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Abstract
Background: Predicting hypoglycemia while maintaining a low false alarm rate is a challenge for the wide adoption of
continuous glucose monitoring (CGM) devices in diabetes management. One small study suggested that a deep learning model
based on the long short-term memory (LSTM) network had better performance in hypoglycemia prediction than traditional
machine learning algorithms in European patients with type 1 diabetes. However, given that many well-recognized deep
learning models perform poorly outside the training setting, it remains unclear whether the LSTM model could be generalized
to different populations or patients with other diabetes subtypes.
Objective: The aim of this study was to validate LSTM hypoglycemia prediction models in more diverse populations and
across a wide spectrum of patients with different subtypes of diabetes.
Methods: We assembled two large data sets of patients with type 1 and type 2 diabetes. The primary data set including CGM
data from 192 Chinese patients with diabetes was used to develop the LSTM, support vector machine (SVM), and random
forest (RF) models for hypoglycemia prediction with a prediction horizon of 30 minutes. Hypoglycemia was categorized
into mild (glucose=54-70 mg/dL) and severe (glucose<54 mg/dL) levels. The validation data set of 427 patients of European-
American ancestry in the United States was used to validate the models and examine their generalizations. The predictive
performance of the models was evaluated according to the sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC).
Results: For the difficult-to-predict mild hypoglycemia events, the LSTM model consistently achieved AUC values greater
than 97% in the primary data set, with a less than 3% AUC reduction in the validation data set, indicating that the model was
robust and generalizable across populations. AUC values above 93% were also achieved when the LSTM model was applied
to both type 1 and type 2 diabetes in the validation data set, further strengthening the generalizability of the model. Under
different satisfactory levels of sensitivity for mild and severe hypoglycemia prediction, the LSTM model achieved higher
specificity than the SVM and RF models, thereby reducing false alarms.
Conclusions: Our results demonstrate that the LSTM model is robust for hypoglycemia prediction and is generalizable
across populations or diabetes subtypes. Given its additional advantage of false-alarm reduction, the LSTM model is a strong
candidate to be widely implemented in future CGM devices for hypoglycemia prediction.
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Introduction
Diabetes is a serious long-term disease with considerable
influence on global health [1]. Type 1 diabetes mellitus
(T1DM) is a disease in which the pancreas produces little
or no insulin [2], whereas insulin resistance and insufficient
insulin are the primary contributors to the development of
type 2 diabetes mellitus (T2DM) [3]. Although the pathogenic
mechanisms of T1DM and T2DM are different, glucose-
lowering treatments such as insulin administration are the
common leading cause of hypoglycemia events in patients
with both diabetes subtypes [4]. Severe hypoglycemia is a
frequent phenomenon in patients with T1DM, with an annual
prevalence of 30%-40% [5]. Although the risk of severe
hypoglycemia in patients with T2DM is relatively lower,
46%-58% of these patients were reported to have experi-
enced mild hypoglycemia symptoms over a 6-month period
[6]. Patients experiencing frequent hypoglycemia events have
1.5-6.0 times increased risks of cardiovascular events and
mortality than those without such events [7]. Patients with
T2DM from Southeast Asia appear to have an elevated risk
of hypoglycemia, as these patients are more often treated
with a premixed insulin formulation, are younger, and have
a lower BMI than those of their counterparts from West-
ern countries [8-11]. Given that demographic and clinical
factors such as ethnic group, diabetes subtype, and BMI
are all important components of the complex risk profile
of hypoglycemia, accurate risk prediction and prevention of
hypoglycemia across populations and diabetes types remain
significant challenges in diabetes management.

Recently, continuous glucose monitoring (CGM) has
demonstrated good potential to predict hypoglycemia. For
patients who wear insulin pumps or those who require
multiple daily insulin injections, hypoglycemia prediction
based on CGM data could provide a timely warning of
impending hypoglycemia for the individual to take imme-
diate action and increase their glucose levels. CGM devi-
ces are designed to produce time-series data by recording
interstitial glucose concentrations within a relatively short
interval of 5-15 minutes over a few days. Therefore, it
is possible to leverage the early glucose readings to pre-
dict hypoglycemia events over the short-to-medium time
horizon. Time-series forecast algorithms such as autoregres-
sive and moving-average algorithms were first adopted to
utilize the short-term temporal features of CGM data to
predict hypoglycemia [12-15]. A small study including 17
patients with T1DM showed that these CGM-based algo-
rithms achieved 86% sensitivity but only 58% specificity in
hypoglycemia prediction [16]. Similar results from studies
implementing these time-series forecast algorithms indica-
ted that the low specificity might frequently generate false
alarms, leading to discontinuation of CGM use in hypoglyce-
mia prevention [17,18].

To improve the sensitivity and particularly the specificity
of hypoglycemia prediction, both traditional machine learning
algorithms such as support vector machine (SVM) and
random forest (RF) models, along with deep learning models
such as the convolutional neural network and long short-term
memory network (LSTM) have been used to leverage more
temporal features of CGM data [19-25]. When the features,
including the mean of glucose and range of time in hypergly-
cemia, based on CGM data collected over the previous 6
hours were fed into the RF model, hypoglycemia prediction
achieved a sensitivity of 93% and a specificity of 91% in a
study of 112 patients with T1DM [26]. More recently, when
an LSTM deep learning model was implemented on CGM
data for hypoglycemia prediction, it achieved a sensitivity of
97% with remarkably few false alarms (0.9 false alarms per
week) on a test data set including 10 patients with T1DM,
thereby illuminating a path toward the widespread clinical
adoption of CGM in hypoglycemia prediction [27].

However, a well-known challenge in implementing
predictive models is their generalization [28]. The predictive
performance of models could be substantially reduced when
used in a setting that is not well-represented by the training
data set [29,30]. This is particularly relevant in the case of
hypoglycemia prediction, as the previously developed models
for this purpose were mostly trained on a small data set of
patients with T1DM from Western populations. In addition,
the lack of a common test data set rendered the compari-
son of predictive performances between models unreliable.
With recent improvements in measurement accuracy, CGM
devices have also gained momentum and have begun to
be adopted more widely for the management of T2DM,
including in developing countries. Therefore, the established
hypoglycemia prediction models should be validated in more
diverse populations and over a wide spectrum of patients with
different types of diabetes.

We hypothesized that the promising LSTM model for
hypoglycemia prediction from CGM data could maintain
good predictive performance in different settings for different
populations. In this study, we assembled two large CGM
data sets from China and the United States, both including
patients with T1DM and patients with T2DM. We developed
the LSTM model on the Chinese data set and then examined
the model performance in the data set from European-Amer-
icans in the United States. Apart from exploring the mod-
el’s generalization ability for T1DM and T2DM separately,
we also compared the predictive performance of the LSTM
model with that of SVM and RF models to further indicate its
translational potential.
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Methods
Ethical Considerations
The study protocol was approved by the ethics commit-
tees of Kunshan Hospital Affiliated to Jiangsu University
(2023-03-014-H01-K01) and the study was performed in
accordance with the principles of the Declaration of Helsinki.
Written informed consent was obtained from each participant
before taking the measurements. The data analyzed were
anonymized. All participants volunteered to participate in the
project with no compensation provided.
Data Collection
We collected a primary data set comprising 1578 days of
CGM data collected from 264 Chinese people with diabe-
tes to develop a deep learning model for hypoglycemia
prediction. The individuals’ glucose levels were monitored
using the Medtronic MiniMed CGM device, which requires
calibration according to self-monitored blood glucose levels.
This CGM device can record glucose levels every 5 minutes
over 3 days.

The mean absolute relative difference (MARD) was used
to evaluate the quality of the CGM data. The MARD
represents the average of the absolute error between all

CGM values and matched reference values. A small MARD
indicates that the CGM readings are close to the reference
glucose value, whereas a larger MARD percentage indi-
cates greater discrepancies between the CGM and reference
glucose values. Each individual had at least 5 self-monitor-
ing of blood glucose (SMBG) measurements. As reference
glucose values, the SMBG was used to calculate the MARD
of CGM data. The data for 72 participants were filtered out
because their MARD was higher than 15%, leaving data for
192 participants with 808 days of CGM data for analysis.

To examine whether the deep learning model trained
and developed with data from the Chinese population could
be generalized to a different population, we assembled a
large validation data set that mainly comprised data from
individuals of European-American ancestry. The validation
data set shared by the A1c-Derived Average Glucose study
group includes 507 participants and 7299 days of CGM data,
also collected with Medtronic MiniMed devices [31]. After
filtering out individuals without diabetes, 427 patients with
either T1DM or T2DM were included to validate the model.
This validation data set was split into two groups: the T1DM
group of 268 participants with 3932 days of CGM data and
the T2DM group of 159 participants with 2259 days of CGM
data. Figure 1 provides the flowchart of exclusion criteria for
the primary data set and validation data set.

Figure 1. Flowchart of exclusion criteria for the primary data set and validation data set. MARD: mean absolute relative difference.

Outcome
The glucose values reported by CGM devices were clas-
sified into three categories: nonhypoglycemic level (glu-
cose>70 mg/dL), mild hypoglycemic level (glucose=54-70
mg/dL), and severe hypoglycemic level (glucose<54 mg/dL)
according to the international consensus on CGM utility [32].
Data Preprocessing
The primary data set consisting of 192 patients was randomly
split into three disjoint data sets, namely the training data set,
development data set, and test data set, at a 7:1.5:1.5 ratio.
The training data set was used to train the model, whereas the
development data set was used to select the hyperparameters

in the training process. The test data set was used to evaluate
the performance of the developed model.

The CGM sensor may fail to detect a valid glucose
level, resulting in the CGM device missing glucose values
continuously. To preserve as much of the CGM data as
possible, we divided an individual’s CGM data into differ-
ent segments at the time points of missing data rather than
discarding all of the CGM data. A segment was removed if it
was shorter than 6 hours (72 data points). We set each glucose
value reported by the CGM device as a predictive target if
there were sufficient data prior to the target time at which
the predictive target was located. The data used to predict
the hypoglycemic level of the predictive target were retrieved
from a 6-hour time window spanning from −390 minutes

JMIR MEDICAL INFORMATICS Shao et al

https://medinform.jmir.org/2024/1/e56909 JMIR Med Inform 2024 | vol. 12 | e56909 | p. 3
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e56909


to −30 minutes of the target time. After preprocessing the
primary data set, the training, development, and test data
sets included 100,879, 21,895, and 21,324 samples generated
from 134, 29, and 29 participants, respectively. Similarly, the
T1DM group and T2DM group from the validation data set
contained 712,018 and 405,224 samples generated from 268
and 159 participants, respectively.
Model Development
We used the common bidirectional LSTM model contain-
ing both forward and backward layers to capture the long-
range temporal features in the time-series CGM data and
to combine these features with context factors [33]. Each
LSTM layer consists of 128 memory cells [34]. We chose a
set of context factors, including gender, age, diabetes type,
and hemoglobin A1c value, to capture the background risk of
hypoglycemia and enhance the model’s predictive perform-
ance [26]. Therefore, each input data sample included 72
points of CGM data collected during 6 hours and the context
factors. The output was the probability of the target glucose
value being at the nonhypoglycemic level, mild hypoglycemic
level, and severe hypoglycemic level.

We trained the LSTM model to predict the categories of a
CGM value within 30 minutes on the prediction horizon. The
training process would be terminated if the accuracy failed
to increase for 10 consecutive epochs. We used root mean
square propagation [35] as the optimizer and set the mini
batch size to 64. The LSTM model was developed using the

Python package Keras [36]. We also developed models to
implement the SVM and RF algorithms for comparison. The
SVM model was developed using the radial basis function as
the kernel function, which was also used in previous studies
of hypoglycemia prediction [37]. The RF model included 100
trees and was developed with the Scikit-learn Python package
[38] under default parameters. The input to the SVM and RF
models was the same as that used for the LSTM model.

Model Evaluation
Sensitivity, specificity, and the area under the receiver
operating characteristic curve (AUC) were used to evalu-
ate model performance. The label for each sample was
the category of a single CGM data point. Sensitivity and
specificity indicate the proportion of the labels of CGM data
points that were correctly predicted. The DeLong method was
used to measure the 95% CIs for the AUC values [39]. All
methods of evaluation were developed using Python and the
pROC R package [40].

Results
Characteristics of the Data Set
Table 1 summarizes the characteristics of the primary data set
and the validation data set. As expected, the average age of
patients with T1DM was lower than that of the patients with
T2DM in both data sets (Wilcoxon rank sum test, P<.001).

Table 1. Characteristics of the primary data set and validation data set.
Variables Primary data set Validation data set

Type 2 diabetes (n=175) Type 1 diabetes (n=17) Type 2 diabetes (n=159) Type 1 diabetes (n=268)
Age (years), mean (SD) 53.30 (11.78) 40.59 (13.02) 55.64 (9.32) 43.06 (12.85)
Women, n (%) 51 (29.14) 11 (64.71) 81 (50.94) 140 (52.24)
Predictive targets, n

Nonhypoglycemia 129,609 12,029 396,415 660,111
Mild hypoglycemia 1350 336 5985 28,287
Severe hypoglycemia 608 166 2824 23,620

Hemoglobin A1c (%), mean
(SD)

7.69 (1.71) 8.46 (2.22) 7.01 (1.24) 7.51 (1.30)

Model Performance on the Primary Test
Data Set
Using the primary data set from 192 individuals, the three
models of LSTM, SVM, and RF were trained and we then
evaluated their performance based on the AUC. At the mild
hypoglycemic level, the LSTM model achieved an AUC of
97.22% (95% CI 96.78%-97.66%), which was significantly
higher than the AUC of 94.33% (95% CI 93.13%-95.53%)
and 94.81% (95% CI 93.72%-95.91%) achieved by the SVM
and RF models, respectively (both P<.001). At the severe
hypoglycemic level, the LSTM model achieved an AUC of
99.64% (95% CI 99.53%-99.76%), which was significantly
higher than the AUC of 98.30% (95% CI 98.00%-98.60%)
and 97.88% (95% CI 96.93%-98.83%) achieved by the SVM
and RF models, respectively (both P<.001). These results

demonstrated that the LSTM model could outperform the
SVM and RF models in predicting hypoglycemia.
Model Generalization on the Validation
Data Set
We then utilized the validation data set from 427 Euro-
pean-Americans to evaluate the generalization of the LSTM
model developed from our primary data set of 192 Chinese
individuals. The LSTM model achieved an AUC of 94.61%
(95% CI 94.51%-94.71%) for mild hypoglycemia, which
was significantly higher than the AUC of 92.59% (95%
CI 92.48%-92.71%) and 91.43% (95% CI 91.28%-91.58%)
achieved by the SVM and RF models, respectively (both
P<.001). The LSTM model achieved an AUC of 96.40%
(95% CI 96.25%-96.55%) for severe hypoglycemia, which
was significantly higher than the AUC of 95.27% (95%
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CI 95.15%-95.39%) and 95.17% (95% CI 95.01%-95.32%)
achieved by SVM and RF models, respectively (both
P<.001). Although AUC values of the LSTM model
decreased by approximately 3% in the validation data set
compared to those from the primary test data set, the overall
AUC was still higher than 94%, indicating that the LSTM
model could accurately predict hypoglycemia in a different
population.

Next, the generalizability of the LSTM model to vari-
ous disease subtypes was evaluated in the subgroups of
T1DM and T2DM from the validation data set. For T1DM,
the LSTM model achieved an AUC of 93.49% (95% CI
93.38%-93.61%) at the mild hypoglycemia level, which
was significantly higher than the AUC of 90.92% (95%
CI 90.78%-91.06%) and 89.74% (95% CI 89.57%-89.92%)
achieved by the SVM and RF models, respectively (both
P<.001). In addition, the LSTM model achieved an AUC
of 95.89% (95% CI 95.73%-96.05%) at the severe hypogly-
cemia level, which was significantly higher than the AUC
of 94.06% (95% CI 93.91%-94.21%) and 94.53% (95%
CI 94.37%-94.70%) achieved by the SVM and RF models,
respectively (both P<.001).

For T2DM, the LSTM model achieved an AUC of
96.83% (95% CI 96.66%-97.01%) at the mild hypoglyce-
mia level, which was significantly higher than the AUC
of 95.72% (95% CI 95.51%-95.93%) and 94.08% (95%
CI 93.73%-94.43%) achieved by the SVM and RF models,
respectively (both P<.001). In addition, the LSTM model
achieved an AUC of 97.65% (95% CI 97.27%-98.04%) at the
severe hypoglycemia level, which was significantly higher

than the AUC of 96.02% (95% CI 95.70%-96.34%) and
95.71% (95% CI 95.23%-96.19%) achieved by the SVM and
RF models, respectively (both P<.001).

The AUCs of the LSTM model were consistently higher
than those from the SVM and RF models in both the T1DM
and T2DM data sets. Taken together, these results demonstra-
ted that the LSTM model could be generalized to differ-
ent diabetes subtypes without significant loss of predictive
performance.
Comparison of the False Alarm Rate
Finally, we examined whether the LSTM model could
achieve a low false alarm rate (ie, high specificity) under
satisfactory sensitivity. According to previous studies of
hypoglycemia prediction, we set the model parameters to fix
the satisfactory sensitivity level at 90% and 95% for mild and
severe hypoglycemia prediction, respectively [21,26,37]. As
shown in Table 2, while maintaining a sensitivity of 90% for
mild hypoglycemia, which is difficult to predict, the LSTM
model could achieve a specificity of 88.43%, which was
higher than the specificity obtained from the SVM and RF
models. For severe hypoglycemia, when a higher satisfactory
sensitivity rate of 95% was set, the LSTM model achieved a
specificity of 87.34%, which was higher than that obtained
from the SVM model. Moreover, the RF model could not
achieve a sensitivity of 95% for the severe hypoglycemic
level. Taken together, these results demonstrated that the
LSTM model could maintain a lower false alarm rate than
the SVM and RF models in clinically practical settings.

Table 2. Specificity and sensitivity of the three models on the validation data set.
Mild hypoglycemic level Severe hypoglycemic level
Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%)

LSTMa 88.43 90.00 87.34 95.00
SVMb 82.57 90.00 80.67 95.00
RFc 82.65 90.00 Not determined Not achieved

aLSTM: long short-term memory.
bSVM: support vector machine.
cRF: random forest.

Discussion
Principal Findings
In this study, we assembled two large CGM data sets from
China and the United States to develop and validate an LSTM
deep learning model for hypoglycemia prediction. The LSTM
model could maintain good predictive performance when
applied to data sets from a different ethnic population or
any common subtype of diabetes. The LSTM model could
also predict both mild and severe hypoglycemia with higher
accuracy than the traditional SVM and RF models. While
targeting clinically meaningful high sensitivity, the LSTM
model could achieve high specificity, thereby reducing the
rate of false alarms.

Compared with the models tested without external
validation in most previous studies of hypoglycemia
prediction, we developed an LSTM model and validated the
model in a data set from a different population to exam-
ine its generalizability [27]. There are considerable differen-
ces in dietary structure and clinical practice between China
and the United States, which are among the many factors
that might affect the risk of hypoglycemia. Previous studies
demonstrated that clinical models trained in one population
could result in an AUC reduction as great as 15% when
applied to a distinct population [41-43]. However, the LSTM
model derived from our Chinese training data set maintained
high prediction performance (AUC>93%) with only a minor
loss of 3% in the US data set, indicating good generaliza-
bility of the model. As CGM devices are becoming more
widely adopted, the generalizability of the LSTM model
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could be further improved by training the model with data
from multiple populations or can be fine-tuned for the target
population using a transfer-learning approach [44].

We also examined the generalizability of the LSTM model
on another dimension of diabetes pathogenicity. Given the
different pathogenic mechanisms between T1DM and T2DM,
hypoglycemia occurring in different diabetes subtypes would
be expected to be preceded by various patterns of glucose
fluctuation, which could be leveraged by the LSTM model
for prediction. Therefore, the model was expected to lose
predictive performance when the training and validation data
sets had different proportions of diabetes subtypes. Indeed,
we observed a higher AUC value for T2DM than for T1DM
in the validation data set, which was likely due to the fact that
our training data set primarily consisted of individuals with
T2DM. However, for either subtype of diabetes, the LSTM
model consistently maintained an AUC value above 93%,
indicating the good generalizability of the model. With the
increasing popularity of CGM usage in the management of
all subtypes of diabetes, the LSTM model could be further
improved by using larger training data sets with a wider
representation of the various diabetes subtypes.

Achieving high sensitivity has been the main focus of
previous models for hypoglycemia prediction, as severe
hypoglycemia requires immediate external intervention
[15,32]. With the sacrifice of high specificity, false alarms
became an obstacle for the safe and widespread use of
CGM devices [45-47]. False-alarm fatigue could lead to users
ignoring the true alarms of hypoglycemia and contribute to
the discontinuation of CGM use [45]. Moreover, glucose
control could be compromised, as CGM users may frequently
take action to elevate their glucose level when a false alarm is
generated [46]. Therefore, it is imperative to balance the false
alarm rate with sufficient sensitivity of the prediction. In this
study, we demonstrated that the LSTM model would generate
fewer false alarms than the traditional machine learning
models under satisfactory sensitivity rates of 90% and 95%
for mild and severe hypoglycemia, respectively. Therefore,
the balanced hypoglycemia prediction performance from the
LSTM model demonstrated that it has potential to promote
the use of CGM in a variety of clinical settings.

One reason for the better predictive performance of the
LSTM model than the SVM and RF models might be that the
LSTM algorithm is more suitable for analyzing sequential
data. CGM data are a type of sequential data that are

generated in time order. The LSTM algorithm consists of
memory cells that learn the sequential nature of observations
within CGM data [48]. The input of one memory cell is the
glucose value taken at one time point and then the LSTM
takes all of the glucose values as inputs sequentially. Every
memory cell retains the relevant information and discards
irrelevant information for the predictive task, and then the
relevant information in one cell is delivered to the next
cell [49-53]. With this sequential structure, LSTM networks
incorporate CGM data from the past to accurately make
predictions of hypoglycemia risk in the near future.
Limitations
There are several limitations of this study. Although we
tested the generalizability of the LSTM model using two
data sets from China and the United States, further validation
might still be required for application of the model in other
countries. Similarly, as only T1DM and T2DM were included
in our data sets, the model should be tested with wider and
more representative training data sets to validate its utility
on other minority subtypes of diabetes. Moreover, data from
only one CGM device manufacturer were available for this
study. Thus, it is unknown whether the model would perform
equally well with data collected from other devices such
as factory-calibrated CGM or noninvasive CGM devices.
However, given that all of the devices were strictly calibrated
by finger-stick glucose values, the fluctuation patterns and
temporal dependence of CGM data, which are key factors
for the LSTM prediction task, should be largely captured by
any certified CGM device. Moreover, the performance of the
LSTM model for hypoglycemia prediction will need to be
further validated in a CGM data set without missing data.
Conclusions
We developed an accurate LSTM model for mild and severe
hypoglycemia prediction using a large data set of 619 patients
with diabetes from China and the United States. The model
could be robustly generalized to different populations or any
common subtype of diabetes. Moreover, while maintaining
satisfactory levels of sensitivity, the model could also achieve
high specificity, indicating its potential to mitigate the
hypoglycemia false-alarm fatigue that is frequently observed
in clinical practice. Taken together, we demonstrated that the
LSTM model is a strong candidate algorithm to be further
tested and implemented for the wider clinical adoption of
CGM.
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