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Abstract
Background: Coprescribing naloxone with opioid analgesics is a Centers for Disease Control and Prevention (CDC) best
practice to mitigate the risk of fatal opioid overdose, yet coprescription by emergency medicine clinicians is rare, occurring
less than 5% of the time it is indicated. Clinical decision support (CDS) has been associated with increased naloxone
prescribing; however, key CDS design characteristics and pragmatic outcome measures necessary to understand replicability
and effectiveness have not been reported.
Objective: This study aimed to rigorously evaluate and quantify the impact of CDS designed to improve emergency depart-
ment (ED) naloxone coprescribing. We hypothesized CDS would increase naloxone coprescribing and the number of naloxone
prescriptions filled by patients discharged from EDs in a large health care system.
Methods: Following user-centered design principles, we designed and implemented a fully automated, interruptive, electronic
health record–based CDS to nudge clinicians to coprescribe naloxone with high-risk opioid prescriptions. “High-risk” opioid
prescriptions were defined as any opioid analgesic prescription ≥90 total morphine milligram equivalents per day or for
patients with a prior diagnosis of opioid use disorder or opioid overdose. The Reach, Effectiveness, Adoption, Implementation,
and Maintenance (RE-AIM) framework was used to evaluate pragmatic CDS outcomes of reach, effectiveness, adoption,
implementation, and maintenance. Effectiveness was the primary outcome of interest and was assessed by (1) constructing
a Bayesian structural time-series model of the number of ED visits with naloxone coprescriptions before and after CDS
implementation and (2) calculating the percentage of naloxone prescriptions associated with CDS that were filled at an
outpatient pharmacy. Mann-Kendall tests were used to evaluate longitudinal trends in CDS adoption. All outcomes were
analyzed in R (version 4.2.2; R Core Team).
Implementation (Results): Between November 2019 and July 2023, there were 1,994,994 ED visits. CDS reached clinicians
in 0.83% (16,566/1,994,994) of all visits and 15.99% (16,566/103,606) of ED visits where an opioid was prescribed at
discharge. Clinicians adopted CDS, coprescribing naloxone in 34.36% (6613/19,246) of alerts. CDS was effective, increasing
naloxone coprescribing from baseline by 18.1 (95% CI 17.9‐18.3) coprescriptions per week or 2,327% (95% CI 3390‐3490).
Patients filled 43.80% (1989/4541) of naloxone coprescriptions. The CDS was implemented simultaneously at every ED and
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no adaptations were made to CDS postimplementation. CDS was maintained beyond the study period and maintained its effect,
with adoption increasing over time (τ=0.454; P<.001).
Conclusions: Our findings advance the evidence that electronic health record–based CDS increases the number of naloxone
coprescriptions and improves the distribution of naloxone. Our time series analysis controls for secular trends and strongly
suggests that minimally interruptive CDS significantly improves process outcomes.
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Introduction
Overdose (OD) deaths decreased in the United States from
2022 to 2023, but 81,083 people still died from opioids
in 2023 [1]. Almost 10 million adults misused prescrip-
tion opioids in 2019 [2], making opioids the most misused
prescription drug [3]. Up to 20% of emergency department
(ED) visits result in an opioid prescription, and ED opioid
prescribing has been associated with increased opioid misuse,
abuse, and death [4-10], underscoring the need for ED harm
reduction.

Naloxone is an opioid antagonist capable of reversing
opioid OD. Naloxone distribution has been associated with
reductions in population-level opioid mortality [11,12].
Prescribing naloxone with opioids (naloxone coprescribing)
is a Centers for Disease Control and Prevention (CDC) best
practice and has been mandated in some states [13,14]. Yet,
naloxone coprescribing remains rare [15-17], only occurring
2.3% of the time when >90 morphine milligram equivalents
of opioids are ordered from the ED and 7.4% of the time after
an ED visit for suspected opioid OD (vs epinephrine which
is prescribed in 49% of ED visits for anaphylaxis) [16,17].
Stigma, workload, and time pressures may explain these gaps
[18-21].

Health systems have begun implementing strategies to
facilitate naloxone coprescribing [22]. Computerized clinical
decision support (CDS) is a strategy to assist decision-making
and improve health care quality [23,24]. When designed well,
CDS have been shown to improve evidence-based prescrib-
ing [25-27], as well as opioid OD education and naloxone
distribution [28-33]. CDS best practices include increasing
specificity and sensitivity, triggering at the right time, making
the evidence-based choice the easiest option, and tracking
patient outcomes [24,34,35]. Effective CDS implementation
requires attention to choice architecture, setting, and best
practices to reduce bias and improve adoption [36-38].

We aimed to improve the evidence-based delivery of
naloxone by developing and deploying an ED clinician-
facing, electronic health record (EHR)–based CDS. We
quantified the impact of CDS according to the Reach,
Effectiveness, Adoption, Implementation, and Maintenance
(RE-AIM) framework [39]. By specifying the users targeted,
including workflow events that triggered CDS, and describing
lessons learned, we hope to encourage the deployment and
testing of similar CDS beyond our health system.

Methods
Intervention
Following user-centered design (UCD) principles [40], a
multidisciplinary team including 5 physicians, 2 pharmacists,
and several EHR builders, with expertise in implementa-
tion science, informatics, behavioral economics, and health
services research, designed a fully automated, EHR-embed-
ded, interruptive, provider-facing CDS. The intervention was
beta-tested by several ED clinicians in a practice setting for 6
months before the systemwide rollout. CDS did not interface
with any technologies beyond the EHR and fired within
typical workflow to recommend and facilitate the addition of
a naloxone prescription before the e-signing of any high-risk
opioid analgesic prescription order (Multimedia Appendix 1).
High-risk criteria were adapted from the 2016 CDC guide-
lines for chronic pain and defined as any opioid prescrip-
tion (1) resulting in >90 morphine milligram equivalents per
day, (2) for a patient with an opioid use disorder (OUD)
diagnosis, or (3) prior opioid OD [41]. CDS searched for
Systematized Nomenclature of Medicine Clinical Terms in
the “Problem List Diagnosis,” “Encounter Diagnosis,” and
“Hospital Problem Diagnosis” lists. Alerts were suppressed
if the patient had an active naloxone prescription or if the
patient was discharged to hospice, given patients on end-of-
life care are excluded from CDC guidelines [41]. Naloxone
prescriptions stayed on the patient’s medication list for 1 year.

Key design principles followed were that CDS be intuitive,
trigger only when indicated, and default to a preselected
naloxone order that was the least expensive option in
the health care system’s retail pharmacies [24,34,35]. Any
provider with prescribing privileges could encounter the alert.
Default selection was chosen to decrease work (clicking
“Accept” added naloxone to the existing order) and because
“opt-out” approaches increase the uptake of target clinical
behaviors [42-45].

Accepting CDS was the path of least resistance. However,
consistent with nudge theory, clinicians could bypass CDS
by (1) selecting “Do Not Order” then “Accept” (2 clicks);
(2) selecting prepopulated bypass options (“Doesn’t meet
criteria,” going to “Hospice/SNF,” “Already has naloxone”)
then “Accept” (2 clicks);” or (3) commenting (≥2 clicks)
[46]. “Already has naloxone” was included to account for
naloxone outside the EHR. Clinicians were returned to their
prior workflow after any action.
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Clinicians were educated on CDS via departmental
meetings and email. Educational materials included (1) CDS
rationale, (2) instructions for use, and (3) suggested patient
communication. No ongoing education was provided, and no
changes were made to CDS after implementation.
Study Design and Setting
This was a retrospective, observational study of ED visits in
a large, not-for-profit university-affiliated, nongovernmental
health care system. Located in the Rocky Mountain Region,
the system has >500,000 total ED visits per year and includes
12 EDs—1 urban-academic level 1 trauma center, 2 urban
community hospitals (1 a level 1 trauma center), 2 subur-
ban community level 2 trauma centers, and 7 community
free-standing EDs. The study was approved and informed
consent was waived by the Colorado Multiple Institutional
Review Board (COMIRB). The Guidelines and Checklist for
the Reporting on Digital Health Implementations (iCHECK-
DH) were followed (Multimedia Appendix 2) [47].
Data Collection, Measurements, and
Outcomes
Naloxone coprescribing was defined as a clinician prescrib-
ing opioids and naloxone during the same ED visit. Dei-
dentified patient characteristics (age, sex, race, ethnicity,
preferred language, and insurance), CDS data (reasons for
firing, number of firings per visit, clinician actions, and
bypass reasons), and clinical variables (whether naloxone was
prescribed via CDS and the prescription was filled) were
extracted monthly from the shared EHR (Epic Systems).
Research data governance was linked to EHR data gover-
nance. Clinicians entered data into Epic Hyperspace and CDS
responses were automatically registered in real time. Extract,
transform, and load processes transferred all patient data
into relational databases hosted on private virtually protected
servers nightly, and a Microsoft SQL Server Management
Studio query was run to further clean and filter research data
into Microsoft Excel.

The RE-AIM framework was used to determine the
impact of CDS [39]. More explicitly, reach was measured
by examining the proportion of ED visits where CDS was
triggered and whether patients’ characteristics influenced
opioid prescribing (and high-risk opioid prescribing, ie,
CDS triggering) and naloxone coprescribing. Effectiveness
(primary outcome) was assessed by evaluating the num-
ber of ED discharges with naloxone coprescriptions per
week across the system before and after CDS implementa-
tion. Effectiveness was also measured by quantifying the
naloxone prescription fill rate (naloxone prescription fills
per naloxone orders via CDS vs other workflows) at a
24-hour ED outpatient retail pharmacy in the largest urban
academic ED. This subgroup analysis was performed to
determine whether increased naloxone orders translated to
more naloxone reaching patients and to compare whether
patients prescribed naloxone via CDS were more likely to fill
their prescriptions than patients prescribed naloxone via other
workflows. All prescriptions written at this ED defaulted to
the ED’s outpatient pharmacy—unless specifically requested

by the patient—thus prescription fill data were available in
the pharmacy EHR. Adoption was defined as the number
of naloxone prescriptions from CDS per number of CDS
firings. Due to EHR limitations, we could not measure
CDS suppression. The process of implementation is descri-
bed. Finally, maintenance was judged by whether CDS was
maintained after the study period and by modeling changes in
adoption over time.

Ethical Considerations
All data releases were cleared by a Research Services
Manager who ensured the data being released were compliant
with the Health Insurance Portability and Accountability Act
(HIPAA) and the corresponding institutional review board
exemption (#23-0458). No continuing review was required
because this was secondary research and all data were
deidentified. Results were shared via secure email. Individual
informed patient consent was waived and no compensation
was offered, given no patient participation or protected health
information was shared.
Data Analysis
There is a documented need for rigorous, pragmatic evalu-
ation when implementing new CDS [34]. Interrupted time
series analyses are suggested for CDS evaluation because
they control for confounding secular trends [34,48-50]. We
used a Bayesian structural time-series model controlling for
the number of ED visits to evaluate the impact of CDS
on naloxone coprescribing (CausalImpact package; version
1.3.0; Brodersen et al) [51], Mann-Kendall tests to model
longitudinal changes in CDS adoption, and chi-square tests
to compare the proportions of individuals who triggered CDS
and were prescribed either an opioid or opioid with naloxone
across demographic categories. Equity of RE-AIM outcomes
was evaluated based on patient characteristics because
prior research has demonstrated an increased likelihood of
opioid prescribing for White patients and increased nalox-
one prescribing (and coprescribing) for Black and Latine
patients [52-58]. Otherwise, frequencies and percentages are
reported for categorical variables. All statistical analyses were
conducted in R (version 4.2.2; R Core Team) [59].
Study Sample
All ED visits with a discharge opioid prescription between
March 2013 and July 2023 were included. Effectiveness
was assessed by comparing weekly aggregated counts of
ED visits, opioid prescriptions, and naloxone coprescrip-
tions between the pre- (March 2013-November 2019) and
postimplementation periods (November 2019-July 2023).
Adoption was assessed using only post-period data. The
accuracy of synthetic control models, like the Bayesian
structural time-series model used, is generally improved
by including more pre-period data [51]. Therefore, we
extracted enough data to provide a 2:1 pre-to post-period
ratio. We did not perform a prospective power calculation.
Patients younger than 18 years or older than 90 years
old and those who were admitted to the hospital were
excluded from both periods.
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Implementation (Results)
Demographics
After implementation, between November 2019 and July
2023, there were 1,994,994 eligible ED discharges. Of
these, 5.19% (103,606/1,994,994) included an opioid
analgesic prescription and 0.83% (16,566/1,994,994) of
prescriptions met high-risk criteria. Most visits included

female (n=1,083,973, 54.33%), White (n=1,357,153,
68.03%), non-Latine (n=1,519,584, 76.17%), English-
speaking (n=1,866,744, 93.57%), and publicly insured
(n=1,146,781, 57.48%) patients (Table 1). White, non-Latine,
English-speaking, privately insured patients were prescribed
opioids a greater proportion of the time compared to Black,
Latine, non–English-speaking, and publicly insured patients
(P<.001).
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Reach
CDS fired in 0.83% (16,566/1,994,994) of all ED visits.
A total of 15.99% (16,566/103,606) of visits with a dis-
charge opioid prescription met high-risk criteria and triggered
CDS. CDS fired multiple times in 13.17% (2182/16,566)
of visits (mean 1; median 1); ED clinicians interacted with
CDS 19,246 times overall. Visits triggering CDS most often
involved patients who were female (n=8670, 52.34%), White
(n=12,724, 76.81%), non-Latine (n=13,818, 83.41%), spoke
English (n=15,934, 96.18%), and had Medicaid or Medicare
(n=10,193, 61.53%; Table 1). However, adjusting for the
number of visits with an opioid prescription (a prerequisite
for CDS triggering), CDS was more likely to trigger in visits
with male, Latine, English speaking, and publicly insured
patients (P<.001).
Effectiveness
Before CDS implementation, clinicians coprescribed
naloxone in 0.05% (156/318,216) of ED visits when an opioid
analgesic was prescribed. After CDS implementation, ED
clinicians coprescribed naloxone in 3.49% (3616/103,606) of
ED visits when an opioid analgesic was prescribed. In the
postimplementation period, 85.09% (3077/3616) of naloxone
coprescriptions originated from CDS.

Using the number of ED visits as a covariate, the
CausalImpact package predicted 0.80 (95% CI 0.55‐1.05) ED
visits with naloxone coprescriptions per week and 150 (95%
CI 100‐200) ED visits with naloxone coprescriptions in the
postimplementation period. After CDS go-live there was an
immediate increase in the number of ED visits with naloxone
coprescriptions each week—18.9 ED visits with naloxone
coprescriptions observed on average weekly and 3616 ED
visits with naloxone coprescriptions in the entire postimple-
mentation period (Figure 1). In other words, CDS increased
ED naloxone coprescribing by 18.1 (95% CI 17.85‐18.34)
naloxone coprescriptions per week or 2327% (95% CI
1702‐3335). Black and non-Latine patients were more likely
to have naloxone coprescribed when CDS triggered compared
to White and Latine patients (P<.001).

During the postimplementation period, there were 4541
naloxone coprescriptions with opioid analgesics written at
the urban, academic ED (mean 1.2; median 1 per visit) and
3308 (72.85%) were ordered from a CDS alert. Patients filled
49.42% (2134/4318) of their opioid prescriptions and 43.80%
(1989/4541) of naloxone coprescriptions. Patients coprescri-
bed naloxone via CDS filled their prescriptions less often than
patients coprescribed naloxone via other workflows (35.64%,
1179/3308 vs 65.69%, 810/1233).

Figure 1. The CausalImpact plot of naloxone coprescribing. CDS: clinical decision support.

Adoption
ED clinicians adopted CDS, following the recommendation
to coprescribe naloxone in 34.36% (6613/19,246) of alerts.
Clinicians at the academic ED adopted CDS at a higher
rate 61.62% (2005/3254) than at community EDs 34.70%
(4608/13,280).
Implementation
This CDS was implemented simultaneously at every ED and
no changes were made to CDS postimplementation. All EDs
used the same EHR, and it took a CDS builder 70 hours
(including meetings, communications, and build time) to
design and implement CDS.

Maintenance
According to the Mann-Kendall test, CDS adoption increased
over time (τ=0.454; P<.001). Because no changes were made
to CDS, there were no obvious sustainability costs beyond
what our health system regularly paid for EHR access. CDS
is still active and currently being scaled to outpatient clinics.
Sustainability decisions are made by local governance based
on naloxone prescribing because it was defined as a CDC best
practice. CDS are reviewed ad hoc based on technical issues
and yearly otherwise.
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Lessons Learned
The implementation process benefitted from the makeup of
the study team, who were able to provide local context for
design, identify key workflow needs, address local barriers,
and serve as champions during implementation. Beta testing
and CDS-specific data analytics were prioritized to identify
technical and efficiency issues early. Having data analytics
built and collecting data during testing was key for provid-
ing estimates on workflow interruptiveness and informing
iterative improvements. For example, monitoring revealed
CDS initially only searched the current visit diagnosis, failing
to identify histories of OUD and OD. The trigger algorithm
was changed to include any EHR documented history of
OUD or OD before going live, with a significant increase
in case identification. Additionally, because clinicians told
champions that CDS were firing “too late,” CDS were
modified to trigger when clinicians entered as opposed to
signed orders, facilitating clinician-patient communication
before prescribing.

This project began as quality improvement, which was
important for local buy-in. Also, the health system is funded,
and therefore, owns the intervention. It would have been
ideal to prospectively track implementation to elucidate
system and per-patient costing and inform decisions about
CDS maintenance. Future studies should formally evaluate
patient-centered outcomes to confirm CDS as an effective and
equitable implementation strategy.

Discussion
Principal Findings
A minimally interruptive CDS was readily adopted, showed a
sustained effect, and significantly increased the number of ED
naloxone coprescriptions. These findings support CDS as an
effective implementation strategy to increase clinician uptake
of naloxone best practices.

The high rate of adoption supports the need for user-cen-
tered CDS development, monitoring, and evaluation as the
impact of CDS is often limited by low adoption and fre-
quent workflow interruptions resulting in “alert fatigue” (the
desensitization to important safety warnings) [24,60-64]. A
Cochrane review of 122 CDS trials showed that CDS, on
average, only increases the proportion of patients receiving
desired care by 5.8% (95% CI 4.0% to 7.6%) [36]. The
impact is variable, with the top quartile of reported improve-
ments ranging from 10% to 62% [36]. With an adoption rate
of 34.36% and a 2327% increase in the number of ED visits
with naloxone coprescriptions, this CDS falls well within
the top quartile of CDS improvements [36]. Interestingly,
adoption increased over time. This finding differs from most
other CDS literature reporting a decrease in adoption over
time [65], and mirrors one other CDS study that reported a
similar effect after UCD [66], perhaps suggesting that UCD
improves initial and sustained adoption [66].

ED clinicians face increasingly complex workflow
challenges that require validated solutions [67,68]. Previous

evaluations of naloxone coprescribing CDS have not always
aligned with best practices for designing, conducting, and
reporting CDS interventions [28-31,34]. Prior studies have
not discussed the rationale for CDS design (such as choice
architecture) and have excluded key operational details
(supplements and alert screenshots), making it challenging to
reproduce or scale CDS [28-31,34]. The default order design
of our CDS may have contributed to CDS acceptability by
making choice architecture less burdensome to clinicians
[34]. CDS adoption may also reflect actions in line with
clinicians’ and patients’ positive attitudes toward naloxone
prescribing and use [15,34,62].

Our Bayesian structural time series model, without a
statutory mandate, offers robust evidence to support claims
that CDS increases ED naloxone coprescribing. Our methods
address the gap from prior studies that relied on pre-post
designs and inferential statistics (logistic regression, t tests,
and χ2 tests) [30,31], which increase the risk of confound-
ing by organizational policies, regulations, or reimbursement
rules [34].

The fact that White, non-Latine, English-speaking, and
privately insured patients were significantly more likely to
have an opioid prescribed is concerning but consistent with
prior literature [52-58]. Demographic differences in opioid
and naloxone prescribing have been widely reported [52-58].
It is notable that Black and non-Hispanic patients were more
likely to have naloxone coprescribed after CDS was triggered.
This is the first study to report demographic differences in
clinicians’ responses to CDS designed to increase nalox-
one coprescribing. Although, Black and Latine patients are
coprescribed naloxone more often at baseline. Thus, it is
possible CDS increased naloxone coprescribing equally and
simply failed to reduce the influence of racial and ethnic
bias on opioid or naloxone prescribing [57,58]. Other CDS
designers should consider these differences when implement-
ing and evaluating CDS to ensure they do not inadvertently
maintain or widen existing disparities.
Limitations
No clinical outcomes were measured, so we do not know
if practice changes impacted care such as ED readmissions.
No statutory mandates were implemented during this study,
but we cannot be sure local educational efforts were not
made to encourage naloxone coprescribing. Larger trends in
opioid prescribing were not examined but are unlikely to have
impacted the rate of naloxone coprescribing.

The availability of a 24-hour ED pharmacy at the
academic site was another potential operational confounder in
measuring naloxone fill rates. Discharged patients had to pass
the pharmacy to exit the ED. This is an important consider-
ation for sustainability since we do not compare naloxone
coprescribing versus take-home naloxone (THN). THN has
been reported to improve naloxone distribution by removing
the need to stop at a pharmacy and may alleviate patient
costs but shift medication costs to systems or public health
organizations. Prior work, evaluating THN programs, has
reported naloxone distribution rates as high as 87.3% [69].
However, THN programs are resource intensive [69,70], thus,
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might still be improved by CDS that improve the recognition
of patients at risk for OD [71].
Conclusions
An EHR-based CDS encouraging ED naloxone coprescribing
with opioid analgesics increased alert-based naloxone orders
and overall system rates of naloxone coprescribing. The CDS

had a low rate of interruption, a high rate of adoption [36],
and significantly increased ED naloxone coprescribing across
12 EDs. There were no obvious sustainability costs beyond
what the health system regularly paid for EHR access. These
findings support claims that health care system leaders should
consider CDS as an implementation strategy to address the
significant gap in naloxone coprescribing [28-33].
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