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Abstract

Background: Activities of daily living (ADL) are essential for independence and personal well-being, reflecting an individual’s
functional status. Impairment in executing these tasks can limit autonomy and negatively affect quality of life. The assessment
of physical function during ADL is crucial for the prevention and rehabilitation of movement limitations. Still, its traditional
evaluation based on subjective observation has limitations in precision and objectivity.

Objective: The primary objective of this study is to use innovative technology, specifically wearable inertial sensors combined
with artificial intelligence techniques, to objectively and accurately evaluate human performance in ADL. It is proposed to
overcome the limitations of traditional methods by implementing systems that allow dynamic and noninvasive monitoring of
movements during daily activities. The approach seeks to provide an effective tool for the early detection of dysfunctions and
the personalization of treatment and rehabilitation plans, thus promoting an improvement in the quality of life of individuals.

Methods: To monitor movements, wearable inertial sensors were developed, which include accelerometers and triaxial gyroscopes.
The developed sensors were used to create a proprietary database with 6 movements related to the shoulder and 3 related to the
back. We registered 53,165 activity records in the database (consisting of accelerometer and gyroscope measurements), which
were reduced to 52,600 after processing to remove null or abnormal values. Finally, 4 deep learning (DL) models were created
by combining various processing layers to explore different approaches in ADL recognition.

Results: The results revealed high performance of the 4 proposed models, with levels of accuracy, precision, recall, and F1-score
ranging between 95% and 97% for all classes and an average loss of 0.10. These results indicate the great capacity of the models
to accurately identify a variety of activities, with a good balance between precision and recall. Both the convolutional and
bidirectional approaches achieved slightly superior results, although the bidirectional model reached convergence in a smaller
number of epochs.

Conclusions: The DL models implemented have demonstrated solid performance, indicating an effective ability to identify and
classify various daily activities related to the shoulder and lumbar region. These results were achieved with minimal
sensorization—being noninvasive and practically imperceptible to the user—which does not affect their daily routine and promotes
acceptance and adherence to continuous monitoring, thus improving the reliability of the data collected. This research has the
potential to have a significant impact on the clinical evaluation and rehabilitation of patients with movement limitations, by
providing an objective and advanced tool to detect key movement patterns and joint dysfunctions.

(JMIR Med Inform 2024;12:e57097) doi: 10.2196/57097
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Introduction

Activities of daily living (ADL) are the most basic tasks of the
person, as they enable them to function with a minimum of
autonomy. ADL are crucial for maintaining quality of life and
personal well-being, serving as indicators of functional status
[1-3]. ADL are an indicator of a person’s functional status and
include basic physical tasks such as moving, eating, dressing,
maintaining personal hygiene, and grooming, as well as more
complex and instrumental activities such as working, shopping,
cleaning, exercising, and participating in recreational activities
[2-4]. Impaired physical function can limit the execution of
these tasks, affecting personal goals and independent living.
This condition can affect the individual’s ability to achieve
personal goals and maintain an independent quality of life
[2,5,6]. Therefore, it is necessary to assess this deterioration
during the execution of ADL in different preventive, clinical,
or rehabilitation contexts [6-8].

The functional assessment of ADL is complex, so it is advisable
to approach it based on the evaluation of fundamental movement
patterns on which these ADL are developed [9-11]. The shoulder
and lumbar region are key joint complexes in this regard.
Specifically, the shoulder joint is essential in many basic ADL,
providing the mobility and stability necessary to perform actions
in all planes of movement. It is essential to position the hand
in space in a way that allows one to reach objects, eat, button
a shirt, unbutton a bra, or comb one’s hair [9,12-14]. The
movement patterns most used in its assessment are
scapula-humeral elevation in the sagittal and frontal plane and
rotations at different elevation angles [9,13,14]. Similarly, the
lumbar region is a joint complex that has a close relationship
with basic movement patterns such as flexion and extension of
the trunk in the sagittal plane but also in extremely important
actions such as sitting and standing up [10,15-18]. Various ADL
derive from this fundamental movement pattern, the most
studied being the gestures of sitting and getting up from a chair,
bending or crouching, and lifting an object or weight [15-17,19].

The precise evaluation, control, and monitoring of ADL
performance are fundamental tasks, although not simple, in the
development of effective intervention tools in these clinical and
rehabilitation contexts. Traditionally, the assessment of ADL
has been based on direct observation and subjective evaluation
by therapists, which entails biases, errors, and lack of precision
in the results [6,20-22]. In contrast, recent advancements in
technology, including wearable health monitoring devices, smart
clothing sensors, and mobility assistance devices, enable the
objective assessment and quantification of personal performance
during ADL [23-27]. This technology includes wearable devices,
motion sensors, and 2D or 3D motion capture systems, which
allow complex movements and functionality of key joints, such
as the shoulder or lumbar region, to be accurately recorded and
analyzed during the performance of ADL [4,9,15]. However,
limitations such as its high acquisition and implementation cost,

its specialized technical knowledge, its lack of transparency and
complexity, or its lack of validation and reliability hinder its
applicability in the specific clinical or rehabilitation context
[4,9,24,25].

A promising solution to overcome the aforementioned
limitations is the use of wearable inertial sensors [28-34]. These
have been gaining substantial scientific interest due to their
potential to provide real-time information on kinematic aspects
of human movement through continuous, dynamic, and
minimally invasive monitoring. In the clinical and rehabilitation
field, this technology has emerged as a simple and low-cost
alternative to obtain precise information on accelerations,
angular velocities, and trajectories in the different planes of
movement during the execution of different basic ADL. This
technology offers several advantages. It allows for a more
accurate and objective assessment of the functionality of key
joint complexes, identifying specific areas of weakness or
limitation in movement during ADL and providing quantitative
data on the person’s progress over time [28,35,36]. On the other
hand, it favors the motivation of patients, by being able to
visualize their evolution, thus improving treatment adherence
[28,31,37].

However, inertial sensors have some limitations. Despite being
light and small, these devices may not be entirely transparent
for users, especially due to the high number of sensors that, in
many cases, must be used to obtain data that accurately interpret
human movement [30,38,39].

Compared with the traditional approach of most studies that
only use wearable inertial sensors to monitor kinematic aspects
of human movement, the use of artificial intelligence (AI)
techniques has been gaining popularity, by helping to improve
the process of assessing and supervising different body
movements using inertial sensors, in addition to reducing the
number of sensors necessary for this [40-42].

In Yen at al [40], a wearable device consisting of a
microcontroller and an inertial sensor placed on the participant’s
waist is presented. The signals collected by the accelerometer
and gyroscope were used to train a 1D convolutional neural
network–based feature learning model, enabling the
identification of 6 ADL. The results demonstrated high accuracy
in both external and study data, validating the effectiveness of
the proposed method.

The study by Huynh-The et al [41] introduces an innovative
method for recognizing ADL- and sports-related activities using
wearable sensors. This method involves converting inertial data
into color images, facilitating the learning of highly
discriminative features using convolutional neural networks.
Experimental results showed recognition accuracy of over 95%,
outperforming other deep learning (DL)–based approaches for
human activity recognition (HAR).
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In Ronald et al [43], a novel DL model inspired by the
Inception-ResNet architecture is presented for HAR tasks. The
proposed model, trained on data collected from smartphones
and inertial sensors capturing accelerometer, gyroscope,
magnetometer, GPS, temperature, and heart rate signals,
achieved remarkable performance across different data sets,
demonstrating its flexibility and adaptability to varying signal
types and quantities.

Meanwhile, Poulose et al [44] address the challenges of HAR
in health care systems by proposing an approach based on a
human image threshing machine using smartphone camera
images. The human image threshing system uses mask
region–based convolutional neural networks for human detection
and a DL model for activity classification, achieving a precision
of 98.53% and surpassing conventional sensor-based HAR
approaches.

This study is based on the combination of accelerometer and
gyroscope signals with AI techniques for the assessment of the
shoulder and lumbar spine. AI algorithms can process the data
captured by inertial sensors and perform sophisticated analyses
to detect patterns, identify alterations in movement, and provide
relevant clinical information. This facilitates a more complete
and accurate evaluation of the joint movement of the shoulder
or lower back, allowing a better understanding of dysfunctions
and personalization of treatment and rehabilitation plans. The
key contributions made by this study are summarized as follows:

1. Accelerometer and gyroscope signals with AI integration
for enhanced ADL assessment: This combination shows
great potential for the assessment of shoulder and lumbar
region motion in basic ADL performance, providing an
objective and advanced perspective in clinical evaluation
and rehabilitation. However, validly and reliably
demonstrating its use as a control and evaluation tool for
ADL performance, in gestures such as eating, combing hair,
dressing, sitting, or standing, still appears as an unresolved
research challenge. Therefore, in this study, we aim to
address the automatic detection and monitoring, using AI

techniques, of the patient’s basic ADL related to the
shoulder and back.

2. Enhanced activity recognition precision: Our study relies
on direct capture of inertial sensor signals, potentially
offering a more precise and less image quality–dependent
solution.

3. Efficient sensors use: For signal capture, only 2 sensors are
used. Furthermore, it is intended to achieve this objective
through minimal, noninvasive, and practically transparent
sensorization for the user, improving adherence to the
monitoring process and facilitating the integration of
technology into the individual’s daily life at a low cost.

4. Direct inertial data approach: Our study focuses on the
direct use of accelerometer and gyroscope data without
requiring additional conversion for model training.

5. Broad scope and versatility: It covers a wide range of
activities, showcasing its versatility and adaptability.

We believe that this novel approach will make a significant
contribution to this field of research, as it can be used in the
prevention, clinical, or rehabilitation contexts of the shoulder
and lumbar region.

The remainder of the paper is organized as follows: the Methods
section addresses how the database was generated, the
processing layers used, and the architecture of the 4 developed
DL models, as well as the parameters selected for their training
and optimization. In the Results section, the evaluation outcomes
obtained by the 4 DL models are presented, analyzed, and
compared. Finally, the Discussion section presents a discussion
of the principal findings and conclusions regarding our study.

Methods

Overview
This research work focuses on the detection and automatic
monitoring of ADL using AI models (DL models) and wearable
inertial sensors to prevent or diagnose injuries, as well as
supervise rehabilitation processes. Figure 1 presents an overview
of the methodology proposed. In the following subsections,
each step is explained in depth.

Figure 1. System overview. HDAR: Human Daily Activities Recognition ; IMU: inertial measurement unit.

Ethical Considerations
This study has been conducted in strict accordance with the
ethical principles outlined in the Declaration of Helsinki.
Approval for this research was obtained from the Ethics
Committee of the University of Alicante (protocol code
UA-2023-11-16).

Prior to commencement, participants provided written informed
consent. Respect for participants, including their autonomy,
confidentiality, and well-being, has been ensured.

All collected data have undergone a rigorous anonymization
process, safeguarding the privacy of the individuals involved
in the research. Protective measures were implemented in
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accordance with institutional guidelines to ensure the security
of participant information throughout the study.

Participants involved in human subjects research were not
provided with any form of compensation. This decision was
made to uphold transparency and fairness in the research process
and to minimize potential biases associated with compensation.

Data Collection
A total of 9 ADLs were included in the study, 6 of them related
to the shoulder (eating [E], combing hair [CH], fastening the
bra [FB], opening the door [OD], reaching for an object [RO],
and buttoning up [BU]) and 3 related to the back (sitting [S],
standing up [SU], and half squat [HS]). Figure 2 graphically
shows these movements.

Figure 2. Graphic description of activities of daily living movements. In the top row (from left to right): eating, combing hair, and fastening the bra.
In the middle row (from left to right): opening the door, reaching for an object, and buttoning up. Bottom row (left to right): sitting, standing up, and
half squat.
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To monitor movements, we used 2 self-developed inertial
measurement unit ERGOtex model sensors [45,46]. This inertial
measurement unit ERGOtex sensor comprises 3 triaxial
accelerometers (±2 g, controlled noise at 100 µg/√Hz), triaxial
gyroscopes (±1000 deg/s, sensitivity error within ±1%, and low
noise level, at ±4 mdeg/s/√Hz), and magnetometers,
encapsulated in a device (weight=8 g, dimensions=23×21×10
mm). The ICM-20602 MEMS MotionTracking (TDK Corp)
device was selected for its high-performance specifications,

critical for the reliability of the device. The incorporation of a
1K-byte FIFO buffer reduces serial bus congestion, enhancing
measurement consistency and optimizing device power use. It
operates at a sampling rate of 20 Hz, has an autonomy of 8
hours, and can be attached to the skin using double-sided tape
or secured elsewhere using an elastic strap. These enhancements
guarantee reliable response times and sensitivity levels, crucial
for maintaining data accuracy (Figure 3).

Figure 3. ERGOtex inertial measurement unit sensors were developed for movement identification.

The inertial sensors were attached to the skin over the sacrum
(S1) and the distal part of the upper extremity (close to the
wrist). Primarily designed for monitoring spine posture and
arm, this device records acceleration data across all 3 axes.
Internal integration of the acceleration signal occurs within the
device, transmitting data instantly via Bluetooth (frequency=2.4
GHz) to a smartphone or tablet equipped with the preinstalled
app. This application enables immediate data visualization and
facilitates export to a spreadsheet in comma-separated text
format (CSV).

The database generated initially had 53,165 records of all
activities. The records were grouped into batches of time series
(of different lengths) that represented the different movements.
Each record was made up of 12 attributes or numerical variables,
corresponding to the value obtained by the accelerometer and
gyroscope of each sensor during the execution of the movement
according to its 3 axes (Acx, Acy, Acz, Gyx, Gyy, Gyz). After
the processing stage, where null, missing, and abnormal values
were eliminated, the database was reduced to 52,600 records
(RO: n=6423, FB: n=6956, E: n=6216, OD: n=6472, SU:
n=3678, CH: n=6010, BU: n=5915, HS: n=6630, and S:
n=4300).

DL Models

Processing Layers
To create the DL models, different processing layers that
perform the transformation, regularization, feature extraction,

regularization, and dependency capture operations were
combined. The basics of each of them are presented below.

1D Convolution Layer for Feature Extraction
A 1D convolutional layer is specifically designed to process
data that follows a 1D structure, such as time series or text
sequences. In the case of a 1D time series, the 1D convolution
operation follows a similar process as a standard convolutional
layer but is performed along 1 dimension instead of 2 [47]. The
convolution operation is the key component of this type of layer.
During the 1D convolution operation, a filter (kernel) of defined
size slides along the time series, multiplying the filter values
by the corresponding values in the time series and summing
them to produce a single value at the output. This process is
repeated for each filter position throughout the time series, thus
generating a feature map that highlights relevant patterns in the
data sequences. The 1D convolutional layer is essential for the
automatic identification of patterns in time series, allowing
efficient extraction of important features during the training
process. By reducing the number of parameters and avoiding
overfitting, 1D convolution helps capture the temporal structure
of data and improve model performance in time series prediction
or classification tasks [48]. Given an input 1D time series X and
a set of filters F, the convolution operation is performed as
follows (equation 1):
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where Yi is the output value at the feature map position i, Xi+j

is the time series value at position i+j, * denotes the convolution
operation, and bi is the bias associated with the output Fj, and
m is the filter size.

Long Short-Term Memory Layer for Modeling Temporal
Dependencies
Long short-term memory (LSTM) layers are a type of recurrent
layer designed to overcome the limitations of traditional
recurrent neural networks in capturing long-term dependencies
in temporal sequences [49]. Its design is based on the idea of
using internal memory structures controlled by gates to manage
information over time and make decisions about what
information to retain and discard. In an LSTM, 3 main gates
are introduced: the forget gate, which decides what information
should be discarded from the previous memory; the input gate,
which decides what new information should be stored in
memory; and the output gate, which determines what memory
information should be used to generate the output of the layer.
These gates are controlled by activation functions and adjustable
weights during training.

An overview of the fundamental equations of an LSTM cell is
presented below, which describe how an LSTM cell manages
information and gates to process and retain relevant information
over time in a temporal sequence, given one input at a time step
t, denoted as xt, and the outputs of the previous time step [ht–1]
(LSTM cell output) and Ct–1 (LSTM cell state).

Forget gate (ft): decides what information should be discarded
or forgotten from the cell state (equation 2)

Input gate (it): decide what new information to store in the cell
state (equations 3 and 4)

The forgotten information and new information are then
combined to update the state of the cell (equation 5).

Output gate (ot): finally, the final activation at the current
position (ht) is calculated with the output gate (ot), which
regulates the amount of information to be output (equation 6)

Where σ is the sigmoid function; tanh is the hyperbolic tangent
function; Wi,WC and Wo are weight matrices that are learned
during training; and bf, bi, bc, and bo are biases. [ht–1,xt] denotes
the concatenation of ht–1 and xt before applying the linear
operation.

Dropout Regularization Layer
The Dropout layer is a regularization strategy that prevents
overfitting by introducing variability into the network during
training [50]. This technique randomly turns off a percentage
of units in each iteration, temporarily removing them and forcing
the network to learn more robust representations. Based on the
assembly concept, it simulates the presence or absence of units,
improving effectiveness and reducing dependence on specific
units. In addition to its impact on generalization, the Dropout
layer acts as an effective regularization mechanism, improving
modeling efficiency and performance by preventing
overoptimization and facilitating generalization to unseen data
[51,52].

Flatten and Fully Connected (Dense) Transformation
Layers
The Flatten layer aims to transform 2D or 3D data into a 1D
format, allowing for a more manageable representation and
facilitating the transition from convolutional layers to dense
layers [53]. Given a 3D input matrix where m, n, and p are the
spatial dimensions, the Flatten layer converts this matrix into a
1D vector X’ of size m * n * p.

The fully connected (FC) or Dense layer connects all neurons
in 1 layer to all neurons in the next layer [48]. It performs linear
transformations on the data followed by nonlinear activation
functions, allowing complex representations to be learned. If X
is the input of the Dense layer, W is the weight matrix, and b is
the bias vector, the output Y is calculated as (equation 8):

where σ is the activation function.

1D MaxPooling Layer for Feature Reduction
The 1D MaxPooling layer is a technique used in neural networks
to reduce the spatial dimensionality of data by retaining only
the maximum values in specific regions [54,55]. In the context
of 1D time series, 1D MaxPooling is used to summarize the
most relevant information and reduce the computational cost
by decreasing the number of parameters in the network. Given
a 1D input data set X with elements and a pooling window of
size p, the output Y is calculated by taking the maximum value
in each window. Mathematically, this can be expressed as
(equation 9):

where i is the index of the pooling window. This process is
repeated until the entire length of the entry is covered.

Proposed Architecture

Overview
The processing layers described above were combined to create
4 DL models of different complexity. Each model was designed
to explore and exploit different approaches in data processing
for the ADL recognition task. The architectures and distinctive
features of each of these models are detailed below.
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Convolutional Approach
The first proposed architecture uses a convolutional approach.
It is composed of 3 main layers: a 1D convolutional layer, a
pooling layer, and an FC layer (Figure 4). The convolutional
layer, with 64 filters and a kernel size of 5, performs local
feature extraction. Next, the pooling layer with pool size 2 is
applied to reduce the dimensionality and preserve the most
relevant features. Subsequently, a Flatten layer is used to convert
the output into a 1D vector before connecting it to an FC layer

with 128 neurons and a rectified lineal unit (ReLU) activation
function. ReLU is a nonlinear activation function commonly
used in neural networks to introduce nonlinearities and aid in
model convergence [56]. Finally, a Dropout layer with a rate
of 40% is incorporated to prevent overfitting. The output layer
uses the Softmax function and is designed for multiclass
classification. The output layer uses the Softmax function, which
is commonly used in multiclass classification tasks to compute
the probabilities of each class outcome and facilitate
decision-making based on the highest probability class [57].

Figure 4. Model architecture based on a convolutional approach.

Deep LSTM Approach
The second architecture is based on a deep LSTM networking
approach. It includes 2 LSTM layers, both with 64 units,
followed by a Flatten layer. Then, 2 FC layers, with 64 and 32
neurons, respectively, and ReLU activation function are
incorporated. The output layer uses the Softmax function for

multiclass classification (Figure 5). This architecture deepens
into the LSTM network with multiple layers, allowing more
complex temporal patterns to be learned. The complexity
increases compared with the convolutional model due to the
deepening of the LSTM layers and the increase in FC
connections. This approach seeks to capture more elaborate
temporal dependencies in time series data.
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Figure 5. Model architecture based on a deep LSTM approach. LSTM: long short-term memory.

Hybrid Approach: 1D Convolutional + LSTM
The third architecture adopts a hybrid approach combining
convolutional layers and LSTM networks (Figure 6). It starts
with a 1D convolutional layer with 32 filters and kernel size 3,
followed by an LSTM layer with 64 units. Subsequently, a
pooling layer and a Flatten layer are applied. A Dropout layer
(30%) is introduced to prevent overfitting before connecting to

an FC layer with 64 neurons and ReLU activation. The output
layer uses Softmax for multiclass classification. This architecture
seeks to take advantage of the ability of convolutional layers to
extract local features and the ability of LSTMs to model
long-term temporal dependencies, offering a combination of
both capabilities. Its complexity lies in the integration of 2
different approaches to improve the representation and
understanding of time series data.

JMIR Med Inform 2024 | vol. 12 | e57097 | p. 8https://medinform.jmir.org/2024/1/e57097
(page number not for citation purposes)

De Ramón Fernández et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Model architecture based on a hybrid approach (convolutional + LSTM). LSTM: long short-term memory.

Bidirectional LSTM Approach
The fourth architecture adopts a bidirectional approach using
LSTM layers (Figure 7). It starts with a bidirectional LSTM
layer with 64 units to capture temporal patterns in both
directions. Then, a Flatten layer is applied before connecting

with 2 FC layers of 64 and 32 neurons, respectively, with ReLU
activation function. The output layer uses Softmax for multiclass
classification. This architecture represents a more sophisticated
and complex model by taking advantage of the ability of
bidirectional LSTMs to capture both forward and backward
temporal dependencies.
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Figure 7. Model architecture based on a bidirectional LSTM approach. LSTM: long short-term memory.

Selection of Parameters for Training and Optimization
of Models
For a better understanding of the data and selection of the
hyperparameters of the AI model, the accelerometry and

gyroscope values of each movement were analyzed separately
(Figure 8). Based on this, the temporal sequences were divided
into windows of 100 records with a 10-record overlap between
adjacent windows.

Figure 8. Time series of eating activity: (A) accelerometer and (B) gyroscope.

Each model was trained over 150 epochs, representing a
complete iteration through the training data. The model weights
were updated every 1024 records (batch size), and training was
stopped if the validation accuracy did not improve for 15
consecutive epochs (early stopping) to prevent overfitting.

As the optimization algorithm during training, Adam was used.
Its primary goal is to adjust the network’s weights and biases
so that the model’s loss function is minimized. Adam enhances
the standard gradient descent technique by adjusting the learning

rate for each parameter individually, potentially leading to faster
convergence and better model performance.

Additionally, an L2 regularization term with a strength of 0.0015
was also applied to mitigate overfitting. This term controls the
excessive growth of weights during training by adding a penalty
term to the model’s loss function. The regularization strength
determines how much large weights are penalized. By penalizing
large weights, L2 regularization helps smooth out the model’s
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decisions and prevents it from fitting too closely to the training
data.

Categorical cross-entropy was used as the loss function. This
function measures the discrepancy between the probability
distributions predicted by the model and the actual distributions.
The primary evaluation metric was accuracy, indicating the
proportion of the model’s predictions in the test set that were
correct.

Results

Evaluation Metrics
The experiment was performed on a personal computer with
Microsoft Windows 10, an Intel(R) Core(TM) i5-4210U CPU
@ 1.70GHz-2.40 GHz, 6 GB RAM, and no GPU. All software
was implemented using the Python programming language and
the TensorFlow library in the Spyder development environment.
After preparing the data, the DL models were trained using 70%
of the data, and the remaining 30% was used to evaluate their
performance. For this, popular evaluation metrics were used in
classification problems, including precision, recall, F1-score,
and accuracy.

Accuracy (equation 10) refers to the proportion of correct
predictions, true positives (TPs) and true negatives (TNs) in
relation to the total predictions made by the model, which
include false positives (FPs) and false negatives (FNs).

Precision (equation 11) represents the proportion of positive
predictions that were correct. It is calculated as the number of
TPs divided by the sum of TPs and FPs.

Recall (equation 12) refers to the proportion of TP cases that
were correctly identified by the model, calculated as the number
of TPs divided by the sum of TPs and FNs.

F1-score (equation 13) is a measure that combines precision
and recall. It is calculated as the harmonic mean between
precision and recall and provides a more balanced assessment
of model performance, particularly useful when there is an
imbalance in the class distribution in the data.

Evaluation Outcomes
The obtained results show the high performance of the 4
proposed models, with accuracy, precision, recall, and F1-score
ranging between 95% and 97% for all cases (Table 1), while
the loss function indicates an error rate of approximately 0.10
for the models. The high accuracy, precision, and recall suggest
an ability to accurately identify multiple classes of activities,
while the high F1-score indicates a good balance between
precision and recall. These results suggest that the models have
effectively learned the relationships in the training, enabling
them to identify patterns and generalize effectively to data they
have not encountered during training, demonstrating strong and
reliable predictive capabilities.

Table 1. Evaluation metrics of the designed deep learning models.

F1-score (%)Recall (%)Precision (%)Accuracy (%)Models

97.1497.1497.1997.11CNNa

95.5495.5895.6495.52Deep LSTMd

96.1496.1496.1996.19CNN+LSTM

97.5197.5297.5197.56Bidirectional LSTM

aCNN: convolutional neural network.
bLSTM: long short-term memory.

When comparing different modeling approaches, it is evident
that both the convolutional and bidirectional methods yield
similar results across all evaluated metrics. This suggests that,
despite the bidirectional approach’s inherent complexity in
processing sequences in both directions, it does not offer a
significant improvement over the simpler convolutional method.
The convolutional model may have struck an optimal balance
between learnability and generalization, enabling it to match or
even surpass more complex models in terms of accuracy.
However, it is worth noting that the bidirectional model achieved
convergence in a smaller number of epochs (n=30; Figure 9),

which is particularly valuable when rapid training and model
responsiveness are required.

It is also noteworthy that more complex models, such as deep
LSTM and the hybrid approach, exhibit slightly inferior results
compared with the convolutional approach. This observation
may stem from several factors. First, the generalization ability
of these models may be compromised due to the inherent
complexity of their architectures and sensitivity to weight
initialization. Additionally, the nature of the data and the
suitability of different modeling approaches to capture the
relevant characteristics of the time series should be considered.
The activities represented in the data may benefit more from a
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simpler, more straightforward approach, such as convolutional,
rather than more complex methods that may be prone to
capturing irrelevant features or noise in the data.

At the activity or class level, the confusion matrix provides a
detailed breakdown of the model predictions for each class
compared with the real class. Referring to the confusion matrix
of the model with the best performance (Figure 10), it is
observed that the majority of the predictions align with the main
diagonal of the matrix, indicating that, for the most part, the
classes are classified correctly. However, the activity of eating

exhibits the most erroneous predictions, primarily being
confused with the activities of opening a door and combing
one’s hair. This confusion may arise due to overlapping
movements and shared characteristics, such as acceleration and
rotation patterns, making it challenging for the model to
distinguish between them. Moreover, variations in the sequence
of movements and the context in which these activities are
performed may lead to different interpretations by the model.
Variability in the execution of activities and differences in
movements between individuals can also contribute to confusion
among these classes.

Figure 9. Training sessions progress over iterations.

Figure 10. Confusion matrix of the winning model based on the bidirectional approach: (left) standard and (right) normalized. BU: buttoning up; CH:
combing hair; E: eating; FB: fastening the bra; HS: half squat; OD: opening the door; RO: reaching for an object; S: sitting SU: standing up.
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Discussion

Background
ADL are fundamental tasks that enable individuals to function
with a minimum of autonomy and maintain their quality of life.
Precise evaluation of ADL, especially in clinical and
rehabilitation contexts, is crucial for understanding individuals’
functional status and designing effective interventions.
Traditionally, the assessment of ADL has relied on direct
observation and subjective evaluation by therapists, which can
lead to biases and errors. Innovative technology, including
wearable inertial sensors and AI, offers new opportunities for
objective and quantitative evaluation of ADL performance.

Principal Findings
This study presents an innovative initiative by combining
wearable inertial sensors with AI techniques to evaluate human
movement in ADL. The implemented AI models have
demonstrated solid performance, exhibiting high accuracy,
precision, recall, and F1-score (ranging between 95% and 97%),
indicating an effective ability to identify and classify a variety
of daily activities related to the shoulder and lumbar region.
Furthermore, these results have been achieved through minimal
sensorization, which is noninvasive and practically imperceptible
to the user, thus minimizing interference with their daily life.
This feature is crucial as it promotes user acceptance and
adherence to continuous monitoring, contributing to the
reliability of the collected data.

Comparison to Prior Work
This study presents significant improvements in the
identification and monitoring of activities of ADL compared
with other existing methods. Unlike most previous approaches
that primarily focus on activities involving the lumbar region
(sitting, lying down, standing up, etc), our proposal allows for
the precise identification of complex movements involving both
the lumbar region and the shoulder. This is achieved using only
2 low-cost inertial sensors, contrasting with other solutions that
require a higher degree of sensorization or bulkier devices. This
minimally invasive monitoring enables individuals to perform
daily activities naturally, promoting a more authentic
representation of movement.

The information provided by the sensors is used by DL
algorithms for movement identification, without requiring
additional processing. This enables immediate analysis of
movement patterns during the performance of everyday
activities, avoiding the delay associated with data processing
needed in image-based motion capture systems, which tend to
be more expensive and complex to set up and maintain.

Furthermore, the use of inertial sensors offers versatility and
adaptability, making them suitable for monitoring a wide range
of ADL in different environments and contexts. They provide
valuable information on movement patterns and functional

abilities that may not be effectively captured or may be more
difficult to capture by traditional 2D and 3D motion capture
systems, which are more limited by factors such as image
quality, potential obstructions in the line of sight between the
camera and the person, or the need to use a greater number of
cameras or sensors to capture all movement details.

Limitations and Strengths of This Study
This study demonstrates notable strengths in its methodology
and approach. It uses the integration of inertial sensors and AI
to improve the assessment of shoulder and lumbar motion during
basic ADL performance, providing an objective and advanced
perspective for clinical evaluation and rehabilitation. Although
challenges persist in validating its use across various ADL
gestures, such as eating or dressing, our focus on automatic
detection and monitoring using AI techniques addresses this
gap. Furthermore, by directly capturing inertial sensor signals
and using only 2 sensors, our approach ensures enhanced activity
recognition precision and efficiency. This strategy facilitates
seamless integration into individuals’ daily lives at a low cost,
promoting improved adherence to monitoring. Additionally,
our study’s direct use of accelerometer and gyroscope data
without conversion for model training emphasizes its versatility
and broad scope, highlighting its adaptability across a wide
range of activities.

However, it is essential to acknowledge potential limitations to
encourage further research and refinement. One limitation lies
in the scope of activities monitored, which primarily focuses
on specific muscle groups. Future research should aim to expand
the scope of using AI and wearable inertial sensors beyond the
assessment of shoulder and lumbar motion, broadening the
range of monitored ADL. Given this limitation, it would be
interesting to conduct in the future more extensive studies that
encompass a broader range of ADL and other more distal body
segments. For instance, investigations could explore the
application of these technologies in assessing motion patterns
related to limb motion (ie, elbow and wrist, or knee and ankle
movements), offering valuable insights into biomechanical
segmentary dynamics and enhancing our understanding of
musculoskeletal movement patterns through AI approaches.
Despite this limitation, the study sets a solid foundation for
future endeavors in this field, showcasing its potential for
advancement and application in clinical and rehabilitative
settings.

Conclusions
This research has the potential to significantly impact the clinical
evaluation and rehabilitation of patients with movement
limitations, offering an objective and advanced tool to detect
key movement patterns and joint dysfunctions. Such information
can assist professionals in tailoring treatment plans to be more
precise and personalized, addressing specific areas of weakness,
and designing interventions to improve the patient’s
functionality and quality of life.
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ADL: activities of daily living
AI: artificial intelligence
BU: buttoning up
CH: combing hair
DL: deep learning
E: eating
FB: fastening the bra
FC: fully connected
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HAR: human activity recognition
HS: half squat
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LSTM: long short-term memory
RO: reaching for an object
ReLU: rectified lineal unit
S: sitting
SU: standing up
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TN: true negative
TP: true positive
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