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Abstract

Background: Postoperative infections remain a crucial challenge in health care, resulting in high morbidity, mortality, and
costs. Accurate identification and labeling of patients with postoperative bacterial infections is crucial for developing prediction
models, validating biomarkers, and implementing surveillance systems in clinical practice.

Objective: This scoping review aimed to explore methods for identifying patients with postoperative infections using electronic
health record (EHR) data to go beyond the reference standard of manual chart review.

Methods: We performed a systematic search strategy across PubMed, Embase, Web of Science (Core Collection), the Cochrane
Library, and Emcare (Ovid), targeting studies addressing the prediction and fully automated surveillance (ie, without manual
check) of diverse bacterial infections in the postoperative setting. For prediction modeling studies, we assessed the labeling
methods used, categorizing them as either manual or automated. We evaluated the different types of EHR data needed for the
surveillance and labeling of postoperative infections, as well as the performance of fully automated surveillance systems compared
with manual chart review.

Results: We identified 75 different methods and definitions used to identify patients with postoperative infections in studies
published between 2003 and 2023. Manual labeling was the predominant method in prediction modeling research, 65% (49/75)
of the identified methods use structured data, and 45% (34/75) use free text and clinical notes as one of their data sources. Fully
automated surveillance systems should be used with caution because the reported positive predictive values are between 0.31
and 0.76.

Conclusions: There is currently no evidence to support fully automated labeling and identification of patients with infections
based solely on structured EHR data. Future research should focus on defining uniform definitions, as well as prioritizing the
development of more scalable, automated methods for infection detection using structured EHR data.
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Introduction

Postoperative bacterial infections, including deep or superficial
surgical site infections (SSIs), urinary tract infections (UTIs),
and pneumonia, are the most frequent complications after
surgery. Postoperative infections can be categorized into
subtypes, usually based on location or severity according to the
Clavien-Dindo classification [1]. The overall incidence of
postoperative infections within 30 days of surgery varies
between 6.5% and 25% [2-4]. Considering the 313 million
patients undergoing surgery globally each year, these
postoperative infections have an enormous impact on population
health and overall health care costs [5]. Effective postoperative
infection prevention and management require early detection
of high-risk patients through prediction and data-driven
surveillance. It is imperative for developing and validating
prediction and surveillance systems to be able to accurately
identify patients who have postoperative infections. Machine
learning modeling practices use the term “labeling” for the
identification of patients with the outcome of interest. Labeling
and surveillance are both challenges due to underreporting in
(hospital) complication registries, ranging from 38% to 77%
when compared with a manual chart review [6,7]. Consequently,
the current reference standard for identifying patients with
postoperative infections relies on labor-intensive manual chart
review, with an estimated 1.5 full-time equivalents per 10,000
admissions [8,9]. Furthermore, manual surveillance and labeling
are prone to interobserver variability [10,11] and human errors
[12], highlighting the need for more robust methods to address
this devastating postoperative problem.

To achieve a more objective, cost-effective, and
resource-efficient identification of patients with postoperative
infections, it is imperative to leverage the electronic health
records (EHRs) to automatically detect patients with infections
without human checking on high-risk patients based on readily
available EHR data. Different types of data are present within
the EHR, including structured, tabular, and free-text records in
which diagnoses and clinical symptoms are reported. A
previously performed systematic review identified
semiautomated and fully automated surveillance methods for
hospital-acquired infections (HAIs) [13]. As more than 90% of
the included systems required manual checking of infectious
cases, it was concluded that fully automated surveillance of
HAIs cannot be routinely used yet in health care settings.

To go beyond manual labeling and manual surveillance and to
explore the current methods and criteria used in prediction
modeling studies, the aim of this study was to perform a scoping
review on available labeling methods for postoperative
infections and fully automated surveillance systems (ie, not
requiring manual checking). We aimed to (1) evaluate the
current methods and criteria used to label patients with
postoperative infections in prediction modeling and biomarker
validation studies, (2) explore available automated surveillance
methods and their performance (sensitivity, specificity, positive
predictive value [PPV], and negative predictive value [NPV])
in comparison with reference standard manual chart review,
and (3) determine the necessary data types and sources needed
to perform automated detection of postoperative infections.

Methods

Overview
This scoping review combined 2 literature searches to evaluate
current methods used by prediction modeling and biomarker
validation studies to label patients with postoperative infections
and the use of automated surveillance systems to identify
patients with postoperative infections based on EHR data. The
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews)
checklist was used. The protocol was registered on Open Science
Framework [14].

Search Strategy
First, prediction modeling validation studies using machine
learning methods, statistical models, and biomarkers to predict
postoperative infections were identified. Second, a separate
search was performed to identify studies on automated
surveillance for postoperative and other hospital-acquired
infections (Figure 1). Surveillance studies focusing on surgical
populations often only investigate SSIs. As we aimed to study
all bacterial infections that may occur after surgery, surveillance
studies in a hospital-wide setting were also included. Both
searches were performed in PubMed, Embase (OVID), Web of
Science (Core Collection), the Cochrane Library, and Emcare
(OVID). Studies were included from inception (ie, 1966) to
August 1, 2023. The search queries were generated with help
from an information specialist (JWS) from the Leiden University
Medical Center. The details of the search queries are provided
in Appendix A of Multimedia Appendix 1.
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Figure 1. Data sources from the literature for identifying infections in prediction modeling or biomarker studies and automated surveillance studies.

Selection Criteria
The selection of studies was performed in Covidence, a program
used to manage systematic literature searches. The inclusion
and exclusion criteria used are presented in Table S1 in
Multimedia Appendix 1. All titles and abstracts were screened
by 2 independent reviewers (AMVB and BFG for prediction
models; SLVDM and BFG for surveillance studies). The full
texts of all potentially relevant studies were retrieved and
assessed by 2 reviewers (SLVDM and BFG) for eligibility. Any
disagreement on the inclusion or exclusion of studies was
resolved through reassessment and discussion with a third
reviewer (MSA). The data from the different reports were
collected by 1 researcher (AMVB or SLVDM), and
inconsistencies were checked for by a second researcher (BFG).

Data Extraction and Definitions
The following data were extracted for the prediction modeling
studies: name of the prediction tool, type of prediction tool
(machine learning, biomarker, and statistical model), surgical
subpopulations, type of postoperative infection predicted, and
criteria and guidelines used to manually or automatically label
patients with infections. Manual labeling involves individuals
conducting EHR chart reviews and applying specific criteria,
often derived from surgical guidelines, to determine the presence
or absence of infections in patient records. The criteria for
diagnosing patients with an infection, for example, from a
reference guideline from the literature, were identified and
extracted.

For automated surveillance studies, the population, study design,
years of data collection, type of infection surveyed, type of
algorithm used, definition used to automatically detect
infections, reference standard used to compare the automated
method with, type of validation performed, and performance
metrics reported compared with the reference standard were
collected. The main metrics used to assess performance were
the method’s sensitivity, specificity, PPV, and NPV. Other
metrics extracted are presented in Table S17 in Multimedia
Appendix 1, including the area under the receiver operating
characteristic curve, accuracy, F1-score, κ score, Pearson
correlation coefficient, and agreement percentage. Only
performance metrics were assessed for surveillance studies, as

for prediction modeling studies, and no accuracy of the labeling
method compared with a reference standard was determined.

Data Synthesis
For each method to identify and label patients with infections,
the data type categories needed from the EHR were assessed to
identify infections based on the definition used. These could be
structured EHR data (type A), including tabular information
stored, such as complication registries, medication information,
and vital signs; free-text clinical notes (type B), including all
clinical information stored in free-text, such as discharge letters
and daily reports; microbiology results (type C), which is seen
as a separate category, as it differs per hospital how
well-structured this information is stored [15]; and an additional
interpretation layer (whether the results are positive) is needed
to use this information; or imaging results (type D), or a
combination of these categories. The definitions were further
differentiated based on the data types and criteria needed to
adhere to the definitions in Appendix E in Multimedia Appendix
1.

Some prediction models and surveillance systems are focused
on predicting or detecting all severity types of bacterial
infections, while others focus only on infections requiring
pharmacological or surgical treatment. For example, some
definitions include the prescription of antibiotics as one of the
criteria, while others base their criteria on clinical symptoms
only. As the severity of the infections surveyed or predicted
influences the intended use case and number of infections
identified, we classified the definitions according to the
Clavien-Dindo scale [1]. Finally, the performance of the
automated infection surveillance systems compared with that
of the reference standard manual review was visualized per
subtype of infection. The results were grouped according to the
type of infection, such as HAI (type not further specified), SSI,
pneumonia, anastomotic leakage and abdominal infections,
bloodstream infections (including central venous catheter-related
infections and sepsis), and UTIs. Infections that did not belong
to one of these groups were categorized as “other.”
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Results

Overview
We included a total of 147 studies published between 2003 and
2023 (Figure 2). Of these, 116 studies focused on the prediction
of postoperative infections; either the development and
validation of prediction models or a predictive biomarker were

performed, or validation was performed of preexisting risk
scores. These included the American College of Surgeons
National Surgical Quality Improvement Program surgical risk
calculator (ACS NSQIP; 33/116 studies), the National
Nosocomial Infection Surveillance System (NNIS; 4/116
studies), and the Surgical Risk Preoperative Assessment System
(SURPAS; 5/116 studies).

Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram.

Out of 116 studies, 4 did not report the methodology used to
determine which patients had the outcome of interest (ie,
postoperative infection). In 83% (97/116) of prediction modeling
studies, manual labeling based on diagnostic guidelines was
performed, or a publicly available, manually labeled database
was used, such as the participant use data file from the ACS
NSQIP program (Table 1). A total of 13% (15/116) of studies

used an alternative, non–guideline-based method to label
patients with infections, 11 of whom used manual labeling, 3
of whom did not explicitly mention manual or automatic
labeling, and 1 of whom used automatic labeling. In total, 93%
(108/116) of the prediction modeling studies used manual
labeling to determine the outcome of interest or a manually
labeled, publicly available data set to perform their research.
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Table 1. Definitions of patients with bacterial infections.

Minimum
Clavien-Dindo

Type D (imag-
ing results)

Type C (microbi-
ology results)Type B (free-text)b

Type A (struc-

tured)aOrigin of definitionType of infection and reference

HAIc

1✓✓✓✓Diagnostic guide-
lines

WHOd [16]

1✓✓Diagnostic guide-
lines

ECDCe [17]

1✓Automated surveil-
lance

Ehrentraut et al [18]

1✓Automated surveil-
lance

Sakji et al [19]

1✓Automated surveil-
lance

Tvardik et al [20]

Pneumonia

1✓✓✓✓Diagnostic guide-
lines

ECDC/ASC NSQIPf [21]

1✓✓✓✓Prediction model-
ing

Kinlin et al [22]

1✓✓Automated surveil-
lance

Blacky et al [23]

2✓✓Automated surveil-
lance

Bouzbid et al [24]

1✓✓Automated surveil-
lance

Cato et al [25]

1✓Automated surveil-
lance

FitzHenry et al [26]

1✓Automated surveil-
lance

Tvardik et al [20]

1✓Automated surveil-
lance

Colborn et al [27]

1✓✓Automated surveil-
lance

Stern et al [28]

SSIg

1-3a✓✓✓✓Diagnostic guide-
lines

CDCh/ASC NSQIP [29]

1-3a✓✓✓✓Diagnostic guide-
lines

WHO [30]

1✓Prediction model-
ing

Daneman et al [31]

2✓Prediction model-
ing

Weller et al [32]

3a✓Prediction model-
ing

Crispin et al [33]

2✓✓Prediction model-
ing

Martin et al [34]

1✓✓Automated surveil-
lance

Campillo-Gimenez et al [35]

1✓✓Automated surveil-
lance

Cato et al [25]

1✓Automated surveil-
lance

FitzHenry et al [26]
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Minimum
Clavien-Dindo

Type D (imag-
ing results)

Type C (microbi-
ology results)Type B (free-text)b

Type A (struc-

tured)aOrigin of definitionType of infection and reference

1✓✓Automated surveil-
lance

Leclère et al [36]

2✓✓Automated surveil-
lance

Leth et al [37]

2✓✓✓Automated surveil-
lance

Suzuki et al [38]

1✓Automated surveil-
lance

Tvardik et al [20]

1✓Automated surveil-
lance

Thirukumaran et al [39]

1✓Automated surveil-
lance

Colborn et al [27]

Abdominal and ALi

1✓✓✓Diagnostic guide-
lines

Rahbari et al [40]

3a✓Prediction model-
ing

Stidham et al [41]

3b✓Prediction model-
ing

Miyakita et al [42]

2✓Prediction model-
ing

Mckenna et al [43]

3a✓✓Prediction model-
ing

Nudel et al [44]

2✓✓Prediction model-
ing

Kawai et al [45]

2✓✓Prediction model-
ing

Lin et al [46]

1✓Prediction model-
ing

Shi et al [47]

1✓✓Prediction model-
ing

van Kooten et al [48]

UTIj

2✓✓✓Diagnostic guide-
lines

ECDC/ASC NSQIP [49]

1✓✓Prediction model-
ing

Cheng et al [50]

1✓Automated surveil-
lance

Bouam et al [51]

2✓✓Automated surveil-
lance

Bouzbid et al [24]

1✓✓Automated surveil-
lance

Branch-Elliman et al [52]

1✓✓Automated surveil-
lance

Cato et al [25]

1✓✓Automated surveil-
lance

Choudhuri et al [53]

1✓Automated surveil-
lance

FitzHenry et al [26]

2✓✓Automated surveil-
lance

Leth et al [37]
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Minimum
Clavien-Dindo

Type D (imag-
ing results)

Type C (microbi-
ology results)Type B (free-text)b

Type A (struc-

tured)aOrigin of definitionType of infection and reference

2✓✓Automated surveil-
lance

Redder et al [54]

1✓Automated surveil-
lance

Tvardik et al [20]

2✓✓✓Automated surveil-
lance

van der Werff et al [55]

—k✓✓Automated surveil-
lance

Venable and Dissanaike [56]

1✓✓Automated surveil-
lance

Wald et al [57]

1✓Automated surveil-
lance

Colborn et al [27]

Bloodstream infections

1✓✓Diagnostic guide-
lines

Moore et al [58]

2✓Diagnostic guide-
lines

Singer et al [59] (sepsis-3
criteria)

1✓✓Automated surveil-
lance

Blacky et al [23]

1✓Automated surveil-
lance

Bouam et al [51]

2✓✓Automated surveil-
lance

Bouzbid et al [24]

1✓✓Automated surveil-
lance

Cato et al [25]

1✓Automated surveil-
lance

FitzHenry et al [26]

1✓Automated surveil-
lance

Leal et al [60]

1✓Automated surveil-
lance

Leal et al [61]

1✓Automated surveil-
lance

Lin et al [62]

2✓✓Automated surveil-
lance

Redder et al [54]

1✓Automated surveil-
lance

Tvardik et al [20]

2✓✓Automated surveil-
lance

Valik et al [63]

—k✓✓Automated surveil-
lance

Venable and Dissanaike [56]

1✓✓Automated surveil-
lance

Woeltje et al [64]

1✓Automated surveil-
lance

Colborn et al [27]

Clostirdrium difficile

1✓Automated surveil-
lance

Dubberke et al [65]

Clostridium difficile

1✓Automated surveil-
lance

van der Werff et al [66]
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Minimum
Clavien-Dindo

Type D (imag-
ing results)

Type C (microbi-
ology results)Type B (free-text)b

Type A (struc-

tured)aOrigin of definitionType of infection and reference

External ventricular and lumbar drain-related meningitis

1✓✓Automated surveil-
lance

van Mourik et al [67]

MRSAl

1✓Automated surveil-
lance

Peterson et al [68]

PJIm

1✓Automated surveil-
lance

Fu et al [69]

Neurological

1✓✓✓Prediction model-
ing

Cheng et al [70]

aType A (structured): structured electronic health record data, including tabular information stored such as complication registries, medication information,
and vital signs.
bType B (free-text): free-text clinical notes, including all clinical information stored in free-text such as discharge letters and daily reports.
cHAI: hospital-acquired infections.
dWHO: World Health Organization.
eECDC: European Centre for Disease Prevention and Control.
fACS NSQIP: American College of Surgeons National Surgical Quality Improvement Program.
gSSI: surgical site infection.
hCDC: Centers for Disease Control and Prevention.
iAL: anastomotic leakage.
jUTI: urinary tract infection.
kNot applicable.
lMRSA: Methicillin-resistant Staphylococcus aureus.
mPJI: prosthetic joint infection.

Automated Surveillance
We included 31 automated surveillance studies for bacterial
infections. Surveillance was performed and reported per patient,
admission, procedure, patient days, or culture. Different types
of surveillance systems were studied, and some studies have
reported on more than 1 method. Most often (21/31, 68%), a
set of criteria or rules was defined to automatically detect
infections based on EHR data, followed by natural language
processing (NLP) algorithms for free-text from the EHR (7/31,
23%) and other classification algorithms such as logistic
regression (3/31, 10%). Except for one study [25], all the studies

validated their automated surveillance algorithms against a
reference standard (manual chart review, often according to one
of the established diagnostic guidelines). Comparing the
automated surveillance algorithm to manual chart review
according to the established guidelines resulted in a range of
sensitivity (0.79-0.96), specificity (0.81-0.96), PPV (0.31-0.76),
and NPV (0.96-1.00) estimates for the different types of
infection (Figure 3). The performance of all the combinations
of postoperative infection data needed to run the automated
surveillance algorithm varied (Figure 4). Reported performance
per surveillance algorithm is provided in Table S17 in
Multimedia Appendix 1.
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Figure 3. Performance of automated surveillance of postoperative infections compared with manual reference standard chart review. Panel A is the
sensitivity, B is the specificity, C is the PPV, and D is the NPV. HAI: hospital-acquired infection; NPV: negative predictive value; PPV: positive
predictive value; SSI: surgical site infection; UTI: urinary tract infection.

Figure 4. Performance per data type category used in automated surveillance algorithms. A=Structured electronic health record data only (eg, registrations
and medication), B=Free-text clinical notes, C=microbiology results. Panel A is the sensitivity, B is the specificity, C is the PPV and D is the NPV.
HAI: hospital-acquired infection; NPV: negative predictive value; PPV: positive predictive value; SSI: surgical site infection; UTI: urinary tract infection.

Electronic Health Record Data for Automated
Identification and Surveillance
In the 147 included studies, 75 different methods and definitions
were used to identify different types of bacterial infections. A
total of 56% (42/75) used 2 or more datatypes to label, diagnose,
or surveil infections, and 45% (34/75) required free-text and
clinical notes as at least one of their data sources. In Table 1,
the different types of data from the EHR needed to automatically
detect patients with an infection are specified for each diagnostic

guideline or infection definition used in the different prediction
modeling studies or automated surveillance methods. Figure 5
shows the total number of methods used to identify patients
with bacterial infections and the different data categories used.
Most frequently (20/75, 27%), a combination of microbiology
results and structured EHR data was used, followed by free-text
(13/75, 17%) and structured EHR data (11/75, 15%). In total,
45% (34/75) of the identified methods used free text and clinical
notes as one of their data sources.
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Figure 5. Venn diagram of the types of data used to identify bacterial infections in the included studies and guidelines. The data were divided into
structured electronic health record data, free-text and clinical notes, microbiology results, and imaging. In total, 75 unique definitions were identified
for different types of bacterial infections. EHR: electronic health record.

For hospital-acquired infections (no specification of subtype),
free-text information was needed for all definitions and methods,
limiting the ability to detect patients with an infection based on
structured EHR data. For pneumonia, some automated
surveillance studies have identified patients without the need
for free-text information [24,25], but they did include culture
results in their definition. For SSIs and UTIs, a wide range of
criteria were used compared with other types of infections.
Abdominal surgery-related anastomotic leakage and abdominal
infections were identified based on antibiotic treatment or
surgical reinterventions supplemented with free-text data or
imaging results. Bacterial culture data, in combination with
structured EHR parameters, are used in most methods for
detecting bloodstream infections. For Clostridium difficile
infections, cerebral extraventricular and lumbar drain-related
meningitis, methicillin-resistant Staphylococcus aureus, and
prosthetic joint infection, the authors used a maximum of 2
criteria from different categories to define infection. Prediction
modeling studies that did not use manual chart review for
labeling patients in the data set relied on the registration of
infections or the performance of surgical interventions,
sometimes in combination with antibiotic administration [32].

When assessing infection severity according to the different
Clavien-Dindo definitions, most (64%, 48/75) were based on
identifying infections according to a Clavien-Dindo score of 1
or more. This indicates that, based on the registration of
infection or clinical criteria only, infections were surveyed and
predicted. In 23% of definitions (17/75), the prescription of
antibiotic therapy or surgical intervention was included as the
criterion, resulting in a Clavien-Dindo score of 2 or higher.

Discussion

This scoping review assessed the methods and criteria used for
identifying postoperative bacterial infections in prediction

modeling and fully automated surveillance studies. We identified
a total of 75 different methods and definitions from 147 included
studies to identify patients with different types of bacterial
infections. We found that 45% (34/75) used unstructured
free-text and clinical notes as at least one of their data sources.
Furthermore, out of 116 postoperative infection prediction
studies, 108 (93%) used manual labeling based on self-defined
criteria or diagnostic guidelines or used publicly available
manually labeled databases. In addition, among the 31
automated surveillance studies, various methods, such as NLP,
classification algorithms, and predefined criteria or rules on
structured data, were used to automatically detect infections.
Compared with manual chart review, automated surveillance
systems have reported sensitivities for different types of
infections ranging from 0.79 to 0.96, specificities from 0.81 to
0.96, PPVs from 0.31 to 0.76, and NPVs from 0.96 to 1.00.
Finally, we found that different criteria were used among both
prediction and surveillance studies to identify patients with
infections, indicating that there is no uniform definition being
used. Given the current use of different types of criteria and
data used in prediction and surveillance studies, we were not
able to identify or formulate a uniform and reliable method to
automatically label patients with infections based on structured
EHR data.

Prediction and surveillance of postoperative infections are
crucial for early detection and assessment of the impact of
preventative interventions but are currently hindered because
the labeling of these cases is performed by resource-intensive
manual chart review. In contrast to a previous study on
semiautomated surveillance where high-risk patients were
manually checked [13], we included only fully automated
surveillance systems that were built to avoid requiring any
human intervention. However, human intervention might still
be required to incorporate the systems as well as to clean and
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preprocess the EHR data. Furthermore, we broadened the scope
by assessing current labeling methods for prediction modeling
studies, which, with some exceptions, were based on manual
labeling according to established guidelines. In line with our
findings, the predominant use of manual labeling was reported
in a meta-analysis on the predictive performance of machine
learning algorithms for SSI prediction [71]. Although manual
labeling based on chart review is still the predominant method
and is considered the reference standard, it must be noted that
manual labeling may be flawed due to human errors and
interobserver variability [9,10,12]. Furthermore, validating
models only on national registries and databases limits the
generalizability of developed prediction models and surveillance
systems to other settings [72].

We extensively researched different definitions and methods
from prediction modeling studies, guidelines, and surveillance
studies to identify patients with bacterial infections that may
occur after surgery and summarized different types of data
needed to adhere to the different definitions. This study has
several limitations. First, heterogeneity between studies (eg,
differences in study design) prevented a meta-analysis, making
it difficult to draw generalizable conclusions on optimal labeling
methods. However, combining different types of studies allowed
us to generate insight into the current methods of labeling and
identifying patients with infections. Second, the distinction
between structured and unstructured data may differ according
to hospital data set and region (eg, microbiology results can be
registered as free-text or tabular data). Despite these limitations,
we could identify a lack of uniform definitions for labeling of
postoperative infections exists, and that manual labeling is
currently the predominant method. Third, pre-existing infections
could have impacted the performance of surveillance algorithms
and prediction models as well as label reliability [73]. This
could explain the relatively lower PPVs and warrants further
research before reliable implementation of automated
surveillance systems.

Different types of data were used among the definitions and
methods, including structured tabular data, microbiological data,
free-text data, and imaging results. The importance of reliable,
high-quality outcome data is essential for the reliable use of
artificial intelligence and surveillance systems [74]. Using
structured EHR data is preferable, as free text is often subject
to misinterpretation and contains personal patient-specific data
that conflict with privacy legislation and thus have restrictions
on data use [75]. By extracting free-text information, NLP shows
promise in uncovering postoperative infections from free-text
data. However, challenges remain with respect to
generalizability [76], transparency, reliability, and potential
biases, including concerns about accuracy or unintended errors
[77,78]. Furthermore, NLP methods can be computationally
expensive, depend on the quality of the input data, and are
influenced by nuances in language, dialects, and medical jargon.
Considering that NLP methods can vary significantly in
complexity, ranging from simple string searches to advanced
neural networks, future research should investigate whether
increased complexity leads to improved surveillance accuracy.
The use of microbiology results in definitions is prevalent,

despite their occasional unreliability due to the possibility of
false negatives or positives, causing under- or overreporting of
infections [13], and heterogeneous storage practices. This
reliance on microbiology results could lead to errors or
inconsistencies in infection identification.

Accurately identifying patients with infections based on an
automated analysis of EHR data remains a challenge, and
validation is difficult owing to the limitations of manual chart
review, which until now has remained the reference standard
for postoperative infections and other relevant patient outcomes.
Manual labeling based on manual EHR chart review is
unfeasible when scaling artificial intelligence–based or statistical
prediction models to more than one hospital, with 100,000
patient records each. In some of the included studies, alternative
approaches were identified that relied on treatments and other
structured data sources [27,31-33,41-43]. For future prediction
model development and surveillance, alternative approaches to
identifying patients with infection should be explored, such as
focusing on pharmacological and interventional treatments
performed by clinicians, as these approaches are often stored
in a structured format in the EHR system [27]. Emphasis should
be placed on the consensus on the definition and whether it is
worse to miss infections that do not require treatment compared
with those that do. Compared with sensitivity, specificity, and
NPV, automated surveillance systems have a lower PPV where
heterogeneity is observed between the different types of
infections. The PPV to detect pneumonia and SSIs is lower
compared with other types of infections. This could be due to
variations in clinical presentation, differences in diagnostic
criteria, or the inherent complexity and variability of these
particular infections. A lower PPV in general could be due to
the use of low classification cutoffs to not miss any cases, but
it could also indicate that the reference standard manual labeling
may have resulted in erroneous labels and that the systems found
infections where the human annotator did not [79]. In addition
to detecting individual patients with infections, automated
surveillance systems hold promise for assessing hospital
incidence rates, predicting rates of complications, and evaluating
the effectiveness of quality improvement initiatives, where the
emphasis may shift from high PPVs to broader statistical
insights.

In conclusion, there is currently no evidence to support fully
automated labeling and identification of patients with infections
based solely on structured EHR data. This is due to the diverse
definitions of postoperative infection and the need for
unstructured data types, such as free text and clinical notes,
which were required as data sources in nearly half of the
instances to assess an infection. Furthermore, manual labeling
was still the predominant method in prediction modeling studies.
Fully automatic surveillance methods may result in
overreporting due to a relatively low PPV and heavy reliance
on free-text data. Future research must focus on defining
uniform or globally accepted definitions of postoperative
infection that use criteria that can be extracted from the EHR,
as well as prioritizing the development of more scalable
automated methods for infection detection using EHR data.
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