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Abstract
Background: Ventilator-associated pneumonia (VAP) is a serious complication of mechanical ventilation therapy that affects
patients’ treatments and prognoses. Owing to its excellent data mining capabilities, artificial intelligence (AI) has been
increasingly used to predict VAP.
Objective: This paper reviews VAP prediction models that are based on AI, providing a reference for the early identification
of high-risk groups in future clinical practice.
Methods: A scoping review was conducted in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The Wanfang database, the Chinese Biomedical
Literature Database, Cochrane Library, Web of Science, PubMed, MEDLINE, and Embase were searched to identify relevant
articles. Study selection and data extraction were independently conducted by 2 reviewers. The data extracted from the
included studies were synthesized narratively.
Results: Of the 137 publications retrieved, 11 were included in this scoping review. The included studies reported the use
of AI for predicting VAP. All 11 studies predicted VAP occurrence, and studies on VAP prognosis were excluded. Further,
these studies used text data, and none of them involved imaging data. Public databases were the primary sources of data for
model building (studies: 6/11, 55%), and 5 studies had sample sizes of <1000. Machine learning was the primary algorithm
for studying the VAP prediction models. However, deep learning and large language models were not used to construct VAP
prediction models. The random forest model was the most commonly used model (studies: 5/11, 45%). All studies only
performed internal validations, and none of them addressed how to implement and apply the final model in real-life clinical
settings.
Conclusions: This review presents an overview of studies that used AI to predict and diagnose VAP. AI models have better
predictive performance than traditional methods and are expected to provide indispensable tools for VAP risk prediction in
the future. However, the current research is in the model construction and validation stage, and the implementation of and
guidance for clinical VAP prediction require further research.
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Introduction
Background
Ventilator-associated pneumonia (VAP) is a pulmonary
infectious disease that occurs in patients who receive
mechanical ventilation for more than 48 hours and is
primarily caused by pathogens that are present in the hospital
environment. VAP is one of the most common complications
in patients who undergo invasive mechanical ventilation. The
incidence of VAP among patients who undergo mechanical
ventilation ranges from 5% to 40%, depending on the setting
and diagnostic criteria. The estimated attributable mortality
rate of VAP is approximately 10%, with higher mortality
rates among surgical intensive care unit (ICU) patients and
those with moderate severity scores at admission [1]. VAP
seriously affects the treatments and prognoses of patients,
resulting in prolonged hospital stays, increased medical costs,
and increased mortality rates. The early identification of
groups at high risk for VAP is important for reducing VAP
incidence and mortality [2].

Artificial intelligence (AI) can contribute to significant
developments in the medical field. With the popularity
of electronic health records, advancements in hardware
computing power, and the development of big data, AI has
become the optimal tool [3]. Among predictive models, AI
models perform better than traditional models in various
ways [4]. Data mining of patient cases via AI technology is
conducted to create tools that can predict groups at high risk
for VAP to help medical staff initiate preventive interven-
tions early, which is critical for reducing VAP incidence and
mortality. Therefore, we aimed to explore the application of
AI technology in predicting VAP and report our findings
to provide a reference for the future development of VAP
prevention.

Research Problem and Objective
Many studies have been conducted on the application of AI
to VAP prediction. However, there is a lack of integrated
evidence describing the AI techniques and model features that
have been used in existing research. Therefore, this review
aims to explore the characteristics of AI models for VAP
prediction to assist the scientific community in advancing
research within this field by identifying gaps and planning for
the future.

Methods
Overview
We conducted a scoping review of studies that used AI to
predict and diagnose VAP. For a transparent review, the
guidelines of the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) [5] were followed.
Search Strategy
The following seven literature databases were searched for
this study: the Wanfang database, the Chinese Biomedical
Literature Database, Cochrane Library, Web of Science,
PubMed, MEDLINE, and Embase. Databases were searched
by using terms related to the target technology, population,
and outcomes of interest. The search queries used for each
database are listed in Table 1. In addition to searching the
databases, backward citation screening was performed on the
included studies to identify additional relevant studies. The
search was conducted from January 12 to January 16, 2024.

Table 1. Search terms used to find studies.
Database Hits, n Search terms
Wanfang database 3 (“Ventilator-associated pneumonia” OR “ventilator-associated pneumonia” OR “ventilator-asso-

ciated pneumonia”) AND (“Prediction” OR “predictive models” OR “risk prediction” OR
“assessment” OR “risk assessment tools”) AND (“Artificial intelligence” OR “machine learning”
OR “artificial learning” OR “deep learning” OR “Bayesian learning” OR “neural networks” OR
“support vector machines” OR “statistical learning” OR “decision trees” OR “random forests”)
(in Chinese)

Chinese Biomedical
Literature Database

1 (“Ventilator-associated pneumonia” OR “ventilator-associated pneumonia” OR “ventilator-
associated pneumonia”) AND (“Prediction” OR “predictive models” OR “risk prediction” OR
“assessment” OR “risk assessment tools”) AND (“Artificial intelligence” OR “machine learning”
OR “artificial learning” OR “deep learning” OR “Bayesian learning” OR “neural networks” OR
“support vector machines” OR “statistical learning” OR “decision trees” OR “random forests”)
(in Chinese)

Cochrane Library 10 (“vap” OR “Pneumonia Ventilator-Associated” OR “Ventilator-Associated Pneumonia”) AND
(“Prediction” OR “prediction model” OR “risk prediction” OR “assessment” OR” risk
assessment” OR “assessment tool”) AND (“artificial intelligence” OR “machine learning” OR
“Artificial Learning” OR “deep learning” OR “Bayesian Learning” OR “Neural Network” OR
“Support vector machine” OR “Statistical Learning” OR “Decision tree*” OR “Random Forest”)

Web of Science 29 (“vap” OR “Pneumonia Ventilator-Associated” OR “Ventilator-Associated Pneumonia”) AND
(“Prediction” OR “prediction model” OR “risk prediction” OR “assessment” OR” risk
assessment” OR “assessment tool”) AND (“artificial intelligence” OR “machine learning” OR
“Artificial Learning” OR “deep learning” OR “Bayesian Learning” OR “Neural Network” OR
“Support vector machine” OR “Statistical Learning” OR “Decision tree*” OR “Random Forest”)
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Database Hits, n Search terms
PubMed 45 (“vap” OR “Pneumonia Ventilator-Associated” OR “Ventilator-Associated Pneumonia”) AND

(“Prediction” OR “prediction model” OR “risk prediction” OR “assessment” OR” risk
assessment” OR “assessment tool”) AND (“artificial intelligence” OR “machine learning” OR
“Artificial Learning” OR “deep learning” OR “Bayesian Learning” OR “Neural Network” OR
“Support vector machine” OR “Statistical Learning” OR “Decision tree*” OR “Random Forest”)

MEDLINE 21 (“vap” OR “Pneumonia Ventilator-Associated” OR “Ventilator-Associated Pneumonia”) AND
(“Prediction” OR “prediction model” OR “risk prediction” OR “assessment” OR” risk
assessment” OR “assessment tool”) AND (“artificial intelligence” OR “machine learning” OR
“Artificial Learning” OR “deep learning” OR “Bayesian Learning” OR “Neural Network” OR
“Support vector machine” OR “Statistical Learning” OR “Decision tree*” OR “Random Forest”)

Embase 28 (“vap” OR “Pneumonia Ventilator-Associated” OR “Ventilator-Associated Pneumonia”) AND
(“Prediction” OR “prediction model” OR “risk prediction” OR “assessment” OR” risk assess-
ment” OR “assessment tool”) AND (“artificial intelligence” OR “machine learning” OR “Artificial
Learning” OR “deep learning” OR “Bayesian Learning” OR “Neural Network” OR “Support
vector machine” OR “Statistical Learning” OR “Decision tree*” OR “Random Forest”)

Eligibility Criteria
This review included studies on AI technology for VAP
diagnosis and risk prediction. However, this review excluded
literature reviews and other articles that only summarized
AI approaches to VAP analysis and studies that were based
solely on clinical trials and experimental studies. We included
only journal articles and conference papers and excluded
case reports, reviews, white papers, conference abstracts,
editorials, and gray literature. Studies that used non-AI
techniques to predict VAP were excluded. Moreover, this
review considered only studies that were written in English
and Chinese and were published between the date of the
establishment of the repository and January 2024. There were
no constraints with regard to the study settings, study designs,
study outcomes, publication months, or publication countries.
Study Selection
The screening process was performed by 2 researchers.
First, we imported document titles into EndNote (Clarivate)
software to eliminate duplicates. As per the inclusion criteria,
irrelevant articles were further excluded by reading the titles
and abstracts. Subsequently, the full texts were read to
determine the final included articles. Any objections during
screening were discussed with a third investigator.
Data Extraction and Synthesis
Two reviewers independently extracted the data from the
included literature and discussed them with a third reviewer

in cases of any objections. The extracted information included
the authors; year of publication; study design; country;
sample source; study population; sample size; positive
outcomes; tool type; construction method; main evaluation
content; model presentation form; verification method; and
indicators related to reliability, validity, and predictive power.

Narrative synthesis was used to analyze the extracted
data. The results included in this study were categorized
as technical characteristics of the included studies (eg, AI
models and algorithms used), AI model data (eg, data
sources), and predictive performance indices.

Ethical Considerations
This study did not require ethical approval because we did not
study any human or animal subjects and did not collect any
personal information or sensitive data.

Results
Search Results
As shown in Figure 1, 137 studies were retrieved from the
search, and 59 were duplicates. A total of 78 study titles
and abstracts were screened, and 66 were excluded. Figure
1 presents the reasons for exclusion. Because the full text
of 1 study could not be found, 11 studies were screened for
eligibility; all of them met the criteria and were included in
this review.
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Figure 1. Flow diagram of the review process and the identification of studies via databases. VAP: ventilator-associated pneumonia.

Characteristics of Included Studies
All included studies (11/11, 100%) were published in
peer-reviewed journals. The studies were published between
2007 and 2023 (Table 1), with most (3/11, 27%) published
in 2023. The included studies were from 4 countries but
were predominantly from the United States (5/11, 45%),
followed by China (4/11, 36%). In addition, ICU patients
were the most frequently studied population (studies: 6/11,

55%), 2 studies involved neurosurgical ICU patients, 1
study involved patients with traumatic brain injury, 1 study
involved pediatric ICU patients, and 1 study involved older
patients (age≥65 y). Public databases were the most common
sources of samples (studies: 6/11, 55%), with 4 studies using
the MIMIC-III (Medical Information Mart for Intensive Care
III) data set. The detailed characteristics of the included
studies are summarized in Table 2.

Table 2. Characteristics of the included studies (N=11).
Author, year Publication type Study design Country Sample source Study population
Schurink et al [6],
2007

Journal article Prospective cohort
study

Netherlands Recruit volunteers Medical ICUa and
neurosurgical ICU
patients

Rambaud et al [7],
2023

Journal article Retrospective cohort
study

France Electronic medical
records

PICUb patients
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Author, year Publication type Study design Country Sample source Study population
Pearl and Bar-Or
[8], 2012

Journal article Retrospective cohort
study

United States NTDBc data set 6.2 ICU patients

Chen et al [9], 2020 Journal article Prospective case-
control study

China Recruit volunteers ICU patients

Liang et al [10],
2022

Journal article Retrospective cohort
study

China MIMIC-IIId data set ICU patients

Faucher et al [11],
2022

Preprint article Retrospective cohort
study

United States MIMIC-III data set ICU patients

Liao et al [12], 2019 Journal article Prospective case-
control study

China Recruit volunteers Neurosurgical ICU
patients

Abujaber et al [13],
2021

Journal article Retrospective cohort
study

United States Electronic medical
records

Patients with traumatic
brain injury

Giang et al [14],
2021

Journal article Retrospective cohort
study

United States MIMIC-III data set ICU patients

Samadani et al [15],
2023

Journal article Retrospective
case-control study

United States Philips eRIe data set ICU patients

Mingwei et al [16],
2023

Journal article Retrospective cohort
study

China MIMIC-III data set Older patients (aged ≥65
y)

aICU: intensive care unit.
bPICU: pediatric intensive care unit.
cNTDB: National Trauma Data Bank.
dMIMIC-III: Medical Information Mart for Intensive Care III.
eeRI: eICU Research Institute.

AI Technical Characteristics of Included
Studies
All 11 included studies used only machine learning algo-
rithms, and none of them involved deep learning algorithms
or large language models. The random forest model was the
most commonly used model (studies: 5/11, 45%), followed

by the XGBoost (extreme gradient boost) model (studies:
4/11, 36%) and neural networks (studies: 3/11, 27%). Only
4 studies mentioned the programming languages for model
building (Python: 3/11, 27%; R: 1/11, 9%). Further, 3 studies
used model-building software to develop predictive models
(ie, Hugin, Tiberius, and SPSS Modeler 18.2). Further details
are presented in Table 3.

Table 3. Basic characteristics, predictors, and performance of artificial intelligence models for ventilator-associated pneumonia prediction (studies:
N=11).

Author Model
Development
methodology

Sample
size, n

Positive
outcome,
n Predictors Application

Verification
method

Prediction
performance

Schurink
et al [6]

BDSSa Hugin 872 157 Body temperature: <36.5 °C
or >38.5 °C; ICUb daily
sputum score: none=+0,
rarely=+1, moderate=+2,
severe=+3; sputum score:
>14; sputum color: yellow
or green; PaO2c/FiO2d:
≤205 mm Hg or
decrease of >35 mm Hg
from the previous day;
use of acetaminophen,
nonsteroidal anti-inflamma-
tory drugs, or steroid
antipyretics; chest x-ray
showing localized or diffuse
infiltration of the lungs;
WBCe count: <4×109/L or
>11×109/L; MVf time: >48
h

—g Not reported AUCh: 0.846 (95%
CI 0.794-0.899);
sensitivity: 0.79;
specificity: 0.79;
positive predictive
value: 0.87; negative
predictive value: 0.66

Rambaud
et al [7]

IRFi R 827 77 Body weight (kg);
WBC count (per mm3);
neutrophil count (per mm3);
PaO2 (mm Hg); FiO2
(%); PEEPj (cmH2O);

— k-fold cross-
validation

AUC: 0.82 (95%
CI 0.71-0.93);
sensitivity: 0.797;
specificity: 0.727;
positive predictive
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Author Model
Development
methodology

Sample
size, n

Positive
outcome,
n Predictors Application

Verification
method

Prediction
performance

PIPk (cmH2O); MAwPl
(cmH2O); respiratory rate
(respirations per min); tidal
volume (mL); subjective
volume of respiratory
secretions (0, +, ++,
and +++); lung dynamic
compliance calculated by
the oxygenation index and
oxygen saturation index
(in barometric mode: tidal
volume/[PIP – PEEP]; in
volumetric mode: tidal
volume/[peak pressure –
PEEP]); PIMm 2 score;
PELOD-2n score

value: 0.09; negative
predictive rate: 0.99;
accuracy: 0.795

Pearl and
Bar-Or
[8]

ANNo Tiberius 1,438,0
35

598,066 ICU length of stay; trauma
score (ISSp); no ventilation;
gender; systolic blood
pressure: <40 mm Hg;
age: ≤16 y; respiratory
rate: <10 respirations per
minute; respiratory rate:
>29 respirations per minute;
full model; age: >55 y

— Not reported Gini coefficient:
0.80435

Chen et al
[9]

KNNq,
NBMr,
DTs, NNt,
SVMu, and
RFv

Python 59 26 Electronic nose sensor data — Not reported Best model—AUC:
0.94 (95% CI
0.74-1.00); accuracy:
0.77 (95%
CI 0.46-0.95);
sensitivity: 0.71;
specificity: 0.83;
positive predictive
value: 0.93; negative
predictive rate: 0.71

Liang et
al [10]

RF Python 10,431 212 Internal intensive
care (control: other
intensive care); emergency
admission; hypertension;
liver failure; PaO2/FiO2;
APACHEw III score;
temperature; respiratory
rate; A-aDO2x/PaO2;
urinary output; blood
sodium; bilirubin; GCSy;
SOFAz; pulmonary
function; coagulation
function; liver function;
cardiovascular disease;
central nervous system
disease; aspiration
admission; trauma
admission

— Not reported AUC: mean 0.84
(SD 0.02); sensitivity:
mean 0.74 (SD 0.03);
specificity: mean 0.71
(SD 0.01)

Faucher et
al [11]

LRaa,
fEBMab,
and
XGBoostac

— 18,671 470 WBC first; WBC mean;
MV hours (value); WBC
median; WBC last; GCS
last; WBC max; WBC min;
GCS median; GCS mean;
GCS max; RespRatead first;
Dias ABPae max; blood
(count) × MV hours (value);
MV hours (value) × WBC
last; MV hours (value) ×

— Not reported Best model (fEBM)
—AUC: 0.893
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Author Model
Development
methodology

Sample
size, n

Positive
outcome,
n Predictors Application

Verification
method

Prediction
performance

WBC first; weight; weight
× MV hours (value); SpO2af
first; MV hours (value) ×
WBC median

Liao et al
[12]

ENNag and
SVM

— 12 12 Electronic nose sensor data — Not reported ENN—accuracy:
mean 0.9479 (SD
0.0135); sensitivity:
mean 0.9714 (SD
0.0131); positive
predictive value:
mean 0.9288 (SD
0.0306); AUC:
mean 0.9842
(SD 0.0058). SVM
—accuracy: mean
0.8686 (SD 0.0422);
sensitivity: mean
0.9250 (SD 0.0423);
positive predictive
value: mean 0.8639
(SD 0.0276); AUC:
mean 0.9410 (SD
0.0301)

Abujaber
et al [13]

DT SPSS
Modeler 18.2

772 169 Time to emergency
department; blood
transfusion; ISSp;
pneumothorax; comorbidity

— Not reported Accuracy: 0.835;
AUC: 0.805;
precision: 0.71;
negative predicted
value: 0.86;
sensitivity: 0.43;
specificity: 0.95;
F-score: 0.54

Giang et
al [14]

LR,
MLPah, RF,
and
XGBoost

— 6126 524 MV hours; biotics
indicator; sputum indicator;
sputum count; GCS_LAST;
Platelets_MIN;
Platelets_MAX;
Platelets_AVERAGE;
blood culture
count; Temp_FIRST;
GCS_AVERAGE;
Platelets_FIRST;
GCS_MAX;
Platelets_MEDIAN;
WBC_LAST

— Not reported Best model—AUC:
0.854

Samadani
et al [15]

XGBoost — 14,923 6811 Body temperature; FiO2;
age; MV times; total
CO2ai; chloride; SpO2;
heart rate; respiratory
rate; gender; PaCO2aj;
creatinine; BUNak; mean
blood pressure; hematocrit

— Hold-out
cross-
validation

AUC: 0.76;
AUPRCal: 0.75

Mingwei
et al [16]

LR, RF,
XGBoost,
and
LightGBMa
m

Python 1523 336 SOFA; maximum WBC
count; maximum respiratory
rate; maximum base
remaining; age; maxi-
mum creatinine; mini-
mum PaCO2; minimum
oxygenation index;
diabetes; ICU admission,
paraplegia, gender, COPDan

— 10-fold
cross-
validation

Best models:
LightGBM—AUC:
0.85 (95% CI
0.82-0.88); accuracy:
0.77; precision:
0.80; recall: 0.72;
specificity: 0.82;
F1: 0.75. XGBoost—
AUC: 0.84 (95% CI
0.81-0.87); accuracy:
0.76; precision:
0.78; recall: 0.73;
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Author Model
Development
methodology

Sample
size, n

Positive
outcome,
n Predictors Application

Verification
method

Prediction
performance
specificity: 0.79;
F1:0.75

aBDSS: Bayesian decision support system.
bICU: intensive care unit.
cPaO2: partial pressure of oxygen.
dFiO2: fraction of inspired oxygen.
eWBC: white blood cell.
fMV: mechanical ventilation.
gNot applicable.
hAUC: area under the curve.
iIRF: imbalanced random forest model.
jPEEP: positive end-expiratory pressure.
kPIP: peak inspiratory pressure.
lMAwP: mean airway pressure.
mPIM: pediatric index of mortality.
nPELOD-2: Pediatric Logistic Organ Dysfunction-2.
oANN: artificial neural network.
pISS: Injury Severity Score.
qKNN: k-nearest neighbor.
rNBM: naive Bayes model.
sDT: decision tree.
tNN: neural network.
uSVM: support vector machine.
vRF: random forest.
wAPACHE: Acute Physiology and Chronic Health Evaluation.
xA-aDO2: alveolar-arterial oxygen difference.
yGCS: Glasgow Coma Scale.
zSOFA: Sequential Organ Failure Assessment.
aaLR: logistic regression.
abfEBM: full feature explainable boosting machine.
acXGBoost: extreme gradient boost.
adRespRate: respiratory rate of the ventilator.
aeDias ABP: diastolic blood pressure.
afSpO2: peripheral blood oxygen saturation.
agENN: ensemble neural network.
ahMLP: multilayer perceptron.
aiCO2: carbon dioxide.
ajPaCO2: carbon dioxide partial pressure.
akBUN: blood urea nitrogen.
alAUPRC: area under the precision-recall curve.
amLightGBM: light gradient boosting machine.
anCOPD: chronic obstructive pulmonary disease.

Different types of data were used in the included stud-
ies, including laboratory data (eg, white blood cell count,
neutrophil count, and bilirubin level), clinical data (includ-
ing temperature, sputum volume, and ventilator parameters),
and demographic data (eg, age, weight, and sex). Of note, 2
studies used sensor data to build predictive models, and the
remaining 9 studies used clinical data. In addition, 67% (6/9)
of these studies used laboratory data, with white blood cell
count being the most commonly used laboratory data (studies:
4/9, 44%), followed by neutrophil count (studies: 1/9, 11%),
bilirubin level (studies: 1/9, 11%), and blood urea nitrogen
level (studies: 1/9, 11%). Demographic data were used in
56% (5/9) of the studies; age was used as a predictor in 4
studies, and weight and age were both included in only 1
study.

In terms of data set size, of the 11 studies, 6 (55%) had
sample sizes of >1000; however, with regard to the data
from the electronic nose sensors that were used in 2 studies,

multiple sensors were placed on the electronic nose, and each
sensor collected data more than once. Therefore, the actual
sample sizes for these two studies were 1888 [9] and 3360
[12]. Nevertheless, because the data were collected by the
same electronic nose sensor and came from the same patient,
we did not include these two studies in the number of studies
with sample sizes of >1000. Further, 3 studies used data
sets with <1000 samples, and 4 studies had data sets with
>10,000 samples. The AI performance index was mentioned
in all 11 studies. The area under the curve (AUC) was the
most commonly used predictive performance index (studies:
10/11, 90%), followed by sensitivity (studies: 6/11, 55%) and
specificity (studies: 6/11, 55%). The AUC values, which were
reported in 10 studies, averaged to 0.86 (SD 0.07) and ranged
from 0.76 to 0.98. The sensitivity, which was reported in 6
studies, averaged to 0.74 (SD 0.18) and ranged from 0.43
to 0.97. The specificity, which was reported in 6 studies,
averaged to 0.80 (SD 0.09) and ranged from 0.71 to 0.95.
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Additionally, 5 studies reported accuracy (mean 0.82, SD
0.07, range 0.77-0.95).

Discussion
Principal Findings
In this review, we explored AI techniques for the prediction
of VAP. Of the 11 included studies, 9 (82%) were published
in the past 5 years, and the number of studies has increased
annually with the evolution of AI technology (1 in 2019, 1 in
2020, 2 in 2021, 2 in 2022, and 3 in 2023). Most (9/11, 82%)
of the AI-based prediction model studies were published in
the United States (5/11, 45%) and China (4/11, 36%). To
explore the application of AI in predicting VAP, the results
were divided into 3 categories, and each of them classified the
included studies from a different perspective.

The first category included the technical characteristics
of the studies. All studies used only machine learning
algorithms, with the random forest model being the most
commonly used model (studies: 5/11, 45%), followed by
neural networks (studies: 4/11, 36%) and the XGBoost model
(studies: 4/11, 36%). The second category focused on AI
model data, in which we explored the data types, data
sources, and data set sizes. Different types of data, includ-
ing laboratory, clinical, and demographic data, were used in
the included studies. In terms of data set size, apart from 2
studies that used electronic noses, 6 (55%) had sample sizes
of >1000. Public databases were the most common sources
of data (studies: 6/11, 55%). The third category focused on
the predictive performance of AI models, including studies
that used different performance validation indices, such as the
AUC, accuracy, sensitivity, and specificity.
Implications for Practice and Research
This review highlights the most common AI models that
have been used to predict VAP. Based on our findings, AI
models can predict VAP by using various data types. In
our review, no studies that used deep learning and large
language models were found. A possible reason for this is
that chest computed tomography data are not available in
most public databases, and in clinical practice, patients who
do not exhibit pneumonia symptoms do not undergo chest
computed tomography examinations; therefore, such data are
not available for research. The random forest and XGBoost
models are the most frequently used machine learning–based
VAP prediction models, probably because ensemble learning
models exhibit better prediction performance and robustness
when dealing with multiple types of data compared to other
models [17].

Based on the data sources of the prediction models,
the use of more data types for comprehensive predictions
may be the main focus of future research. Current research
may be constrained to using structured data, owing to the
limitations of algorithms and data collection workloads, while
electronic health records contain unstructured clinical text,
such as admission records and progress notes. Furthermore,
much data remain to be mined. Tsai et al [18] found that

information extracted from unstructured clinical text could
make predictive models more comprehensive and improve
their predictive performance. In addition to unstructured
clinical text, lung radiography and computed tomography can
be used to predict the occurrence of pneumonia.

In terms of predictive tools, natural language processing
and deep learning may be the direction of future research, and
the development of large language models, such as ChatGPT,
that are based on natural language processing is sufficient to
prove the ability of natural language processing algorithms
to process unstructured clinical text [19]. Traditional machine
learning algorithms are not competent in the image recog-
nition domain, while deep learning algorithms can analyze
and process clinical imaging data effectively. Lee et al [20]
found that deep learning–based predictive models that used
preoperative imaging data from patients could effectively
predict the occurrence of postoperative pneumonia; however,
no studies have used deep learning algorithms to construct
VAP prediction models.

Of further note, the studies reviewed herein rarely
mentioned nurse-related data, and it has been suggested
that nursing is important for VAP prevention [21,22]. The
potential of various data types in predicting VAP should be
explored in future studies. Additionally, none of the studies
included in this review considered the application of the
final model. The deployment of feasible predictive models
in clinical settings needs to be explored.
Strengths
This review discusses all of the AI techniques and study
populations that have been used to date to predict VAP, with
no major restrictions on paper status, research environment,
and geographic location. In addition, the characteristics of
each AI model and the data sets that were used to build the
models were discussed in depth.

Based on our findings, Frondelius et al [4,23] explored
diagnostic and prognostic models for VAP and performed a
meta-analysis of the performance of machine learning–based
predictive models for VAP. However, to the best of our
knowledge, ours is the first review of all AI VAP predic-
tion models that have been explored thus far, filling research
gaps to improve understanding of prediction techniques rather
than focusing solely on the final predictive performance
of models. Moreover, in the literature search, we did not
place any limitations on types of technology and included all
branches of AI to gain insight into the research on different
AI technologies for VAP prediction.

Finally, study selection and data extraction were per-
formed independently by 2 evaluators to ensure minimal bias.
Limitations
This review has certain limitations. Reviews, conference
abstracts, case reports, white papers, proposals, editorials, and
gray literature were excluded to reduce the complexity of the
results. We also included Chinese databases in our search but
did not explore articles in languages other than English or
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Chinese, which might have reduced the comprehensiveness of
our study.
Conclusions
This paper reviews the application of AI technology in VAP
prediction and provides new evidence on the role of AI
technology. We believe that the findings will help researchers

better understand the application of AI technology in VAP
prediction and provide a reference for future research on VAP
prediction models. Lastly, we believe that advances in AI
technology will provide further possibilities for predicting
VAP and that interdisciplinary developments will improve the
health care industry.
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