm representation with high
accuracy [50]. Unified Medical Language System Vocabulary
and Terminology Service enables the interaction of the Unified
Medical Language System and the different source vocabularies
[51].

Using this pipeline, the data contained in discharge summaries
can be transformed into FHIR resources [13]. In addition,
normalization and mapping rules as well as NLP-based FHIR
extensions can be implemented through NLP2FHIR. It is proven
that this pipeline can be a practical tool for modeling
unstructured data to eventually integrate the structured elements
into models [14]. When NLP-derived artifacts are stored as
FHIR extension metadata fields through NLP2FHIR, these

elements can be seamlessly incorporated into queries. This
integration supports more comprehensive and precise querying
by including clinically relevant metadata extracted from
unstructured data [20]. In a study conducted by Zong et al [25],
each entry in family history records was processed by the
NLP2FHIR pipeline, which involved identifying and
normalizing medical concepts with MedXN, cTAKES, and
MedTime tools. Liu et al [35] followed a workflow of tokenizing
documents from 2 data sets and improved the embedding
performance by preprocessing (eg, removing less frequent words
as well as stop words). The JSON-formatted FHIR resources
from the NLP2FHIR pipeline were then transferred into
token-like representations categorized into FHIR resources and
bundles. cTAKES was also used for concept normalization. The
researchers compared the performance of models based on the
information in this pipeline with models with original texts.

Substitutable Medical Apps, Reusable Technology–on-FHIR

This specification can be used for data and security requirements
for health-related applications. Substitutable Medical Apps,
Reusable Technology (SMART)-on-FHIR defines a workflow
of secure requests for data access, as well as receiving and using
that data [52]. In other words, this specification is a framework
that includes web standards that are used to define health
applications based on the FHIR-based data stored in an FHIR
server. Marteau et al [30] developed a SMART-on-FHIR
application, including a query and an upload page to enhance
data organization and accessibility. The research highlights that
clinicians and health care professionals can query health care
applications through FHIR APIs [30]. The applications
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containing SMART-on-FHIR can interact and integrate with
EHR systems through APIs and provide efficient “plug and play
interoperability.” Kukhareva et al [38] discussed the balance
between portability and functionality of SMART on the FHIR
applications and how the developers should consider this
balance. A comprehensive approach with the integration of
user-centered and technical methods is needed to optimize this
balance.

Evidence-Based Medicine–on-FHIR and CPG-on-FHIR

Evidence-Based Medicine–on-FHIR (EBMonFHIR) is a
knowledge asset project on FHIR resources for EBM. The
objective of EBMonFHIR is to offer interoperability for people
who generate, analyze, synthesize, disseminate, and implement
clinical evidence and CPGs [53]. CPG-on-FHIR is an IG that
uses FHIR resources to build computable and interoperable
representations of clinical guideline contents [54]. Lichtner et
al [42] developed an IG that used the resources developed by
EBMonFHIR to represent primary evidence and the
evidence-to-decision process. These resources were eventually
integrated into the CPG-on-FHIR framework. Both
EBMonFHIR and CPG-on-FHIR are supported by the HL7
Clinical Decision Support staff and represent different aspects
of evidence-based guideline recommendations. The former
focuses on the justification aspects of the recommendations,
while the latter focuses on the implementation aspects of the
recommendations.

clinFHIR

clinFHIR is a web-based, open-source educational environment
that also allows developers to create or search FHIR-based
resources [55]. ClinFHIR graphBuilder is used to model the
relationships between resources. This tool also assembles
resource instances into a graph with related resources to specify
a scenario using FHIR [32]. Accordingly, the structure of models
can be visualized using clinFHIR software [41].

HL7 Application Programming Interface FHIR

HL7 API (HAPI) FHIR is a comprehensive implementation of
FHIR in the Java language [56]. The API is available for both
FHIR clients and servers [57]. Several studies used HAPI FHIR
in the data model implementation process. Bennett et al [26]
used the HAPI FHIR server in the process of validation, bulk
export, and writing data to NDJSON files. Hong et al [29] used
the API to put ovarian cancer data into FHIR resources. They
also used the client API to upload structured FHIR data elements
to the FHIR server. HAPI was one of the test servers that was
used to assess data quality and server stability. The API can
also be used in the NLP domain. Hong et al [16] used HAPI
FHIR for annotation serialization; they converted the annotations
to FHIR XML and JSON formats that were eventually
represented in an FHIR-consistent format. The HAPI FHIR
resource validator API was also used to validate the resources
for compliance with the FHIR specification. In the model
presented by Guinez-Molinos et al [32], the HAPI FHIR
database was used to store resources, and the HAPI server was
responsible for the interoperability layer of the model. The HAPI
libraries were also used to construct resources, messages, and
end points. For persistent storage of FHIR-based data and as an
API server, Burkhardt et al [33] used HAPI FHIR V4.2.0. HAPI

generally offers standard functionalities, such as create, read,
update, and delete APIs, along with specialized domain-specific
tools, including CQL. This capability enables developers to
concentrate more on the specific needs of their app.

Machine Learning Approaches
Apart from the use of the NLP2FHIR pipeline discussed in the
previous section, some other articles used simple NLP tools and
algorithms to convert unstructured data into structured data
elements adhering to a specific schema for better data
description [21]. Hong et al [12] used Unstructured Information
Management Architecture NLP tools such as MedXN and
MedTime in the normalization phase to enhance interoperability.
MedXN was used to extract medication extraction concepts,
and MedTime was used to extract FHIR-defined temporal
elements. Separate NLP extraction modules were developed to
extract information directly from free text for those entities that
cannot be extracted by current NLP tools. In a classification
system developed by Hong et al [13], 4 machine learning
algorithms, including support vector machine (SVM), random
forest, logistic regression, and decision tree, were implemented
to train the classifiers of the disease prediction module; the
features that were used by the system were extracted from FHIR
resources as well as terminology extensions. Among all
methods, the random forest approach had the best performance.
Zong et al [25] analyzed some deep learning and machine
learning backbone models to compare the performance of cancer
prediction. The bag of features (or bag of words) was used in
their research based on the values of attributes in the FHIR
model. A graph embedding method called Node2vec was used
to learn the patient’s features (a vector). Generally, 3 methods
of feature generation were compared, including the bag of
features, Node2vec, and the bag of features combined with
Node2vec. Moreover, 7 classification algorithms were analyzed
and compared (random forest, logistic regression, naive Bayes,
deep neural network, SVM, graph convolutional network
[GCN], and convolutional neural network). Node2vec+bag of
features and random forest classifier showed the best
performance. To analyze the potential of integrating the
unstructured FHIR data representations into deep learning
methods, Liu et al [35] used Gated Recurrent Unit, CNN, Text
GCN on NLP2FHIR inputs, and raw text. The results highlighted
that the best performance was achieved by using the Text GCN
classifier in NLP2FHIR input. Therefore, this combination can
enhance interoperable EHR phenotyping.

In the data model presented by Zong et al [28], NLP tools were
used to provide structured data for the ETL process from
unstructured data (such as surgical reports). To cluster each
patient in the patient subgrouping process, a model called
Dirichlet Multinomial Mixture was used. In the Dirichlet
Multinomial Mixture model, one document represents a single
topic, which makes it suitable for clustering short texts. The
genetic relationship extractor that was developed by Hong et al
[16] used SVM as a learning model; the goal was to extract the
“FamilyMemberHistory.relationship” FHIR element. Eventually,
the NLP performance of the corpora was analyzed. On the basis
of the results, an NLP engine can be developed on a pooled
corpora that offers enough annotations to train a model. To learn
the concealed topics of patient messages, De et al [34] used
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latent Dirichlet allocation, an unsupervised topic-learning model.
It was claimed that latent Dirichlet allocation is effective in
finding common topics with well-known terms but, at the same
time, tends to overlook less frequent yet important topics in
patient messages.

Data Storage and Security
Several studies used PostgreSQL (also known as Postgres) as
the database management system [15,26,30,33]. This system is
an SQL-based open-source relational database management
system that is compatible with JSON document storage. In the
study of Williams et al [15], data storage was based on FHIR
resource type, and each resource was mapped to a separate
JSON structure. Bennett et al [26] used the MIMIC-IV database;
the data contained in the data source was loaded into Postgres
and the HAPI FHIR server. The data elements were then mapped
to JSON within that system. The research indicated a substantial
increase in storage requirements when data is converted to FHIR
and further when inserted into HAPI FHIR. Specifically, the
HAPI FHIR format required significantly more storage space
compared to the basic relational structure. To store the “OMOP
CDM database” generated by the Synthea synthetic patient
generator, Marteau et al [30] used Postgres. The database was
then modified to incorporate additional data needed for
OMOP-on-FHIR. A PostgreSQL client application (psql) was
subsequently used to interact with the database.

Burkhardt et al [33] also used this system along with the Apache
web server in their proposed architecture. By contrast, Ismail
et al [31] used MongoDB (NoSQL, or nonrelational data
storage) for efficient data record manipulation processes.
MongoDB can conveniently handle JSON structure, which is
the format of the FHIR resources sent and received by servers.
Using MongoDB provides a straightforward transformation of
JSON objects into JSON documents, making storage and
management more efficient. The database can handle FHIR
resource searches based on specified criteria. This is facilitated
by the MongoDB Data Access Object component that is
responsible for validating the JSON strings received from
clients.

Some researchers implemented OAuth for security purposes
[27] and used Keycloak as an identity provider [33]. JSON Web
Token was also used in other studies [32,33] to provide
authentication services. This token securely shares information
between end points by a JSON object.

Resource Frequencies
Table 3 illustrates the frequency of each resource in the included
articles. It should be mentioned that in this section, we only
discuss the official base FHIR resources, and the items mainly
considered as profiles, extensions, or domain-specific resources
are not illustrated here (eg, “LabTest, Imaging, Referral, Risk,
CoverageEligibility, ClaimPayment, ProcedureRequest, Dosage,
and DeviceUseStatement” [27,34,38,40]).

Table 3. Frequency of Fast Healthcare Interoperability Resources (FHIR) resources mentions in the included articles (n=31).

Articles, n (%)FHIR resources

21 (68)Observation

19 (61)Condition

18 (58)Patient

16 (52)Procedure

11 (35)Encounter

10 (32)MedicationStatement

8 (26)FamilyMemberHistory and Practitioner

7 (23)MedicationRequest and Medication

5 (16)Composition and CarePlan

4 (13)MedicationAdministration, Questionnaire, AllergyIntolerance, Organization, and ServiceRequest

3 (10)QuestionnaireResponse, DiagnosticReport, Specimen, RelatedPerson, Device

2 (6)ValueSet, Immunization, AdverseEvent, Location, NutritionOrder, Communication, Consent, HealthcareService, and
Appointment

1 (3)CodeSystem, MedicationDispense, Goal, EpisodeOfCare, CareTeam, DocumentReference, BodyStructure, Explana-
tionOfBenefit, Account, Coverage, ClinicalImpression, EvidenceVariable, PlanDefinition, ActivityDefinition, Citation,
ArtifactAssessment, Evidence, Group, Bundle, ConceptMap, PractitionerRole, RiskAssessment, Task, DeviceRequest,
and SupplyRequest

Publication Distribution
Figure 3 illustrates the distribution of included studies according
to the publication year. As shown in the figure, the year 2021
encompassed the highest number of publications.
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Figure 3. Yearly distribution of reviewed articles.

Limitations and Challenges of Developing Data Models

Overview
Data model development can present many challenges and
constraints arising from issues of data integration,
interoperability, standardization, performance, scalability,
generalizability, etc. In this section, we discuss the significant
challenges and limitations identified in the reviewed papers,
which researchers should take into account when developing
FHIR-based data models and architectures. It is worth noting
that there would be overlaps in the categorization of limitations
and challenges.

Data Integration
It is the process of combining data from multiple sources and
creating a unified data set. The initial stage of working on data
analysis, reporting, and forecasting is data integration [69].

Regarding data integration, the problems mentioned in the
analyzed papers include requiring some manual ETL processes
[9], manual download of FHIR resources [12], reproducibility
issues [20], maintaining robustness [9,20], using only 2 data
sets and information loss [13], challenging content normalization
[14], single CRF with limited data elements and inadequate
questions [21], quality and completeness of the database
documentation and nonautomatic concept recognition and
considerable data preparation process [15], using incomplete
synthetic database [30], no data curation during transformation,
bias in database [26], storage space costs [26,33], maintaining
inadequate aspects of data [27], synchronization issues and
hard-coded mapping [22], privacy and confidentiality issues
and limited corpora reuse [16], ignoring continuous changing

of values over time [25], lack of comprehensive use of health
care records due to lack of education and awareness [31],
mapping rules based on only 2 use cases and not including
information about generic data [10], manual FHIR mapping
and reviewing data of only 1 setting [39], the requirement to
implement a structured information model to an existing data
dictionary [40], issues with ADT data set as a national reference
(completeness and accuracy) [41], and no robust mapping [37].

Interoperability
Interoperability issues are related to the limitations in the
seamless transfer and exchange of information between medical
systems or applications [70].

Interoperability issues mentioned in the papers include
reproducibility concerns [20], organizational interoperability
issues [24], privacy and confidentiality issues [16],
synchronization issues and hard-coded mapping [22], no
evidence to attain a balance of functionality and portability and
dissemination barriers due to development and integration costs
[38], and extra mapping effort, which affects flexibility and
adaptability of the framework [36].

Data Standardization
It is a crucial step in transforming data into a uniform format
to enable the shared use of advanced tools and techniques,
large-scale analytics, and collaborative research [9,71].
Therefore, standardization issues are related to challenges in
attaining standard and consistent data representation across
different medical systems.

The issues that could be categorized into the data standardization
challenges include difficult rule-changing in compiled java code
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for data transformation [9]; semantic gaps between NLP
system’s data model and FHIR specification [14]; no adequate
standardization [12]; mapping accuracy issues [15]; handling
valid source system data with no match in FHIR [23]; SNOMED
CT postcoordination limitations [24]; not mapping to the US
Core as standard ontology, not mapping other databases linked
to MIMIC-IV, and not covering some clinical modifiers and
qualifiers by FHIR redefinitions [16]; SNOMED coverage
restrictions [10]; manual FHIR mapping [39]; duplication of
the mapping terms and the necessity to assess the need for a
new FHIR profile versus continuing with the existing one [40];
LOINC codes for some observations (SNOMED could be used
instead), no available code systems for many value sets, and
lack of ubiquitous adoption of FHIR profiles due to the issues
with SNOMED license [41]; requiring constant synchronization
to the updates because the model was based on EBMonFHIR
resources (have low maturity level and subject to changes) and
impossibility of showing all guideline information in the FHIR
resource format [42]; no textual structure due to lack of gold
standard labels, not using syntax-based features for semantic
representation, and elimination of some contextual information
[35]; translation issues (from OMOP to preferred code systems
of FHIR) [37].

Performance
Performance issues are related to obstacles in the efficient
processing and retrieval of data that can compromise system
performance, for example, the data are not processed within an
acceptable response time [72].

According to the analyzed papers, performance issues include
integration speed limitations due to transactional EHR [9],
performance limitations [13], lack of sophisticated evaluation
method [21], limited implementation assessment [30],
performance validation issues and no validation for real
questions [28], technical challenges [29], model’s limited
functionality and lack of comprehensive specification [10], no
evidence to attain a balance of functionality and portability [38],
reduced response rate due to using a web-based questionnaire
[39], no execution engine available for representation format
[42], evaluation and validation [34], performance rate lower
than others and low F1-score [35], evaluation issues (one
instance of MIMIC-III OMOP CDM, no rigorous evaluation)
and no comprehensive assessment [43].

Scalability
Scalability limitations can be considered as the data model’s
weakness in handling increasing data volume or workload.

Generalizability
Generalizability problems are challenges in the applicability of
the data model to other aspects or settings.

Considering the selected papers, scalability and generalizability
limitations include few resources being used [15]; limited
corpora reuse [16]; not enough compatibility and generalizability
experiments [15]; not using a real environment [27]; possible
bias when conducting a similar study and challenging
generalizability for other types of a disease (in this case other
cancers) [28]; restriction in the adaptability of the

best-performing prediction model and requiring more complex
methods to empower prediction and cover diversity [25]; the
generalizability issues of the platform [32]; no broad adoption
of the app due to issues related to resources and expertise, the
best performance for specific programs [33]; few data models
are used with no exhaustive evaluation [35]; low contribution
to the medical field, failure to distinguish differences in genetic
data, low resources for evaluation, and lack of comprehensive
data modeling comparisons [36]; and not studying other test
types and small sample size [43].

Discussion

Principal Findings
In this review, we aimed to provide a comprehensive
PRISMA-based overview of data models using FHIR in the
context of interoperability, structure, and functionality and
summarize the state of the art for developing FHIR-based data
models. In addition, we highlighted limitations, challenges,
advantages, and opportunities brought about by FHIR data
models. On the basis of the reviewed papers, the most common
resources were from the “Clinical” (Observation and Condition)
and “Base” (Patient resource) categories of FHIR resources. To
develop the models, researchers focused more on the use cases,
such as chronic diseases, cancer, COVID-19 and infectious
diseases, and intensive care. The reason may be the availability
of data in these fields. For instance, Mayo Clinic’s clinical data
warehouses provide cancer data for researchers. Moreover, i2b2
and MIMIC offer health care data sets about chronic diseases
such as obesity. MIMIC-IV on FHIR is also accessible for
research in critical care, which provides deidentified FHIR-based
data [26].

In terms of limitations, data integration issues are among the
most significant challenges in developing data models. The
necessity for manual ETL processes, the potential for
information loss, and the use of constrained and incomplete
data sets can impede the data integration process. Furthermore,
organizational differences and hard-coded mappings complicate
the seamless exchange of data, affecting interoperability. Issues,
such as speed limitations and a lack of robust evaluation metrics,
negatively impact performance. In addition, scalability and
generalizability are further hindered by limited resources,
insufficient compatibility experiments, and small sample sizes.

However, apart from the limitations and challenges, there are
numerous advantages to using FHIR-based data models. This
standard uses a set of resources and attributes (either common
or unique) that enhance data modeling procedures. Constraining
the attributes based on an adaptation of clinically relevant
ontologies, such as International Classification of Diseases,
Ninth Revision (ICD-9), and International Classification of
Diseases, Tenth Revision (ICD-10), LOINC, and SNOMED
CT, is done through common data types (eg, codeable concepts
and string). FHIR can be integrated with other data models,
such as RDF, to provide a network-based model for disease
prediction. It also supports feature generation and network
population in these frameworks [25].
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The use of the FHIR models provides the potential to
significantly enhance the efficiency and effectiveness of health
care research [9,15,29]. CRFs can be automatically populated
with FHIR-based EHR data [21], and this automation can
identify patient subgroups by topic modeling [28]. EHR data
can also be harmonized and mapped to FHIR elements to
enhance interoperability and quality of care [15]. Therefore,
accessing health-related data for research would be more
efficiently achieved when the data are in the FHIR format.
Researchers and practitioners can access FHIR app galleries
through FHIR APIs and SMART-on-FHIR applications, which
can promote health care research and quality of care. FHIR also
enables health care professionals to create use case–specific
and customized applications [30]. However, implementing
SMART-on-FHIR apps poses multiple dissemination challenges
and barriers because FHIR-based APIs are not generally
considered in the initial stages of implementation in some EHRs
[38]. By contrast, as more EHRs choose FHIR as a data
exchange standard, nonacademic health care settings will also
tend to produce FHIR-formatted data with their EHR systems
using FHIR APIs [23]. Maintaining health care data in the
format of FHIR resources and using RESTful APIs provide
more efficient data transmission compared to conventional
record-keeping methods [31].

Another possibility is to use patient messages in web-based
portals for health care research. In this respect, a FHIR data
model can be developed to extract essential information and
concepts from this type of data; FHIR is a beneficial option
because it encapsulates modular actions and concepts in health
information sharing [34]. Moreover, FHIR exports of local data
repositories increase data interoperability for systems and data
warehouses [22]. Using FHIR ensures standardized data
representation, supports data quality through validation tools
(eg, IGs and FHIR specifications), offers flexible adaptation,
and benefits from strong community support [35]. The transition
of traditional medical guidelines to machine-readable FHIR IGs
is a sophisticated and advancing process and needs validation
approaches. These use case–specific IGs can eventually enhance
real-world application and interoperability of the clinical
guidelines [40], considering the constant feedback and inputs
from related health care communities [43]. Furthermore, it is
crucial to thoroughly follow domain-specific FHIR IGs to gain
optimal semantic interoperability. However, even with this
guidance provided by IGs, developers still have to make
numerous representation and implementation decisions, which
may not always be ideal [33].

Evidence-based and computer-interpretable guidelines can be
developed using structured data from frameworks’ evidence
and reviews, followed by mapping the derived items to
EBM-on-FHIR resources. This approach aligns with the
CPG-on-FHIR framework and includes FHIR profiles and IGs
[42].

On the basis of the results of a research paper on using the FHIR
standard in oncology, specific health care domains can also be
modeled with minimal gaps between FHIR and other standards
using annotations of embedded mappings [41]. In addition, in

the field of EHR phenotyping and data capture, using
FHIR-based data normalization pipelines is considered valuable
and beneficial [13]. Using FHIR-based NLP extensions and
FHIR composition resources represents NLP components in
phenotyping algorithms [20]. Inherently, as mentioned earlier,
FHIR resources have granular and atomic characteristics that
enable them to share only the required elements for specific use
cases and purposes rather than a wide range of elements. This
feature is useful for developing specialized AI platforms and
interpreting machine learning algorithms [10]. By contrast, this
multilayer and complex structure of FHIR may cause some
accessibility issues for AI algorithms. To be useful for AI, FHIR
data often need to be transformed into a simpler format with a
higher level of abstraction, making it more compatible with
typical data preprocessing tools. This transformation seems to
be necessary to make the data more manageable and easier to
analyze by AI systems [15].

Using machine learning algorithms and NLP models is
advantageous when integrating with FHIR data models and
structures [12] in cases such as standardizing heterogeneous
corpora [16]. FHIR modeling for EHR data enhances data
integration, data transmission, translational research, and
phenotyping [12]. Similarly, the NLP2FHIR pipeline can be
used to enhance the standardization of unstructured EHR data
[14]. The researchers illustrated how deep learning models can
be effectively transferred and used across different settings or
systems when dealing with data that have been processed using
NLP2FHIR representations. This pipeline performed better in
text classification in comparison with models using original
texts [35].

Limitations
This review has some limitations. First, we focused only on the
articles that dealt with specific use cases with real-world data.
By contrast, this approach enabled us to gain insight into the
practical applications of the subject matter in real-world contexts
rather than merely theoretical ones. In this review, we may have
some generalizability issues or biases, especially in the resources
and methodologies used and with ontological, general, and
theoretical data models. Second, we did not analyze articles
published in languages other than English, so we potentially
missed some articles due to this criterion. Third, because we
did not thoroughly analyze the gray literature and preprints, and
due to the relatively small number of included articles, some
results may not be generalizable to the entire field of FHIR data
modeling.

Comparison With Prior Work
There are some valuable review studies considering the FHIR
standard (Table 4). In a scoping review, Balch et al [58]
investigated machine learning–based clinical information
systems that used the FHIR standard. The focus of the review
was to analyze analytics and data management platforms,
CDSSs, and APIs and assess the systems’ functionalities as well
as strengths and weaknesses. Then, the researchers proposed a
clinical structure that integrated FHIR and machine learning
techniques.
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Table 4. The summary of previous reviews considering FHIRa.

Items included in the reviewTitleStudy, year

Machine Learning–Enabled Clinical Informa-
tion Systems Using Fast Healthcare Interop-

Balch et al [58],
2023

• Investigation of FHIR-based systems using machine learning methods focusing

on decision support, data analytics, and APIsb

erability Resources Data Standards: Scoping
Review

• PRISMA-ScRc guideline’s steps
• Categorization of the articles based on functionalities, limitations, and strengths
• Proposing a machine learning–based system using FHIR

Designing Interoperable Health Care Services
Based on Fast Healthcare Interoperability
Resources: Literature Review

Nan and Xu
[59], 2023

• Reviewing FHIR-based studies about interoperable health services
• Study year and country distributions and charts
• Flowchart of paper selection
• Clinical categorization of studies and corresponding FHIR resources
• Data model migrations to FHIR
• Data management methods
• Data integration modes
• Presenting a FHIR practice design and its development architecture
• Commonly used tools

Interoperability of Clinical Data through
FHIR: A review

Pimenta et al
[60], 2023

• Some selected examples and applications of FHIR (data standards, analysis,
API implementations, and research)

• PRISMAd chart

The Fast Health Interoperability Resources
(FHIR) Standard and Homecare, a Scoping
Review

Pavão et al [61],
2023

• Home care research studies focusing on FHIR
• Screening and inclusion details
• FHIR resources
• Technological tools in the implementation phase
• Privacy and security measures

The Fast Health Interoperability Resources
(FHIR) Standard: Systematic Literature Re-

Ayaz et al [62],
2021

• Focusing on FHIR and EHRe; all articles dealt with FHIR related to research
questions

view of Implementations, Applications,
Challenges and Opportunities

• Screening and inclusion details
• Study year, type, and country distributions
• Primary subject categories over time
• FHIR resource list
• Types of applications that leverage FHIR
• Data mappings form or to FHIR
• Objectives of using FHIR
• Challenges of using FHIR

Fast Healthcare Interoperability Resources
(FHIR) for Interoperability in Health Re-
search: Systematic Review

Vorisek et al
[63], 2022

• FHIR-based implementations in health care research
• PRISMA flowchart for article inclusion
• Study year distribution and coauthorship network chart
• Research domains
• FHIR applications, international standards, and medical domain
• FHIR resources
• Items mapped to FHIR
• Objectives of using FHIR
• Limitations of using FHIR

HL7f FHIR-based tools and initiatives to
support clinical research: a scoping review

Duda et al [64],
2022

• Trends and gaps in using FHIR in health care research
• PRISMA flowchart for article and project inclusion
• The expansion of Marquis-Gravel categorization [43] of FHIR-based projects

contributing to research, in the categories of preparation, prestudy, study setup,
recruitment, study conduct, and poststudy activities

• Gaps in using FHIR in clinical research

The Use of FHIR in Digital Health - A Re-
view of the Scientific Literature

Lehne et al
[65], 2019

• Investigation of using FHIR in digital health care
• Article selection flowchart
• Study year and article category distribution charts
• Abstract text mining for most frequent words

Health Informatics: Engaging Modern
Healthcare Units: A Brief Overview

Yogesh and
Karthikeyan
[66], 2022

• FHIR architecture in health care units
• Narrative explanation of FHIR definitions, FHIR data layers and resources, and

workflow relations
• Health informatics challenges, some related to FHIR
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Items included in the reviewTitleStudy, year

• Interoperability standards in the field of store-and-forward ophthalmology
• Reviewing IHEg, HL7 standards, DICOMh, and health care terminologies

Data Exchange Standards in Teleophthalmol-
ogy: Current and Future Developments

Schweitzer et al
[67], 2022

• Interoperability in heterogeneous health care systems
• PRISMA flowchart for article selection
• Charts and figures for frequencies and trends of interoperability articles
• Summary and categorization of interoperability standards and architecture

components
• Word cloud figures for frequent standards and platforms
• Interoperability levels

Interoperability of heterogeneous health infor-
mation systems: a systematic literature review

Torab-Mian-
doab et al [68],
2023

aFHIR: Fast Healthcare Interoperability Resources.
bAPI: application programming interface.
cPRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews.
dPRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
eEHR: electronic health record.
fHL7: Health Level 7.
gIHE: Integrating the Healthcare Enterprise.
hDICOM: Digital Imaging and Communications in Medicine.

Nan and Xu [59] reviewed FHIR-related papers on designing
and building interoperable health care services with a focus on
data standardization, management, and integration. The
researchers analyzed detailed processes and techniques for each
group, resulting in a comprehensive FHIR practice guideline.
Similar to our research, Nan and Xu [59] reviewed important
techniques and FHIR resources for developing health care
services. The difference between this research and our study is
the focus of the research; they [59] investigated a broader range
of FHIR-based studies and services, while we focused more on
data models and infrastructures.

Pavão et al [61] reviewed research articles using the FHIR
standard in home care services. The researchers aimed to analyze
FHIR resources, types of home care applications, privacy and
security considerations, and deployment tools. Pimenta et al
[60] reviewed interoperability with FHIR and summarized some
important points and examples. The researchers selected some
articles and extracted FHIR applications in each study. Ayaz et
al [62] in 2021 reviewed all aspects of FHIR in the articles
published from January 2012 to December 2019. Our study also
considered more recent articles from 2020 to 2023. The main
objective of their study was to analyze the articles according to
the implementation, challenges, future applications, and
opportunities of this standard. The researchers reviewed articles
that focused on all categories, including apps, FHIR
implementation models, FHIR resources, FHIR framework,
mapping framework and data model, challenges, and FHIR
goals. The researchers also summarized the resources used in
the included articles; “Observation” and “Patient” resources,
respectively, were the most commonly used resources in the
included articles. We also performed this analysis and had close
results; as we mentioned earlier in our study, “Observation,”
“Condition,” and “Patient” resources were used more frequently.
The mentioned researchers also discussed the mapping
approaches from other techniques or methods to FHIR. The
focus of the study by Vorisek et al [63] was to review the FHIR
standard from a “health research” perspective. The researchers
analyzed the studies that used FHIR in any aspect of the research

process, such as data collection, recruitment, data
standardization, analysis, and consent management. In addition,
they categorized the articles with generic or specific clinical
specialty approaches. We also categorized our articles based on
the medical field. In the mentioned research, it was reported
that most studies used other terminologies and data models
besides FHIR, which included SNOMED CT, LOINC,
International Classification of Diseases 10th Revision, OMOP
CDM, and more. It was reported that among “data
capture–related” studies, the “Questionnaire” resource was used
more frequently, as expected. In addition to the scientific
aspects, the limitations of using FHIR were similarly discussed.
They highlighted that the limitations may include the evolving
contents of FHIR resources, legal issues, safety, and the need
to have an FHIR server. In our study, by contrast, we categorized
the limitations into other aspects.

Regarding the medical research aspects of FHIR, Duda et al
[64] also presented a literature review. The study extended the
“Marquis-Gravel categories” [73], in which it is possible to
categorize the way each project contributes to research tasks.
The FHIR projects focused on research were investigated, which
included the activities of preparation (eg, mapping to and from
FHIR), prestudy (eg, defining or refining of cohorts), study
design (eg, data collection for research), recruitment (eg,
including screening criteria in EHR), study conduct (eg, patient
data collection), and poststudy (eg, data sharing). Most projects
focused on “general research preparation” (eg, infrastructure
and data pipeline development). Lehne et al [65] reviewed the
application of FHIR in digital health. On the basis of their
research, the reviewed articles were mostly related to data
models, mobile or web applications, and medical devices.
Yogesh and Karthikeyan [66] reviewed the FHIR architectural
specifications, such as the linkages, workflow state, health
informatics, and public health safety approaches using this
standard. The researchers also highlighted the likely challenges
with health care data standards, including coding speed and
accuracy issues, code mappings, compatibility issues between
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new and legacy systems, and communication concerns between
EHRs and patients.

Some other articles reviewed general interoperability and data
exchange standards. In the research conducted by Schweitzer
et al [67], the researchers narratively described and compared
exchange approaches, such as Digital Imaging and
Communications in Medicine (DICOM), the Integrating the
Health Care Enterprise initiative, and clinical terminologies
(such as SNOMED CT) as well as FHIR in the field of
teleophthalmology. In their research, the ophthalmology-related
FHIR resource, which is “VisionPrescription,” as well as the
current proposal of the related IG were discussed.
Torab-Miandoab et al [68] reviewed interoperability approaches
and requirements for semantic interoperability between
heterogeneous health information systems. It was found that
FHIR, Clinical Document Architecture (CDA), Service-Oriented
Architecture, Reference Information Model, Health Insurance
Portability and Accountability Act security act, SNOMED CT,
XML, JAVA, SQL, and API can be considered the most
important requirements to implement semantic interoperability.
On the basis of the results, a summary of interoperability
standards in the context of terminology, content, transport, and
security was also presented. The researchers highlighted the
categorization of interoperability architecture components with
the main categories of service-oriented architecture,
archetype-based, web-based, client-server, multiagent,
blockchain-based, XML-based, cloud-based, ontology-based,
object-oriented, and local network.

Future Directions and Recommendations
In the course of this study, we encountered some ideas and
recommendations for future research. These included the
following: (1). a comparison of health care data models with
the use of FHIR and other standards, including earlier versions
of HL7 interoperability standards (such as HL7-version 2 and
version 3 and CDA), OpenEHR, and OMOP CDM. The aim
would be to provide a detailed analysis of the models created
with these standards, focusing on the methodological aspects,
limitations, strengths, and maintenance of interoperability. (2).
an examination of the ontological aspects of data models and a
discussion of how they represent medical terminologies and
concepts.

Conclusions
FHIR serves as a highly promising interoperability standard for
developing real-world health care applications. The integration
of FHIR with other data models facilitates the development of
more interoperable domain-specific solutions and improves
research efficiency. In addition, the implementation of FHIR
modeling for EHR data facilitates the integration, transmission,
and analysis of data while also advancing translational research
and phenotyping. Several FHIR data models have been
developed to enhance the extraction of essential information
and concepts from unstructured data such as patient summaries
retrieved from EHRs. Generally, FHIR-based exports of local
data repositories improve data interoperability for systems and
data warehouses across different settings. However, ongoing
efforts to address existing limitations and challenges are
essential for the successful implementation and integration of
FHIR data models.
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