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Abstract

Background: Tinnitus diagnosis poses a challenge in otolaryngology owing to an extremely complex pathogenesis, lack of
effective objectification methods, and factor-affected diagnosis. There is currently a lack of explainable auxiliary diagnostic tools
for tinnitus in clinical practice.

Objective: This study aims to develop a diagnostic model using an explainable artificial intelligence (AI) method to address
the issue of low accuracy in tinnitus diagnosis.

Methods: In this study, a knowledge graph–based tinnitus diagnostic method was developed by combining clinical medical
knowledge with electronic medical records. Electronic medical record data from 1267 patients were integrated with traditional
Chinese clinical medical knowledge to construct a tinnitus knowledge graph. Subsequently, weights were introduced, which
measured patient similarity in the knowledge graph based on mutual information values. Finally, a collaborative neighbor algorithm
was proposed, which scored patient similarity to obtain the recommended diagnosis. We conducted 2 group experiments and 1
case derivation to explore the effectiveness of our models and compared the models with state-of-the-art graph algorithms and
other explainable machine learning models.

Results: The experimental results indicate that the method achieved 99.4% accuracy, 98.5% sensitivity, 99.6% specificity,
98.7% precision, 98.6% F1-score, and 99% area under the receiver operating characteristic curve for the inference of 5 tinnitus
subtypes among 253 test patients. Additionally, it demonstrated good interpretability. The topological structure of knowledge
graphs provides transparency that can explain the reasons for the similarity between patients.

Conclusions: This method provides doctors with a reliable and explainable diagnostic tool that is expected to improve tinnitus
diagnosis accuracy.

(JMIR Med Inform 2024;12:e57678) doi: 10.2196/57678
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Introduction

Tinnitus is a common refractory disease in the field of
otolaryngology, and its diagnosis has always been a cutting-edge
research topic in audiology. With changes in the social
environment and an accelerated pace of life, an increasing
number of patients, particularly among the younger generation,
have sought medical assistance for tinnitus as their primary
complaint in the last decade. Globally, approximately 14% (95%
CI 0.8%-1.6%) of adults are affected by tinnitus [1,2], which
can cause stress, anxiety, and depression [3]. Distress and
hearing impairment brought on by the disease can affect
cognitive abilities and lead to suicidal tendencies in severe cases,
greatly affecting the work and daily lives of patients [4].

The pathogenesis of tinnitus is extremely complex and not fully
understood. Currently, no effective objectification methods are
available. Traditional Chinese medicine (TCM) classifies
tinnitus into 5 different syndrome patterns: wind fire attacking
internally (WFAI), liver fire bearing upward (LFBU), phlegm
fire stagnation internally (PFSI), Qi deficiency of the spleen
and stomach (QDSS), and kidney essence deficiency (KED).
The diagnosis of tinnitus remains a challenge in medical science
because it is influenced by several complex factors [5,6],
including individual differences among patients and atypical
symptom presentations. Clinical diagnosis relies heavily on the
personal knowledge and clinical experience of doctors, thereby
introducing subjectivity, uncertainty, and ambiguity.
Consequently, achieving a high tinnitus diagnostic accuracy
becomes difficult. Therefore, tinnitus diagnosis remains an
urgent issue requiring further exploration and resolution by
medical researchers.

Previous studies have focused on the use of artificial intelligence
(AI) to assist doctors in diagnosing tinnitus and improving
diagnostic accuracy. Liu et al [7] proposed a meta-learning
method based on lateral perception for cross–data set tinnitus
diagnosis. Sun et al [8] used a support vector machine classifier
to distinguish between patients with tinnitus and healthy
individuals. Shoushtarian et al [9] used a naive Bayes algorithm
to classify patients with tinnitus and control groups. Sanders et
al [10] used a spiking neural network model to classify patients
with tinnitus into 2 groups based on different classification
criteria. Manta et al [11] used clinical data and patient features
to build a machine learning (ML) model for classifying the
degree of tinnitus-related distress in individuals and their ears.
Allgaier et al [12] used a gradient-boosting engine to classify
transient tinnitus. Rodrigo et al [13] used a decision tree model
to identify variables related to the success of internet-based
cognitive behavioral therapy for tinnitus. Liu et al [14] used a
support vector machine model to explore cortical or subcortical
morphological neuroimaging biomarkers that effectively
distinguished patients with tinnitus from healthy individuals.
Niemann et al [15] proposed a LASSO model to predict the
severity of depression in patients with tinnitus. Although
previous studies have achieved success using their respective
data sets, the developed ML- or deep learning–based methods
are entirely data-driven modeling approaches that do not make
full use of existing medical knowledge. Models built using such
methods are equivalent to “black boxes” for doctors, lack

interpretability, and are not conducive to clinical promotion and
application.

In this study, the aim is to incorporate clinical medical
knowledge into a diagnostic model, enabling the integration of
knowledge and data for interpretable results. Knowledge
graph–based modeling methods offer solutions to such issues
by using a novel knowledge representation format that connects
entities and concepts in an objective world using semantic
relationships. Such methods offer reasoning and interpretability
that are highly sought after by both medical practitioners and
academia. Li et al [16] used a knowledge graph to predict
diabetic macular edema, overcoming the limitations of
traditional ML and data-mining techniques that deal with
missing feature values. Zhou et al [17] used 124 medical records
to construct a knowledge graph for recommending hypertension
medication. Lyu et al [18] created a knowledge graph for
diabetic nephropathy diagnosis using patient data. Lin et al [19]
extracted knowledge from medical texts and historical
prescription data to construct a medical knowledge graph and
accurately detect clinical prescription risks. Recently, knowledge
graph applications have expanded to TCM; for instance, Yang
et al [20] built a knowledge graph to extract medical information
from TCM case records. Xie et al [21] constructed a knowledge
graph using ancient Chinese medical books to infer symptoms
and syndromes. Yang et al [22] used electronic medical records
(EMRs) to build a knowledge graph, transforming TCM
diagnostic issues into multilabel classification problems. Lan
et al [23] integrated knowledge graphs with graph neural
networks to introduce graph-based supervised contrastive
learning, effectively enabling the classification of TCM texts.
However, no previous studies have used knowledge graphs in
the complex medical field of tinnitus diagnosis. Therefore, this
study focuses on knowledge graph technology to assist doctors
in tinnitus diagnosis and improve diagnostic accuracy.

This paper aims to establish a comprehensive knowledge graph
in TCM specifically tailored for tinnitus. Leveraging this
knowledge graph, we propose a novel method for calculating
patient similarity. This method takes into account the weighting
of symptom-syndrome type relationships, thereby facilitating
the inference of syndrome types in patients with tinnitus
according to TCM principles. By implementing this approach,
clinicians can increase the accuracy of tinnitus diagnosis within
the realm of TCM.

In general, we make several noteworthy contributions as follows:

• We propose a method for tinnitus knowledge graph
construction based on heterogeneous patient EMRs and
TCM clinical knowledge.

• We introduce weights to measure patient similarity into the
tinnitus knowledge graph using a method based on prior
probabilities and mutual information values.

• A collaborative neighbor algorithm that uses patient
similarity scores to obtain recommended diagnostic results
is proposed to assist doctors in understanding the
model-generated conclusions, thereby improving the
accuracy of tinnitus diagnosis.
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Methods

Patients
For this study, we collected the EMRs of 1267 patients with
tinnitus who visited the ear, nose, and throat departments of 11
medical institutions in Shanghai, China, from November 2019
to July 2023. The inclusion criteria included (1) tinnitus as the
primary complaint and (2) the ability to communicate normally.
The exclusion criteria included (1) objective tinnitus, (2)
nonotogenic tinnitus caused by factors such as endocrine and
blood disorders, (3) tinnitus caused by head or ear trauma, and

(4) difficulties in communication or severe psychiatric history
that could hinder follow-up compliance. After screening the
data for quality, 1265 cases were included for further analysis.

The clinical EMR data set recorded medical data of real patients
including the relationship between patient symptoms and
disease, which was crucial for disease diagnosis. The data set
contained patient information such as age, sex, inducement,
medical history, tinnitus sound, accompanying symptoms,
tongue coating, pulse condition, TCM syndrome differentiation,
and sleep status. Each patient had a clear diagnosis that could
be classified into 1 of 5 categories: WFAI, LFBU, PFSI, QDSS,
and KED. Statistical data are presented in Figures 1-4 .

Figure 1. Age distribution of different syndromes by sex. KED: kidney essence deficiency; LFBU: liver fire bearing upward; PFSI: phlegm fire
stagnation internally; QDSS: Qi deficiency of the spleen and stomach; WFAI: wind fire attacking internally.

Figure 2. The tongue body distribution of different syndrome types. KED: kidney essence deficiency; LFBU: liver fire bearing upward; PFSI: phlegm
fire stagnation internally; QDSS: Qi deficiency of the spleen and stomach; WFAI: wind fire attacking internally.
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Figure 3. The tongue fur distribution of different syndrome types. KED: kidney essence deficiency; LFBU: liver fire bearing upward; PFSI: phlegm
fire stagnation internally; QDSS: Qi deficiency of the spleen and stomach; WFAI: wind fire attacking internally.

Figure 4. The pulse condition distribution of different syndrome types. KED: kidney essence deficiency; LFBU: liver fire bearing upward; PFSI:
phlegm fire stagnation internally; QDSS: Qi deficiency of the spleen and stomach; WFAI: wind fire attacking internally.

Ethical Considerations
This study’s protocol was approved by the ethics committee of
the Shanghai Municipal Hospital of Traditional Chinese
Medicine, Shanghai, China (2021SHL-KY-70).

The data was anonymized in order to protect patient privacy.
Patients could receive free examinations and treatments
throughout the entire process, so no compensation was provided.

Clinical Decision Support for Tinnitus

Overview
To integrate patient EMRs with diagnostic knowledge from
TCM textbooks, we constructed a knowledge graph using a

combined “top-down” and “bottom-up” approach [24]. First, a
patient-centered knowledge graph was developed using EMRs.
Then, the knowledge graph was enriched with tinnitus diagnostic
knowledge from TCM textbooks. Finally, we used a mutual
information–based weight calculation method to enhance the
knowledge graph by fusing patient case data with diagnostic
knowledge. The resulting knowledge graph simulated the
diagnostic reasoning processes of experienced physicians. The
entire method consisted of three steps: (1) building a weighted
tinnitus knowledge graph, (2) finding and scoring common
neighbors, and (3) predicting syndrome patterns based on patient
similarity. The overall framework is illustrated in Figure 5.
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Figure 5. Overall framework of the proposed method.

Knowledge Graph of Tinnitus Based on Heterogeneous
Sources
In response to the diagnostic needs of tinnitus in TCM, the
ontology structure of a tinnitus medical knowledge graph should
revolve around symptoms, syndrome patterns, diseases, drugs,
and treatment methods. For this study, we extracted such
common concepts from expert-reviewed EMRs and classic
medical textbooks, constructed a conceptual knowledge system,

and built a top-level ontology structure. Natural language
processing techniques [25] were used to extract entities and
relationships from the patient EMRs based on a defined
conceptual knowledge system for tinnitus. By applying certain
rules and conducting string matching within the text, we
extracted 15 and 10 categories of entities and relationships from
the 1265 EMR records, respectively. Once the entity types and
hierarchy were determined, we embedded the data into the
conceptual knowledge system and established a patient-centric
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tinnitus knowledge graph in the form of a triple, which
maximized the retention of both explicit and implicit diagnostic
information.

Furthermore, we enhanced the constructed tinnitus knowledge
graph using knowledge extracted from authoritative medical
textbooks to supplement tinnitus knowledge information that
was not fully expressed in EMRs. Together with the EMR
knowledge graph, a complete tinnitus knowledge graph was
developed. The knowledge we selected came from 2 classic
Chinese medicine textbooks [26,27], from which we extracted
basic concepts related to tinnitus including TCM syndromes,
prescriptions, Chinese medicinal herbs, and treatment methods
to construct the TCM knowledge graph.

Heterogeneous Knowledge Fusion
Redundancy in the entities and relationships extracted from
heterogeneous sources was observed owing to the different
sources of data and knowledge. Therefore, knowledge fusion
was required. First, data normalization and entity alignment

were performed to standardize the named entities extracted from
multiple data sources. The entities were associated using
string-matching and similarity-calculation methods. As entity
and attribute texts were relatively short, a lower similarity
threshold was more appropriate; therefore, the similarity
judgment threshold was set as 0.6 to prevent errors and
omissions. The entity similarity calculation results are listed in
Table 1. As the knowledge graph was established in Chinese,
we calculated the similarity of the Chinese strings.

Then, a matching path was built from the tinnitus
ontology–based knowledge graph entity to the EMR-based
knowledge graph entity. Patient data were linked to diagnostic
knowledge through an ontology. The 2 knowledge graphs were
linked by unifying entities with duplicate meanings in the 2
graphs. Manual verification was performed to ensure the
accuracy of the knowledge graph. The specific method is
illustrated in Figure 6. Finally, the tinnitus knowledge graph
consisted of 1247 entities and 9234 relationships.

Table 1. Entity similarity calculation results.

SimilarityStandardized and ambiguous entities (Chinese)

WFAIa

0.8风热外侵证 (wind-heat invasion syndrome)

0.6风热外犯证 (wind-heat exterior syndrome)

0.8风热外侵证 (wind-heat exterior assault syndrome)

LFBUb

0.8肝火上炎证 (liver fire flaming upward syndrome)

0.8肝热上扰证 (liver heat disturbing upward syndrome)

0.83肝火上扰清窍证 (liver fire disturbing upward and disturbing clearing orifices syndrome)

QDSSc

0.89脾胃虚证 (spleen and stomach deficiency syndrome)

0.8脾胃虚弱证 (spleen and stomach weakness syndrome)

PFSId

0.8痰火壅结证 (phlegm-fire concretions syndrome)

KEDe

0.6肾精不足证 (kidney essence insufficiency syndrome)

0.8肾精亏虚证 (kidney essence deficiency syndrome)

0.99肾虚精亏证 (kidney deficiency and essence deficiency syndrome)

0.8肾精亏耗证 (kidney essence consumption syndrome)

aWFAI: wind fire attacking internally.
bLFBU: liver fire bearing upward.
cQDSS: Qi deficiency of the spleen and stomach.
dPFSI: phlegm fire stagnation internally.
eKED: kidney essence deficiency.
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Figure 6. Tinnitus knowledge graph fusion flowchart. EMR: electronic medical record.

Calculation of Knowledge Graph Relationship Weights
Based on Mutual Information
Considering the varying importance of different entities for
different syndrome patterns, the imbalance in data categories,
and the varying amount of information carried by symptoms,
the calculation of weights required consideration of entities’
importance for diagnostic pattern identification and information
content carried by the entities themselves. The data used for
weight calculation were derived from real clinical case data
used for constructing the knowledge graph. First, the mutual
information value (wif) possessed by each entity was obtained
using the mutual information method. The obtained value
represented the extent to which a variable could acquire
diagnostic pattern information.

For a given set of entities X = {x1, x2, ..., xn} with corresponding
probabilities P = {p1, p2, ..., pn}, the target variable to be
measured was the diagnostic pattern Y. By calculating the overall
entropy H(), conditional entropy H(Y|X), and mutual information
value Gain(S,x), the degree to which the diagnostic pattern was
determined based on the entity values or the weight value wif

of the entity was calculated. The calculations were performed
using equations 1-3.

(1)

(2)

wif = Gain(Y,X) = H(Y) – H(Y|X) (3)

Further, the feature weights were calculated based on the
syndrome patterns under the prior conditions. The probability
of each symptom appearing under different syndrome patterns
was obtained using statistical methods such as:

wsd = p(symi|sdj) (4)

where sym = {sym1, sym2, ..., symn} represents the symptom set
and sd = {sd1, sd2, ..., sdm} represents the diagnostic pattern set.
Finally, the edge weight from node u to node v was defined
using equation 5.

Weight(u,v) = wif + wsd (5)

The weights of various symptoms under different syndrome
patterns are presented in Table 2.
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Table 2. Partial weight value of symptom-syndrome type.

WeightSymptom

KEDa

1.435Spermatorrhea

1.4213Soreness of loins

1.4104Dreaminess

1.3868Wake up early in the morning

1.3856Deficiency and insomnia

1.167Aggravation at night

1.1559Cicadas chirp

1.1448Fine pulse

0.7142Scanty fur

0.6991Duration

LFBUb

1.2376Irritable

1.1196Restlessness and insomnia

1.0271Wind sound

1.0056String-like pulse

1.0030Tide sound

0.9118Yellow fur

0.8992Reddish tongue

0.7036Duration

0.6855Dry mouth

0.6558Bitter taste in mouth

PFSIc

1.1953Tastelessness

1.1488Dizziness and heaviness

1.1216Aural fullness

1.0899Ear distension

0.9121Slippery pulse

0.8342Slimy fur

0.7113Duration

0.6895Yellow fur

0.6495Hearing loss

0.6440Reddish tongue

WFAId

1.2089Cold or rhinitis

1.1398Tinnitus onset within a month

1.1398Low voice

1.0286Thin fur

0.9563Floating pulse

0.6903Duration

0.6664Light color of tongue
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WeightSymptom

0.5082Yellow fur

0.5032Hearing loss

0.4993Dreaminess

QDSSe

1.2615Feeling emptiness in ear

1.1813Aggravation after work

1.1562Aggravation when standing up

1.0782Fine pulse

0.7370Duration

0.7022Thin fur

0.6745Light color of tongue

0.6596Anxiety

0.6444Hearing loss

0.4865Dreaminess

aKED: kidney essence deficiency.
bLFBU: liver fire bearing upward.
cPFSI: phlegm fire stagnation internally.
dWFAI: wind fire attacking internally.
eODSS: Qi deficiency of the spleen and stomach.

Patient Similarity Scoring Based on Weighted Common
Neighbor Algorithm
By transforming the TCM syndrome diagnostic problem into a
prediction problem of linked patient nodes to TCM syndrome
nodes, the similarity between 2 patients was calculated to obtain
TCM syndrome similarity. For 2 patients, the higher the
similarity, the greater the likelihood of having the same
diagnostic result. This study measured the similarity using
common features. In the knowledge graph, the higher the
number of common neighbors to 2 patient nodes, the greater
the likelihood of them belonging to the same community (linked
to the same TCM syndrome node). The common neighbor graph
of patients with different TCM syndromes is shown in Figure
7, where fewer common neighbors were observed. The common
neighbor graph of patient 1 and patient 2 with the same TCM
syndrome is shown in Figure 8, where more common neighbors
were observed; however, different nodes had different
importance. In TCM, the importance of pulse condition is greater
than that of tinnitus duration while diagnosing tinnitus. The
edge weight values of continuous tinnitus and thin
pulse-to-kidney deficiency syndrome were 0.6991 and 1.1448,
respectively, as shown in Figure 7; however, even for the same
pulse condition, the importance varied for different TCM
syndromes. In Figure 8, the edge weight values of thin pulse to
QDSS and KED syndromes were 1.078 and 1.1447, respectively.
Therefore, considering the edge weights of common neighbors
to the patient nodes and calculating the score of common

neighbors based on the edge weight values were essential when
counting the number of common neighbors between patient
nodes.

The similarity scoring function between patients x and y was
defined by equation 6.

(6)

where X = {u1, u2, ..., um} and Y = {v1, v2, ..., vn} represent the
sets of neighboring nodes for patients x and y, respectively;
Pathu,h,v = (u, h, v) denotes the 2-hop path from node u to node
v, where h represents the common neighbor of nodes u and v;
Pathu,h = (u, h) represents the path from node u to the common
neighbor h; and weight(pathu,h) indicates the weight of the path.

When 2 paths with a hop count of 2 between the patient nodes
existed, the weights of the paths were calculated to obtain a
similarity score list for the patients. The list was then sorted in
descending order, and the top 20 patient node syndromes with
the highest scores were counted, which represented the most
frequently occurring syndrome. Finally, the recommended
syndrome was obtained.

Sn = G(f20(score(X,Y))) (7)

where G denotes a frequency-counting method in which X and
Y represent sets of patient nodes. f20() was used to obtain the
top 20 patient syndromes based on the scores.
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Figure 7. Sketch map of common neighbors between different syndromes.

Figure 8. Sketch map of common neighbors between same syndromes.

Experimental Design
In total, 2 experiments were conducted to verify the
effectiveness of the proposed method. The first experiment was
performed to compare the proposed method with similar graph
algorithms, while the second experiment was performed to
compare the proposed method with other common explainable
ML methods. The evaluation metrics of the algorithm are
accuracy, precision, sensitivity, specificity, F1-score, area under
receiver operating characteristic curve (AUC), etc. To
demonstrate the interpretability of our method, we selected a

tinnitus case for result interpretation to showcase the inference
process and interpretability of our method.

Results

Performance Verification
For a given knowledge graph, we extracted the patient nodes
and their neighboring nodes to form a knowledge network. The
node and edge sets in the knowledge network were divided into
training and testing sets. The testing set did not contain
syndrome entities. To reasonably divide the training and testing
sets, we used a stratified sampling cross-validation method of
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randomly dividing the network node and edge sets into 5
subsets: 1 subset as the testing set, and the other 4 subsets as
the training set. The training set served as a known network,
whereas the testing set was used to verify the syndrome
prediction results and evaluate the accuracy of the syndrome
prediction algorithm.

Evaluation Outcomes

Comparison With Similar Graph Algorithms
The proposed method was compared with similar graph
algorithms such as CommonNeighbors and Adamic-Adar.
CommonNeighbors is a common graph algorithm used to infer

the potential relationships and proximity between 2 nodes [28];
however, the differences between common neighbors are not
considered. Adamic-Adar is a typical algorithm for determining
the closeness of 2 points by measuring the outdegree of common
neighbors [29]. ResourceAllocation calculates the closeness
between 2 nodes using a set of neighboring nodes near the target
node [30]. We added common neighbor edge weights based on
CommonNeighbors. Unlike Adamic-Adar and
ResourceAllocation, our weight calculation method considered
each syndrome, which had a higher adaptability to TCM
diagnosis by the doctors. The experimental results are listed in
Table 3; our method outperformed similar graph algorithms in
diagnosing each syndrome.
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Table 3. Experimental results of graph algorithm comparison.

Value,
mean (SD)

WFAIe

(n=155)
QDSSd

(n=270)
PFSIc

(n=194)
LFBUb

(n=307)
KEDa

(n=339)

Evaluation indicators and models

Average accuracy

0.982
(0.004)

0.9880.9830.9820.9780.978Common neighbors

0.982
(0.004)

0.9890.9830.9780.9790.979Adamic-Adar

0.947
(0.019)

0.9740.9360.9610.9440.918Resource allocation

0.994
(0.003)

0.9980.9920.9950.9940.990WeightedCommonNeighbors

Average precision

0.957
(0.017)

0.9710.9820.9520.9410.939Common neighbors

0.955
(0.019)

0.9710.9810.9320.9490.940Adamic-Adar

0.885
(0.055)

0.9480.8600.9300.8930.794Resource allocation

0.987
(0.010)

1.0000.9860.9930.9870.970WeightedCommonNeighbors

Average sensitivity

0.949
(0.023)

0.9290.9430.9220.9710.981Common neighbors

0.949
(0.023)

0.9350.9420.9170.9650.984Adamic-Adar

0.857
(0.045)

0.8370.8400.8010.8770.933Resource allocation

0.985
(0.006)

0.9870.9790.9760.9900.990WeightedCommonNeighbors

Average F1-score

0.952
(0.009)

0.9490.9610.9360.9560.959Common neighbors

0.951
(0.014)

0.9520.9610.9240.9570.961Adamic-Adar

0.866
(0.015)

0.8850.8490.8590.8840.856Resource allocation

0.986
(0.005)

0.9940.9820.9840.9890.980WeightedCommonNeighbors

Average specificity

0.988
(0.008)

0.9960.9950.9930.9800.978Common neighbors

0.988
(0.007)

0.9960.9950.9890.9830.978Adamic-Adar

0.965
(0.029)

0.9940.9630.9900.9660.914Resource allocation

0.996
(0.004)

1.0000.9960.9990.9960.989WeightedCommonNeighbors

Average AUCf

0.969
(0.008)

0.9630.9690.9580.9760.979Common neighbors
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Value,
mean (SD)

WFAIe

(n=155)
QDSSd

(n=270)
PFSIc

(n=194)
LFBUb

(n=307)
KEDa

(n=339)

Evaluation indicators and models

0.968
(0.009)

0.9660.9690.9530.9740.981Adamic-Adar

0.911
(0.011)

0.9150.9010.8950.9220.923Resource allocation

0.990
(0.003)

0.9940.9880.9870.9930.990WeightedCommonNeighbors

aKED: kidney essence deficiency.
bLFBU: liver fire bearing upward.
cPFSI: phlegm fire stagnation internally.
dQDSS: Qi deficiency of the spleen and stomach.
eWFAI: wind fire attacking internally.
fAUC: area under receiver operating characteristic curve.

Comparison With Other Interpretable ML Methods
The proposed method was compared with common ML
classification algorithms including decision tree, random forest,
naive Bayes, logistic regression, and k-nearest neighbors
algorithms. The results are presented in Table 4. The graph
algorithm based on WightedCommonNeighbor outperformed
other models in the comprehensive diagnosis of each syndrome
on the same data set but was lower than the random forest model

in terms of the AUC metric. Although the random forest model
had a certain degree of interpretability, the overall complexity
of model interpretation increased when a large number of
decision trees were included. The higher the number of decision
trees in the random forest model, the greater the difficulty of
interpreting the relationships and decision processes within the
model. Compared to the random forest model, our proposed
method had higher interpretability and was more readily
accepted by doctors.
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Table 4. Experimental results of machine learning classification algorithm comparison.

Value, mean (SD)WFAIeQDSSdPFSIcLFBUbKEDaEvaluation indicators and models

Average accuracy

0.994 (0.003)0.9980.9920.9950.9940.990WeightedCommonNeighbors

0.976 (0.005)0.9840.9700.9780.9750.975Decision tree

0.987 (0.004)0.9940.9870.9850.9820.987Random forest

0.981 (0.005)0.9910.9810.9790.9760.979Naive Bayes

0.986 (0.004)0.9940.9840.9830.9830.986Logistic regression

0.985 (0.005)0.9940.9860.9820.9800.986KNNf

Average precision

0.987 (0.010)1.0000.9860.9930.9870.970WeightedCommonNeighbors

0.939 (0.012)0.9370.9430.9170.9510.950Decision tree

0.968 (0.011)0.9630.9820.9700.9500.974Random forest

0.957 (0.019)0.9800.9560.9530.9230.971Naive Bayes

0.965 (0.010)0.9810.9640.9500.9610.971Logistic regression

0.966 (0.016)0.9800.9780.9580.9380.974KNN

Average sensitivity

0.985 (0.006)0.9870.9790.9760.9900.990WeightedCommonNeighbors

0.939 (0.014)0.9360.9150.9430.9450.959Decision tree

0.966 (0.019)0.9870.9560.9330.9770.976Random forest

0.950 (0.022)0.9480.9560.9120.9810.953Naive Bayes

0.963 (0.013)0.9680.9630.9380.9670.976Logistic regression

0.961 (0.021)0.9680.9560.9230.9840.973KNN

Average F1-score

0.986 (0.005)0.9940.9820.9840.9890.980WeightedCommonNeighbors

0.939 (0.010)0.9360.9280.9290.9480.953Decision tree

0.966 (0.009)0.9750.9680.9500.9630.975Random forest

0.953 (0.011)0.9640.9550.9320.9510.961Naive Bayes

0.964 (0.011)0.9740.9630.9430.9640.974Logistic regression

0.963 (0.012)0.9740.9660.9400.9600.973KNN

Average specificity

0.996 (0.004)1.0000.9960.9990.9960.989WeightedCommonNeighbors

0.985 (0.003)0.9910.9850.9840.9840.981Decision tree

0.992 (0.005)0.9950.9950.9940.9830.990Random forest

0.988 (0.008)0.9970.9880.9920.9740.989Naive Bayes

0.991 (0.003)0.9970.9900.9910.9880.989Logistic regression

0.991 (0.006)0.9970.9940.9930.9790.990KNN

Average AUCg

0.990 (0.003)0.9940.9880.9870.9930.990WeightedCommonNeighbors

0.962 (0.007)0.9630.9500.9640.9640.970Decision tree

0.997 (0.002)1.0000.9970.9960.9980.995Random forest

0.995 (0.001)0.9970.9950.9930.9960.996Naive Bayes

0.996 (0.001)0.9970.9950.9940.9970.997Logistic regression
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Value, mean (SD)WFAIeQDSSdPFSIcLFBUbKEDaEvaluation indicators and models

0.989 (0.006)0.9930.9880.9770.9930.993KNN

aKED: kidney essence deficiency.
bLFBU: liver fire bearing upward.
cPFSI: phlegm fire stagnation internally.
dQDSS: Qi deficiency of the spleen and stomach.
eWFAI: wind fire attacking internally.
fKNN: k-nearest neighbor.
gAUC: area under receiver operating characteristic curve.

Discussion

Principal Findings
The experimental results show that the accuracy, sensitivity,
specificity, precision, F1-score, and AUC of our proposed
method all exceed 98% for 5 tinnitus subtypes. Compared to
the traditional graph algorithm, our method comprehensively
considers the number of neighboring nodes and the weight of
edges for patient nodes. This method of calculating the strength
of node connections and feature importance can more
comprehensively measure the similarity between patient nodes.
Further, by calculating the common neighbor score, the
similarity between patient nodes can be quantitatively measured,
providing a reliable quantitative indicator for the prediction
problem of patient-to-syndrome node links. In addition, in the
field of TCM, the impact of different features on diagnostic
results may vary. This method considers the importance of
features through edge weight values, making similarity
calculations more realistic. By considering the edge weight
values, the reasons for the formation of similarity between
patient nodes and the importance of features can be explained,

enhancing the interpretability of the model results. This method
is not only applicable to the diagnosis of syndrome types in the
field of TCM but can also be applied in other fields, especially
in the similarity calculation problem that needs to consider
feature importance and node correlation strength, which has
universality.

In terms of interpretability, the proposed method integrated the
knowledge of TCM differential diagnosis and clinical experience
into a knowledge graph, which made the method more
interpretable. To illustrate the explainability of our method, we
randomly selected a patient from the patient records and used
their medical information as input to the syndrome diagnosis
algorithm, as shown in Figure 9. The patient information was
input to the knowledge graph, where we searched for other
patients who shared common neighbors with the selected patient.
We calculated the common neighbor scores and returned the
top k (k=20) patients with the highest scores. The results are
summarized in Table 5. Based on the syndromes of the top k
patients that were most similar to the target patient, we deduced
that the predicted syndrome of the target patient was KED,
which was consistent with the actual syndrome of the patient.

Figure 9. The inference process of patient syndrome patterns. KED: kidney essence deficiency.
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Table 5. Inference results of patient syndrome patterns.

Neighbors scoreNeighborsPatient ID

14.6619411

14.2316382

14.2317404

14.0417830

14.0416856

13.9716395

13.9316365

13.9315372

13.9315386

13.9315390

13.9316396

13.9316400

13.9316403

13.9315407

13.9316410

13.9315413

13.9117375

13.9117389

13.7816381

13.7816383

Limitations
The proposed method considered the weight of common
neighbors and the importance of different symptoms for different
syndrome types, but this makes similarity calculation more
complex, requiring more computing resources and time.
Meanwhile, the calculation of edge weight values requires
relatively rich and accurate feature data. If the data quality is
not high or features are missing, it will affect the accuracy of
similarity calculation. However, compared to large-scale
knowledge graphs, our research has a smaller sample size and
requires continuous data collection to enrich the knowledge
base.

From the experimental results, our method achieved good results
in the diagnosis of WFAI, LFBU, PFSI, and QDSS. However,
some deficiencies existed in the differential diagnosis of QDSS
and KED syndrome types, which could create confusion between
the two. The analysis of 3 patients who were misclassified with
KED instead of QDSS revealed common entities between them
and the top 5 most similar patients among their neighbors
(Textbox 1). The common entities between patient 1 (ID 415)
and the top 5 most similar patients among their neighbors, who

were all patients with QDSS but were misclassified with KED,
are listed in Textbox 1. The common entities included worsening
conditions when standing up, empty feeling in the ears, left side,
worsening condition after physical exertion, hypertension, red
tongue, anxiety, thin pulse, hearing loss, continuous symptoms,
female sex, and dizziness. Similarly, patient 2 (ID 601) and the
top 5 most similar patients among their neighbors shared
common entities including worsening condition when standing
up, empty feeling in the ears, left side, worsening condition
after physical exertion, thin and white coating on the tongue,
red tongue, anxiety, thin pulse, and continuous symptoms.
Patient 3 (ID 423) and the top 5 most similar patients among
their neighbors shared common entities including worsening
condition after physical exertion, worsening condition at night,
left side, use of headphones, exercise, pale tongue, thin coating
on the tongue, tinnitus, middle to low frequency, and intermittent
symptoms. By comparing the common entities between the
patients and their top 5 most similar neighbors, we found that
entities such as worsening condition after physical exertion and
left side had higher scores in the differential diagnosis of the 2
syndrome types. However, ML algorithms were prone to
confusion in the differential diagnosis because both QDSS and
KED could be present in patients with these symptoms.
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Textbox 1. Misclassified patient entity.

Patient 1 (ID 415)

• Aggravation when standing up, ear emptiness, left side, aggravation after work, hypertension, tongue redness, anxiety, fine vein, hearing loss,
duration, male, and dizziness.

Patient 2 (ID 601)

• Aggravation when standing up, ear emptiness, left side, aggravation after work, thin fur, white fur, tongue redness, anxiety, fine vein, and duration.

Patient 3 (ID 423)

• Aggravation after work, nighttime aggravation, left side, use headphones, exercise, tongue dullness, thin fur, cicada chirping, and interval.

Conclusions
Tinnitus is a complex ear disease that poses challenging issues
in clinical diagnosis due to the lack of specific indicators and
the reliance on patient complaints. In this study, we constructed
a medical knowledge graph based on EMRs and authoritative
knowledge of patients with tinnitus and proposed an explainable
tinnitus-assisted diagnosis model. The experimental results

showed that our proposed method not only performed better in
diagnostic performance with a diagnostic accuracy of over 98%
for all syndromes but also offered better interpretability
compared to general ML algorithms owing to the natural
interpretability of the knowledge graph. Thus, the effectiveness
of the proposed method was demonstrated to assist Chinese
medicine doctors in diagnosing tinnitus during clinical practice.
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QDSS: Qi deficiency of the spleen and stomach
TCM: traditional Chinese medicine
WFAI: wind fire attacking internally
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