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Abstract
Background: Electronic medical records store extensive patient data and serve as a comprehensive repository, including
textual medical records like surgical and imaging reports. Their utility in clinical decision support systems is substantial, but
the widespread use of ambiguous and unstandardized abbreviations in clinical documents poses challenges for natural language
processing in clinical decision support systems. Efficient abbreviation disambiguation methods are needed for effective
information extraction.
Objective: This study aims to enhance the one-to-all (OTA) framework for clinical abbreviation expansion, which uses a
single model to predict multiple abbreviation meanings. The objective is to improve OTA by developing context-candidate
pairs and optimizing word embeddings in Bidirectional Encoder Representations From Transformers (BERT), evaluating the
model’s efficacy in expanding clinical abbreviations using real data.
Methods: Three datasets were used: Medical Subject Headings Word Sense Disambiguation, University of Minnesota, and
Chia-Yi Christian Hospital from Ditmanson Medical Foundation Chia-Yi Christian Hospital. Texts containing polysemous
abbreviations were preprocessed and formatted for BERT. The study involved fine-tuning pretrained models, ClinicalBERT
and BlueBERT, generating dataset pairs for training and testing based on Huang et al’s method.
Results: BlueBERT achieved macro- and microaccuracies of 95.41% and 95.16%, respectively, on the Medical Subject
Headings Word Sense Disambiguation dataset. It improved macroaccuracy by 0.54%‐1.53% compared to two baselines,
long short-term memory and deepBioWSD with random embedding. On the University of Minnesota dataset, BlueBERT
recorded macro- and microaccuracies of 98.40% and 98.22%, respectively. Against the baselines of Word2Vec + support
vector machine and BioWordVec + support vector machine, BlueBERT demonstrated a macroaccuracy improvement of
2.61%‐4.13%.
Conclusions: This research preliminarily validated the effectiveness of the OTA method for abbreviation disambiguation in
medical texts, demonstrating the potential to enhance both clinical staff efficiency and research effectiveness.
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Introduction
The advent of electronic medical records (EMRs) has
revolutionized data management in medical institutions by

enabling the storage and collection of extensive patient
data. EMRs integrate records and reports from various
hospital departments, documenting diverse patient conditions
and providing a comprehensive repository of information,
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including previous laboratory and examination reports,
hospitalization and surgical procedure records, and medi-
cation histories [1-3]. EMRs contain two types of data:
structured, such as physiological measurements, laboratory
results, diagnostic and drug codes, and assessment scales, and
unstructured, primarily consisting of textual medical records
like surgical and imaging reports, pathology reports, and
discharge summaries [4-10].

Recent studies have leveraged natural language processing
(NLP) tools, including MetaMap, MedLEE, and Clinical Text
Analysis and Knowledge Extraction System (cTAKES), to
extract valuable patient information from EMRs’ clinical text
[11-14]. These applications range from identifying specific
medical concepts to complex analyses, such as discerning
relationships between medical conditions or predicting patient
outcomes and disease progression [10,15-19]. However, the
prevalent use of abbreviations in clinical documents poses
significant challenges for NLP in clinical decision sup-
port systems, as abbreviations often have multiple mean-
ings depending on their context, and unstandardized or
local abbreviations further complicate text interpretation
[20,21]. This ambiguity impedes the extraction of meaning-
ful information, affecting clinical decision support system
performance and highlighting the need for effective methods
for abbreviation disambiguation in clinical NLP applications.

Abbreviation disambiguation in NLP involves identifying
the correct expansion of an abbreviation based on its context
[22,23]. In this process, one-to-one (OTO) and one-to-all
(OTA) approaches are two distinct strategies for resolving the
meaning of abbreviations [24]. The OTO approach involves
training a separate machine learning model for each specific
abbreviation, learning its unique patterns and contextual cues
to disambiguate its meaning. In contrast, the OTA approach
uses a single machine learning model trained to disambiguate
all abbreviations across various contexts.

The OTA approach in abbreviation disambiguation offers
several advantages over the OTO approach. OTA is easier
to scale, requiring the maintenance and updating of only
a single model, whereas OTO necessitates multiple models
for each abbreviation, making it less scalable. OTA is more
efficient in terms of computational resources and ensures a
uniform disambiguation approach, reducing inconsistencies.
Additionally, OTA simplifies model management, streamlin-
ing changes and improvements. By learning general patterns
and contextual cues applicable to various abbreviations, OTA
enhances overall context understanding, making it suitable for
applications with diverse abbreviation needs. This flexibility
makes OTA particularly useful in the biomedical domain,
where abbreviations can have varied meanings in different
contexts.

This study aims to enhance the application of the
OTA abbreviation disambiguation framework for clinical
abbreviation expansion. We propose constructing an OTA

disambiguation model by creating context-candidate pairs
and refining word embeddings using Bidirectional Encoder
Representations From Transformers (BERT) [25]. The
model’s effectiveness was assessed based on its predictive
performance on real clinical data for the task of clinical
abbreviation expansion.

Methods
Data
This study conducted experimental evaluations using 3
datasets: 2 publicly available datasets and 1 independently
collected from a regional hospital in Taiwan. The first
dataset, the Medical Subject Headings Word Sense Disam-
biguation (MSH WSD) dataset, was extracted from MED-
LINE abstracts [26]. The MSH WSD dataset comprises
203 polysemous words and is divided into three sections:
abbreviation set, term set, and term/abbreviation set. The
abbreviation set, containing 106 ambiguous acronyms, was
selected as one of our investigated datasets. The sec-
ond dataset, originating from the University of Minnesota
(UMN), comprises deidentified clinical text sourced from
the university’s hospitals [27]. The UMN dataset includes
440 frequently used abbreviations and acronyms, carefully
selected from a pool of 352,267 dictated clinical notes. These
two datasets are valuable resources for both NLP and medical
informatics, particularly for disambiguation tasks within the
health care domain [20,28,29].

Lastly, the Chia-Yi Christian Hospital (CYCH) dataset
aggregates present illness data from patients at the Neurol-
ogy Department of Ditmanson Medical Foundation Chia-
Yi Christian Hospital. Abbreviation disambiguation results
were validated by a neurologist. We narrowed the scope of
abbreviations for evaluation and asked the doctor to mark the
answers in advance. Specifically, we selected five frequently
appearing abbreviations—ER, DM, CVA, PM, and PA—from
both the UMN and CYCH datasets. We verified that the
correct interpretations of abbreviations in the CYCH clinical
documents matched the candidate sets for the UMN abbrevia-
tions. Due to manpower constraints, we limited our extraction
to the first 1000 abbreviations for annotation by a physician.
After removing one erroneous data entry and two initially
overlooked abbreviations, we had a total of 998 sentences
that included the five selected abbreviations. All 3 datasets
were preprocessed and organized into the same format for
subsequent model construction and evaluation. As shown in
Table 1, the text “...He is status post a BK amputation on the
right side and...” is partitioned into three parts: left, right,
and target. Left denotes the text to the left of the target
abbreviation, right represents the text to the right, and target
indicates the target abbreviation. The remaining two fields
include the correct expansion word for the target abbreviation
(label) and the collection of all incorrect candidate expansion
words (negs).
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Table 1. Data schema after data preprocessing and an example sample text.
Field Description Example
Index Document ID 1
Target The target abbreviation BK
Left The text to the left of the target abbreviation ...He is status post a
Right The text to the right of the target abbreviation amputation on the right side

and...
Label The correct expansion word for the target abbreviation below knee
Neg The collection of all incorrect candidate expansion words. If there are multiple, separate them with

commas.
BK(virus)

Ethical Considerations
The study protocol received formal approval from the
Ditmanson Medical Foundation Chia-Yi Christian Hospital
Institutional Review Board (2022074). Patient identifiers
were replaced by a unique study identification number to
ensure confidentiality. Informed consent was thus exempted.

The Proposed Framework
Figure 1 illustrates the proposed framework. We begin by
retrieving text containing polysemous abbreviations from
the 3 investigated datasets. The polysemous abbreviations
are kept in their original form and marked accordingly.

Subsequent steps involve common text preprocessing
techniques, such as converting text to lowercase and
removing certain special symbols. The preprocessed text is
then adjusted to meet the input format required by BERT.
Finally, the processed text is divided into training and testing
sets. Three existing pretrained BERT-based models, including
BERT-base-uncased [25], ClinicalBERT [30], and BlueBERT
[31], are chosen and fine-tuned using these datasets, and
prediction results are subsequently generated for evaluation.
BERT-base-uncased is specifically used due to the common
inconsistencies in capitalization within clinical texts, where
lowercase letters are frequently used, even at the beginning of
sentences or in abbreviations.

Figure 1. Research framework. BERT: Bidirectional Encoder Representations From Transformers; CYCH: Chia-Yi Christian Hospital; MSH WSD:
Medical Subject Headings Word Sense Disambiguation; UMN: University of Minnesota.

Text Preprocessing
This study converts the text into the context-candidate pair
format and adjusts the word embedding values for BERT
input. Specifically, we apply GlossBERT [32] to train our
model using the samples consisting of abbreviations and all of
their candidate expansions. If an abbreviation has n candi-
date expansions, with only one correct answer, we produce
n samples. This includes one sample marked as the correct
expansion (indicated as 1) and n – 1 samples marked as
incorrect expansions (indicated as 0).

Before training, we use BERT’s tokenizer to convert text
into WordPieces, breaking words such as “amputation” into
[‘amp’, ‘##utation’]. Special tokens are then added: [CLS]
at the start, [SEP] to separate sentences or differentiate
sections, and [PAD] to equalize sequence lengths for batch

processing. For instance, when processing the sentence “He is
status post a BK amputation...” with “BK” having expansions
“BK(virus)” and “below knee,” we generate two sequences:
“[CLS] He is status post a BK amputation... [SEP] BK(virus)
[SEP], 0” and “[CLS] He is status post a BK amputation...
[SEP] below knee [SEP], 1.”

Due to BERT’s token limit of 512, sequences exceeding
this are truncated. We manage sequence lengths by first
converting text into WordPieces and adding necessary tokens.
If the combined length of a sequence and its expansions
exceeds BERT’s limit, we employ a first in, first out (FIFO)
strategy to ensure compliance with the token restriction.

BERT Tuning
Due to the limited dataset size, retraining a full BERT
encoder was not feasible for this study. Instead, we
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fine-tuned existing pretrained models to assess our abbrevi-
ation disambiguation method. We selected two health care–
related models, ClinicalBERT and BlueBERT, along with a
generic BERT-base-uncased model as a baseline.

We adapted these models by adding a fully connected
output layer. This layer consists of two linear layers and a
rectified linear unit activation function, simplified as:

(1)y = f i = 1
n wkxi + bk

where wk represents the weights applied to inputs xi, and bk is
the bias term.

The output layer’s parameters are set as (50, 2), reflect-
ing the size of the output from the previous layer and the
number of classes (1 or 0). During prediction, the model
calculates probabilities for each class. We focus primarily
on the accuracy of the predictions for class 1, applying a
softmax operation to enhance decision-making based on class
1’s probability scores. This process optimizes our approach to
evaluating the effectiveness of the trained models in context-
sensitive disambiguation tasks.
Experimental Setup and Performance
Measure
In our experimental evaluation, we aim to compare our
proposed approach with several representative methods from
prior studies on abbreviation disambiguation, focusing on
model adaptability and performance across various datasets.
The structure of our study is divided into two main parts.

Experiment 1 assesses the prediction performance of
abbreviation expansion using both our proposed approach
and baseline models (both OTO and OTA). We utilized
two public datasets: MSH WSD and UMN. For MSH
WSD, the OTO baselines included k-nearest neighbors [33],
naive Bayes [26], and long short-term memory (LSTM)
[34] models. For the UMN dataset, we referred to Wu
et al [35] who used a combination of Word2Vec + sup-
port vector machine (SVM) as the OTO baseline. We
further adapted this approach by substituting the original
Word2Vec model with BioWordVec [36] (BioWordVec
+ SVM), which offers biomedical word embeddings via
fastText, to better suit our study’s focus on clinical data.
Each clinical note was represented as a 200-dimensional
vector. For the OTA baseline models, we implemented non–
sense-based methods using BERT/XLNet, as described by
Kim et al [37], which include deepBioWSDrandom embeddings
and deepBioWSDpretrained sense embeddings. Additionally, we
employed sense-based methods using bidirectional LSTM,
outlined by Pesaranghader et al [38], specifically masked
language modeling and permutation language modeling.

Experiment 2 evaluates the prediction performance of
abbreviation disambiguation within the CYCH dataset,
aiming to address abbreviation ambiguity in clinical contexts.
This involved training models using the UMN dataset and
testing them on the CYCH dataset. The experiment was
designed to test how well the fine-tuning of pretrained models
could adapt to a new hospital setting, using a combination of
internal and external datasets to assess accuracy in a real-
world clinical environment.

We conducted experiment 2 under two distinct scenarios
to assess the adaptability and effectiveness of our model in
handling abbreviation disambiguation. In the first scenario,
we excluded CYCH text, utilizing only the UMN dataset for
training. This approach tested the model’s ability to general-
ize from an external dataset to a new environment, apply-
ing it subsequently to 998 entries from the CYCH dataset.
In the second scenario, we incorporated a small subset of
CYCH text into the training process. This was designed to
explore incremental learning, where the model adapts to new
data while retaining previously learned information, thereby
enhancing its predictive performance with minimal data and
brief training periods.

Moreover, to maintain consistency and validity in our
training process, it was crucial to ensure that all context-can-
didate pairs appeared in the training set. Consequently, the
dataset was carefully screened before splitting, opting for a
simple 9:1 ratio between the training and test sets instead
of using cross-validation. To evaluate the model’s perform-
ance, we employed metrics such as accuracy, microaccuracy,
and macroaccuracy. These metrics were derived from the
confusion matrix for each abbreviation, providing detailed
insights into the model’s efficacy across different contexts.

Results
Experiment 1
The results for experiment 1, using the MSH WSD data-
set, are summarized in Table 2. For the OTO baselines,
k-nearest neighbors achieved a macroaccuracy of 94.34%,
with microaccuracy data unavailable. The naive Bayes
method recorded a macroaccuracy of 93.86%, but microac-
curacy was not reported. The LSTM method displayed both
macro- and microaccuracy scores, which were 94.87% and
94.78%, respectively. For the OTA baselines, the sense-based
deepBioWSDrandom embeddings [38] achieved macro- and
microaccuracy scores of 93.88% and 93.71%, respectively.
The deepBioWSDpretrained sense embeddings [38] improved
prediction performance, with macro- and microaccuracy
scores of 96.82% and 96.24%, respectively. Meanwhile, the
non–sense-based methods, masked language modeling and
permutation language modeling [37], recorded macroaccura-
cies of 95.89% and 96.83%, respectively, with microaccuracy
not reported.
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The BERT-base-uncased achieved macro- and microac-
curacy scores of 93.64% and 93.38%, respectively. Clin-
icalBERT recorded a macroaccuracy of 94.77% and a
microaccuracy of 94.59%. BlueBERT displayed a competi-
tive performance with macro- and microaccuracies of 95.41%
and 95.16%, respectively, on par with other evaluated
methods. BlueBERT’s macroaccuracy was only slightly
lower than the highest performing models, deepBioWSDpre-
trained sense embeddings (96.82%) and permutation language
modeling (96.83%), but higher than deepBioWSDran-
dom embeddings (93.88%). This demonstrates BlueBERT’s
robustness and effectiveness in sequence classification within
this study.

The abbreviation disambiguation results for the UMN
dataset, presented in Table 3, highlight the performance
of various models. BlueBERT excelled, achieving macro-
and microaccuracies of 98.4% and 98.22%, respectively,
indicating its strong potential for disambiguation tasks.
BERT-base-uncased and ClinicalBERT also showed strong
performance, though slightly less than BlueBERT. In
contrast, OTO-based models like Word2Vec + SVM and
BioWordVec + SVM had lower accuracy scores, under-
scoring the advanced capabilities of the BERT models.

Table 2. Abbreviation disambiguation results (Medical Subject Headings Word Sense Disambiguation).
Method Macroaccuracy (%) Microaccuracy (%)
One-to-one

k-nearest neighbors [33] 94.34 —a

Naive Bayes [26] 93.86 —
Long short-term memory [34] 94.87 94.78

One-to-all
deepBioWSDrandom embeddings [38] 93.88 93.71
deepBioWSDpretrained sense embeddings [38] 96.82 96.24
Masked language modeling [37] 95.89 —
Permutation language modeling [37] 96.83 —
BERT-base-uncased 93.64 93.38
ClinicalBERT 94.77 94.59
BlueBERT 95.41 95.16

aNot applicable.

Table 3. Abbreviation disambiguation results (University of Minnesota).
Method (work) Macroaccuracy (%) Microaccuracy (%)
One-to-one

Word2Vec + SVMa [35] 95.79 —b

BioWordVec + SVM 94.27 —
One-to-all

Masked language modeling [37] 98.39 —
Permutation language modeling [37] 98.28 —
BERT-base-uncased 97.59 97.27
ClinicalBERT 98.27 98.01
BlueBERT 98.40 98.22

aSVM: support vector machine.
bNot applicable.

Overall, the proposed OTA method, especially when
implemented using the pretrained BlueBERT model,
outperformed the OTO-based approaches. The OTA method’s
reliance on a single model, as opposed to the multiple models
required by OTO methods, improves maintainability and
scalability.
Experiment 2
Table 4 displays the abbreviation disambiguation results for
the CYCH dataset using BlueBERT. The table compares
accuracy percentages for each abbreviation when trained

exclusively on external data versus including incremental
amounts of CYCH data (5 and 10 samples, respectively).
For example, the model recorded a 62.07% accuracy for the
abbreviation DM when trained without CYCH data. With the
inclusion of CYCH data, the accuracy slightly improved to
70.27% with 5 samples but then slightly decreased to 100%
with 10 samples. This trend of initial improvement followed
by a marginal decline was observed for other abbreviations
as well. Notably, the abbreviation PA showed a substantial
increase in performance; it had 0% accuracy when trained
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without CYCH data but reached 100% accuracy when trained
with either 5 or 10 CYCH samples.

Table 4. Abbreviation disambiguation results of the Chia-Yi Christian Hospital (CYCH) dataset.

Abbreviation
Training without CYCH data,
accuracy (%) Training with CYCH data

Accuracy, includes 5 documents (%) Accuracy, includes 10 documents (%)

ER 97.91 98.03 97.75
DM 62.07 70.27 100
CVA 96.20 98.65 100
PM 77.27 100 100
PA 0.00 100 100

Discussion
Automatic abbreviation disambiguation is crucial in clinical
settings as it enhances the clarity and readability of medical
records. By accurately interpreting abbreviations, it ensures
that health care professionals have a precise understanding
of patient information, facilitating accurate diagnoses and
effective treatment plans. This automation also speeds up data
processing, supports decision-making, and reduces errors,
thereby improving overall health care delivery and patient
safety.

Traditional OTO methods for abbreviation expansion
involve constructing independent models for each abbrevia-
tion. Although this method offers high accuracy, it presents
challenges in terms of maintenance and generalizability,
complicating clinical applications due to the high number
of models and associated maintenance costs. In contrast,
this study proposes an approach that reduces the number of
required models and offers better performance in clinical
abbreviation restoration, thereby lowering both the opera-
tional and maintenance costs.

Compared to OTO, the OTA approach provides greater
scalability, efficiency, and consistency, with a unified model
that is easier to maintain and update. However, OTA
approaches can be costly in terms of model retraining. Kim
et al [37] highlighted that retraining the encoder necessitated
high-end GPUs and substantial memory, requiring up to 14
days. Our study adopted a tuning approach using existing
pretrained models, substantially cutting down training time
to approximately an hour and a half by utilizing free online
resources like the K80 GPU through Kaggle Notebook. This
method effectively reduces both hardware and time costs,
especially beneficial in clinical settings where frequent model
updates may be necessary.

This study further demonstrates the practicality of this
method in various hospital scenarios, particularly addressing
cross-hospital and interdepartmental issues. Our incremental
learning approach has been shown to significantly improve
prediction results, thereby saving considerable retraining
costs.

This study has the following limitations. First, although
it preliminarily validates the exceptional effectiveness of the
OTA method for abbreviation disambiguation in medical
texts, the evaluation is limited by the size of the datasets
used. More extensive and comprehensive clinical data are
required before application to further validate this method.
Second, our study is constrained by the maximum sequence
length restriction of the BERT model. Longer clinical notes
exceeding the 512-token limit must be truncated, risking the
loss of information. Analysis shows that about 16.85% of
the MSH WSD dataset and only 0.03% of the UMN dataset
exceed this limit. The experimental results indicate superior
accuracy for the UMN dataset; however, the performance
for the MSH WSD dataset is lower, likely due to significant
truncation of longer texts.

Additionally, in generating context-candidate pairs, we
retain all candidates and use a FIFO approach for trimming
the context. If an abbreviation appears at both the beginning
and end of a context and exceeds the token limit, the FIFO
method may remove the initial occurrence. Conversely, a last
in, first out method could remove an abbreviation appearing
at the end. If the same abbreviation carries different meanings
in different parts of the text, identical context-candidate pairs
may be created post trimming, potentially distorting model
training and leading to incorrect predictions.

This study presents an innovative approach to the
disambiguation and expansion of abbreviations in clinical
medical texts by utilizing context-candidate pairs and the
BERT model. This method enhances the readability of
medical texts, improving the efficiency of clinical staff
who review EMRs and saving time for cross-disciplinary
researchers analyzing clinical data, thereby increasing the
effectiveness of their studies. Given that clinical medical
texts are replete with abbreviations, accurate disambiguation
is essential for improving text clarity and usability. Automat-
ing this process greatly assists both medical professionals
and researchers. The successful application of this model on
the investigated datasets underscores its effectiveness and
establishes it as a valuable reference for future research in
clinical abbreviation expansion.
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