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Abstract

Background: To circumvent regulatory barriers that limit medical data exchange due to personal information security concerns,
we use homomorphic encryption (HE) technology, enabling computation on encrypted data and enhancing privacy.

Objective: This study explores whether using HE to integrate encrypted multi-institutional data enhances predictive power in
research, focusing on the integration feasibility across institutions and determining the optimal size of hospital data sets for
improved prediction models.

Methods: We used data from 341,007 individuals aged 18 years and older who underwent noncardiac surgeries across 3 medical
institutions. The study focused on predicting in-hospital mortality within 30 days postoperatively, using secure logistic regression
based on HE as the prediction model. We compared the predictive performance of this model using plaintext data from a single
institution against a model using encrypted data from multiple institutions.

Results: The predictive model using encrypted data from all 3 institutions exhibited the best performance based on area under
the receiver operating characteristic curve (0.941); the model combining Asan Medical Center (AMC) and Seoul National
University Hospital (SNUH) data exhibited the best predictive performance based on area under the precision-recall curve (0.132).
Both Ewha Womans University Medical Center and SNUH demonstrated improvement in predictive power for their own
institutions upon their respective data’s addition to the AMC data.

Conclusions: Prediction models using multi-institutional data sets processed with HE outperformed those using single-institution
data sets, especially when our model adaptation approach was applied, which was further validated on a smaller host hospital
with a limited data set.

(JMIR Med Inform 2024;12:e56893) doi: 10.2196/56893
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Introduction

The demand for combining widespread data from various
hospitals to create a larger data set for research from medical
researchers is ongoing. However, exchanging or sharing medical
data among hospitals is highly challenging because of various
regulations and restrictions [1]. Sharing medical data with other
institutions is limited owing to concerns over personal data
breach. In other words, most medical data are exclusively
accessible to each institution, but data access is mutually
exclusive, blocking access from other institutions. Owing to
strict data protection policies and privacy regulations, various
legal and regulatory barriers to transferring patient-level
heterogeneous data among institutions exist. However, as
predictive studies using large data have been actively conducted
in precision medicine recently, demands to compile
multi-institutional data and develop widely applicable models
in more diverse clinical environments are increasing. Efforts
have been invested to address these challenges using emerging
privacy-enhancing technologies (PETs), including homomorphic
encryption (HE)—a form of encryption that permits calculations
directly on encrypted data, ensuring the security of both input
and output of a numerical model [2-5]. It has been demonstrated
to be effective in specific “privacy-preserving data sharing and
analytics” contexts, for tasks such as delegated computation
(wherein data are processed by a third party without revealing
its content) or generating summary statistics without exposing
individual raw data [6,7]. However, owing to HE’s inherent
computational constraints, several HE applications have
primarily focused on computationally simpler tasks, such as
computing summary statistics. Nevertheless, recent
advancements in HE technology have evolved to a stage wherein
the development or training of predictive models—particularly
with large data sets in multi-institutional studies—has become
achievable.

Recent advancements in privacy-preserving techniques in
medical data analysis have significantly influenced the field,
particularly through the use of HE. Several studies have explored
the application of HE for privacy-preserving logistic regression
and collaborative learning. For example, Kim et al [8]
demonstrated the feasibility of training logistic regression
models on homomorphically encrypted data, while Bos et al
[9] applied HE to enable secure genome-wide association
studies. Furthermore, the scalability of HE-based logistic
regression has been demonstrated by Crawford et al [10], who
successfully trained 30,000 models on encrypted data.

Our study distinguishes itself from previous works by applying
HE to enable secure multi-institutional learning for postoperative
mortality prediction using real-world clinical data. In addition,
we propose a method called “model adaptation” strategy that
allows smaller institutions to leverage encrypted data from larger
institutions, improving their predictive models’ performance
without compromising patient privacy. By focusing on
developing a predictive model through multi-institutional
collaboration and emphasizing the practical applicability of our
approach, our study pushes the boundaries of privacy-preserving
medical data analysis and offers tangible solutions for enhancing
predictive modeling in a secure, collaborative manner.

This study, aiming to verify the feasibility of securely
developing a predictive model with multi-institutional data sets,
focused on protecting each institution’s data set using HE
technology. Furthermore, we sought to determine whether the
predictive performance can be improved by merging various
multi-institutional data sets to project the 30-day postoperative
mortality rate. Additionally, we showcased the application of
our proposed “model adaptation” strategy. By supplementing
and learning from a small amount of data based on an
HE-encrypted large-scale data set from external institutions,
institutions can construct a predictive model applicable within
their clinical setting.

Methods

Ethical Considerations
This study was approved by the Institutional Review Board
(IRB) of the Asan Medical Center (AMC) (IRB No. 2021-0186)
and Ewha Womans University Medical Center (EUMC) (IRB
No. 2020-11-017). The requirement of obtaining written
informed consent was waived owing to the retrospective study
design. We used the publicly available INSPIRE data set
provided by the Seoul National University Hospital (SNUH).
The composition, release, and usage of the INSPIRE data set
were separately approved by the SNUH’s IRB
(H-2210-078-1368).

Inclusion and Exclusion Criteria
We retrospectively analyzed data collected from 341,007
patients aged 18 years and older who underwent noncardiac
surgeries at 3 independent institutions. The data collection period
for SNUH patients who underwent noncardiac surgeries was
adjusted to January 2011 to December 2020, resulting in the
inclusion of 46,956 patients. Moreover, we obtained data from
162,184 patients who underwent surgeries between January
2017 and April 2021 at the AMC. The apparent disparity in the
number of patients between these institutions primarily stems
from the mapping of our data set with the pre-existing public
database, VitalDB. Additionally, our data set included 131,867
patients who underwent surgeries between January 2001 and
December 2019 at the EUMC. Patients who had undergone
cardiac procedures, organ transplantations, and neurosurgical
operations, as well as those with an indeterminable final clinical
outcome because of insufficient follow-up within the study
timeframe, were excluded. Our analysis only incorporated the
first surgical procedure post-admission for patients who had
undergone several surgeries within the study period.

Data Collection and Variable Selection
Data encompassing patient demographics, preoperative
laboratory evaluations, details of the surgery, and postoperative
clinical outcomes were culled from the electronic medical record
system of each respective hospital. Variables for the model were
selected in the same manner as in the previous study [11].
Features that consistently ranked high across all hospitals were
considered potential candidates for subsequent analyses. The
study disregarded variables exhibiting substantial disparities
among hospitals, a high incidence of missing values, and
susceptibility to subjective measurement and execution by

JMIR Med Inform 2024 | vol. 12 | e56893 | p. 2https://medinform.jmir.org/2024/1/e56893
(page number not for citation purposes)

Suh et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


medical personnel. Through these processes, the following 19
variables that served as features for our investigation were
selected: (1) demographic data (age, sex, and BMI); (2)
preoperative laboratory results (white blood cells, hemoglobin,
platelets, sodium, potassium, blood urea nitrogen, creatinine,
albumin, aspartate transaminase, alanine transaminase, glucose,
prothrombin time, and activated partial thromboplastin clotting
time); (3) surgery type (general, otolaryngological, urological,
orthopedic, gynecological, and plastic); (4) anesthesia type
(general, neuroaxial, monitored anesthesia care, and regional);
and (5) status of emergency surgery.

During the modeling process with encrypted data, we strictly
adhered to the principle of complete ignorance of the data’s
content. This approach, integral to our study design, is not
merely a precaution; rather, it is essential for ensuring our
analysis’ objectivity and reliability. By consciously avoiding
any knowledge of the data’s nature, we aimed to minimize
potential biases from prior data set familiarity, thus bolstering
our findings’ integrity and validity, particularly in encrypted
data scenarios.

Data Preprocessing
All continuous variables underwent scaling using the
StandardScaler function from the scikit-learn library, while
categorical variables were incorporated into the model using
one-hot encoding. We assumed that standardization for each
feature had been implemented at every hospital before
encryption, using their respective means and standard deviations.

Model Outcomes
The primary outcome of interest in the study was in-hospital
mortality within 30 days postoperatively. Data on in-hospital

mortality were procured as binary information, derived from
the final mortality date in the electronic medical record within
30 days postoperatively (“1” representing mortality and “0”
indicating survival, with a threshold of 0.5).

Model Building
For modeling, secure logistic regression was used to compare
the models’ predictive performance (Figure 1) [8]. Complete
data sets of each hospital were partitioned into training,
validation, and testing data sets using a 6:2:2 distribution to
develop all the models. The Nesterov Accelerated Gradient
optimizer was applied to build trained models with a learning
rate of 0.01 and batch size of 64 [12]. Binary cross-entropy
served as the loss function for the model [13], with parameters
being optimized to reduce each model’s loss of function to the
minimum. To address the imbalance in clinical data and more
robustly assess the generalized performance of each model, we
use the bootstrap sampling technique [14], which involved
repeated processes of resampling training data, creating a new
model, and evaluating that model. Thereafter, the model’s
performance was quantified as the mean performance of separate
models developed with the bootstrap approach. Overfitting
issues can be mitigated by averaging their results, thus
increasing the model’s generalizability. Consequently, the
bootstrap method can significantly diminish the developed
models’ overfitting. To validate the predictive performance, the
model was evaluated using the test set of the chosen hospital
and data gathered from the amalgamations of other hospitals.
For a fair comparison, we used the plaintext version of logistic
regression for unencrypted data using NumPy from scratch [15],
based on a stochastic approach, as opposed to using scikit-learn.

Figure 1. Schematic diagram of external validation of each hospital model. AMC: Asan Medical Center; EUMC: Ewha Womans University Medical
Center; DB: database; SNUH: Seoul National University Hospital.

Model Adaptation
We proposed a methodology for “model adaptation,”
substantiated by the validation results for a host hospital. In the
scenario, the host hospital was a small institution that may have
not had an extensive data set of its own. The institution aimed
to use an external data set, provided by a larger donor hospital,
as a foundational training set. We assumed that the donor
hospital provided its data set to the recipient hospital in an
encrypted state. Moreover, we gradually increased the size of
the host hospital’s data set when training the predictive model
to ascertain the volume at which the utilization of its data—when
adapting the donated data set as a foundational training

set—became effective. The approach was applied to the
comprehensive AMC data set, which acted as a donor hospital,
on postoperative 30-day mortality; that is, we initiated our study
with all the AMC data set and progressively incorporated an
increasing proportion of the EUMC and SNUH data sets. EUMC
is assumed to be the AMC data’s recipient. The AMC provides
its own data in an encrypted state to augment the EUMC data
set. Thereafter, the encrypted merged data set is used to train a
logistic regression model, and inferences are made based on the
EUMC’s plaintext data. Over the course of this study, the
EUMC data set’s volume was incrementally increased by steps
of 1000, 2000, 3000, and 4000, resulting in the sizes of 0, 1000,
3000, 6000, 10,000, 15,000, and 20,000. The adaptation process
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was applied with each increase in data size and integrated with
the AMC data set, followed by training of the model and a
thorough examination of the ensuing performance metrics—the
receiver operating characteristic (AUROC) and area under the
precision-recall curve (AUPRC). Moreover, we applied the
same experimental process to the SNUH data set, using all the
AMC data and gradually increasing the former’s proportion.

Model Validation
Secure logistic regression with L2 regularization (called ridge
regression) was developed using all the possible combinations
of multicenter datasets with all input variables. The predictive
performances were compared by assessing both the areas under
the AUROC and AUPRC; the comparison was performed both
numerically and statistically. Furthermore, AUROC and AUPRC
were compared using the DeLong test [16].

Statistical Analysis and Modeling Tools
Continuous variables were expressed as mean (SD), while
categorical variables were expressed as count and percentage.
Continuous and categorical variables were compared among
the 3 institutions using one-way ANOVA and chi-squared test,
respectively. Variables with 2-tailed P values <.05 were
considered to hold statistical significance.

We comparatively analyzed feature importance for each
institution’s data—as represented by the Shapley additive
explanations (SHAP) values within logistic regression
models—to investigate potential heterogeneity in data
distributions across the 3 hospitals under consideration. Feature
importance was evaluated using a logistic regression model and
performed on plaintext data at each hospital without using HE.
Statistical analyses were performed using Python 3.8.16 [17].

The DeLong test was performed using R 4.2.2 [18]. Secure
logistic regression was conducted using scikit-learn 1.2.0 [19]
and HEaaN.stat 0.2.0 [20].

Results

Study Population Characteristics
The average age of surgical patients at EUMC was the lowest,
compared to the other 2 institutions, at 48.5 years (Table 1).
Emergency surgeries occurred most frequently at the SNUH,
with a rate of 7.4% (Table 1). Postoperative mortality within
30 days was relatively rare across all hospitals, with rates
ranging from 0.2% to 0.4% (Table 1). Specifically, the rates
were 0.3% at SNUH, 0.2% at AMC, and 0.2% at EUMC. The
data characteristics of each hospital are shown in Table 1. When
examining the SHAP values across all hospitals, we observed
significant variation in data distributions, suggesting inherent
biases within each hospital’s data set, as presented in Figure S4
in Multimedia Appendix 1. Figure S5 in Multimedia Appendix
1 presents the relative odds ratios of the predictor variables
affecting the outcome variable in the logistic regression models
trained based on each hospital’s data set. These odds ratios offer
insights into each predictor variable’s effect on the likelihood
of the outcome and help interpret associations’ magnitude and
direction. Evidently, the distribution of the odds ratios of the
predictor variables affecting the outcome variable differs among
institutions. In the EUMC data set, only the age and general
surgery department variables are statistically significant. In
contrast, the significance of these and other variables varies
across institutions, as demonstrated by the diverse distribution
of odds ratios affecting the outcome variable depicted in Figure
S2 in Multimedia Appendix 1.
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Table 1. Data characteristics of the 3 medical institutions.

P valueEUMCc (n=131,867)AMCb (n=162,184)SNUHa (n=46,956)

Demographic data

<.00148.5 (17.1)54.2 (15.9)55.9 (16.1)Age (years), mean (SD)

<.00179,232 (60.1)94,413 (58.2)26,236 (55.9)Sex (female), n (%)

<.00123.8 (3.8)24.2 (3.7)24.6 (3.9)BMI (kg/m2), mean (SD)

Preoperative laboratory results, mean (SD)

<.0017.5 (3.9)6.7 (2.4)6.6 (3.0)White blood cell (103/μL)

<.00113.1 (1.9)12.8 (1.9)13.1 (1.8)Hemoglobin (g/dL)

<.001245.6 (72.0)247.1 (72.7)239.8 (73.5)Platelet (103/μL)

<.001140.7 (3.0)139.8 (2.4)140.2 (2.7)Sodium (mmol/L)

<.0014.2 (0.4)4.3 (0.3)4.2 (0.4)Potassium (mmol/L)

<.00113.7 (6.9)14.8 (6.8)15.5 (8.1)BUNd (mg/dL)

<.0010.9 (0.7)0.9 (0.7)1.0 (1.1)Creatinine (mg/dL)

<.0014.1 (0.6)3.8 (0.5)4.2 (0.5)Albumin 9g/dL)

<.00126.5 (95.0)25.0 (33.7)24.4 (36.7)GOTe (IU/L)

<.00125.1 (50.9)22.7 (32.3)23.4 (32.5)GPTf (IU/L)

<.001198.3 (243.9)113.3 (36.9)110.8 (30.5)Glucose (mg/dL)

<.0011.0 (0.4)1.0 (0.1)1.0 (0.1)PTg (INRh)

<.00126.9 (5.4)27.0 (3.3)31.6 (4.6)aPTTi (s)

Type of surgery, n (%)

<.00140,611 (30.8)60,6130 (36.4)13,487 (28.7)General surgery

<.00114,279 (10.8)15,270 (10.8)4537 (9.7)Otolaryngologic surgery

<.0019117 (6.9)20,551 (12.7)4738 (10.1)Urologic surgery

<.00123,486 (17.8)24,480 (14.7)6736 (14.3)Orthopedic surgery

<.00126,509 (20.1)31,691 (19.5)4956 (14.5)Gynecological surgery

<.0019788 (7.4)6213 (1.4)1862 (4.0)Plastic surgery

Type of anesthesia, n (%)

<.001100,223 (76.0)149,542 (92.2)36,060 (76.8)General anesthesia

<.00110,716 (8.1)11,281 (7.0)5052 (16.5)Neuroaxial anesthesia

<.0014985 (3.8)0 (0.0)5792 (12.3)MACj

<.001509 (0.4)1361 (0.8)52 (0.1)Regional anesthesia

<.0014208 (3.2)8876 (5.5)3456 (7.4)Emergency surgery

<.001316 (0.2)306 (0.2)156 (0.3)30-day mortality

aSNUH: Seoul National University Hospital.
bAMC: Asan Medical Center.
cEUMC: Ewha Womans University Medical Center.
dBUN: blood urea nitrogen.
eGOT: glutamate oxaloacetate transaminase.
fGPT: glutamate pyruvate transaminase.
gPT: prothrombin time.
hINR: international normalized ratio.
iaPTT: activated partial thromboplastin time.
jMAC: monitored anesthesia care.

JMIR Med Inform 2024 | vol. 12 | e56893 | p. 5https://medinform.jmir.org/2024/1/e56893
(page number not for citation purposes)

Suh et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Preprocessing: Missing Value Characteristics
and Standardization
Herein, the average rates of missing values were 0.00% to 7.63%
for various features (Table S4 in Multimedia Appendix 1). This
discrepancy—particularly in EUMC data for BMI, type of
anesthesia, and preoperative glucose—may reflect distinct
characteristics inherent to the databases of each hospital (refer
to Figure S2 in Multimedia Appendix 1). There was a substantial
correlation (absolute correlation value of 0.7 or greater) between
variables that were part of collective testing procedures, such
as laboratory tests. Conversely, the correlation between other
variables was relatively weak, with absolute correlation values
below 0.7 (Figure S1 in Multimedia Appendix 1). Variables
with a higher incidence of missing values, such as BMI and
type of anesthesia at EUMC, did not exhibit significant
correlations with the missing values in other variables (absolute
correlation value <0.7). The analysis did not reveal any
consistent pattern in the occurrence of missing values across
the hospitals, implying a random nature of missing data for
individual patients at each facility (Figure S2 in Multimedia
Appendix 1). Considering this randomness and the low

intervariable correlation of missing values, we opted to impute
the missing data using the respective variables’ median values.

Model Performance
Table 2 presents the validation results of the bootstrapping
performance of the secure logistic regression model using
various single- and multicenter combinations. Typically, the
AMC and EUMC models that already had abundant data
delivered superior performance when externally validated using
data from other institutions. However, regarding the AMC data
set’s internal validation, the merged model using the entire data
set demonstrated the highest performance, as indicated by
AUROC of 0.941. Similarly, the AUPRC signified peak
performance in the AMC data set’s internal validation when
the model merged with the AMC and SNU data sets, reaching
0.132. Figure S3 in Multimedia Appendix 1 provides a
comparative visualization of AUROC and AUPRC. Table S3
in Multimedia Appendix 1 presents P values, indicative of
statistical significance via the DeLong test, when comparing
the predictive performance of the plaintext single-institution
model and encrypted multi-institution model based on AUROC
and AUPRC. Small P values signify a statistically significant
difference in the 2 models’ predictive performance.
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Table 2. Validation results of single and merged secure logistic regression models for postoperative 30-day mortality on AMC, EUMC, and SNUH
test data sets.

TestTrain

EUMCc (n=26,373)SNUHb (n=9392)AMCa (n=32,437)

Single (plaintext)

0.890 (0.867-0.912)0.915 (0.902-0.928)0.939 (0.927-0.950)AMC, mean AUROCd (95% CI)

0.937 (0.926-0.947)0.942 (0.9300.953) e0.925 (0.913-0.936)SNUH, mean AUROC (95% CI)

0.952 (0.943-0.961)0.906 (0.890-0.921)0.880 (0.853-0.906)EUMC, mean AUROC (95% CI)

Merged (ciphertext)

0.952 (0.942-0.962)0.919 (0.907-0.931)0.931 (0.914-0.947)AMC + EUMC, mean AUROC (95% CI)

0.934 (0.920-0.947)0.927 (0.902-0.952)0.940 (0.925-0.955)AMC + SNUH, mean AUROC (95% CI)

0.956 (0.950-0.962)0.925 (0.903-0.946)0.931 (0.916-0.945)SNUH + EUMC, mean AUROC (95% CI)

0.957 (0.951-0.963)0.929 (0.905-0.953)0.941 (0.927-0.955)AMC + SNUH + EUMC, mean AUROC
(95% CI)

Single (plaintext)

0.072 (0.051-0.093)0.089 (0.071-0.107)0.125 (0.088-0.161)AMC, mean AUPRCf (95% CI)

0.060 (0.075-0.072)0.123 (0.099-0.146)0.070 (0.044-0.095)SNUH, mean AUPRC (95% CI)

0.120 (0.090-0.150)0.085 (0.066-0.104)0.087 (0.055-0.118)EUMC, mean AUPRC (95% CI)

Merged (ciphertext)

0.107 (0.081-0.133)0.089 (0.074-0.104)0.107 (0.078-0.136)AMC + EUMC, mean AUPRC (95% CI)

0.081 (0.060-0.102)0.171 (0.112-0.230)0.132 (0.094-0.169)AMC + SNUH, mean AUPRC (95% CI)

0.116 (0.089-0.143)0.098 (0.069-0.126)0.098 (0.069-0.126)SNUH + EUMC, mean AUPRC (95% CI)

0.114 (0.089-0.139)0.113 (0.082-0.144)0.113 (0.082-0.144)AMC + SNUH + EUMC, mean AUPRC
(95% CI)

aAMC: Asan Medical Center.
bSNUH: Seoul National University Hospital.
cEUMC: Ewha Womans University Medical Center.
dAUROC: area under the receiver operating characteristic curve.
eItalics indicate significant results.
fAUPRC: area under the precision-recall curve.

For unencrypted data, we used a plaintext version of the logistic
regression model, developed from scratch using NumPy and
featuring an architecture identical to that of the HE-based
logistic regression model. Further, we evaluated the
discrepancies between the results computed in ciphertext and
subsequently decrypted, compared to those calculated directly

in plaintext. The mean absolute difference was 2.02×10–5,
indicating a marginal difference. The minimum absolute

difference was remarkably low at 6.56×10–10, while the

maximum absolute difference reached 7.71×10–4. This
observation suggests that the outcomes—irrespective of whether
they are computed in plaintext or ciphertext—demonstrate an
almost indistinguishable difference.

Model Adaptation Results
We investigated the scenario of model adaptation wherein we
gradually incorporated the data set from another institute. Using
the EUMC data set, starting with an AUROC of 0.930, there
was an initial temporary decline to 0.906 when the first 1000

records from the EUMC data set were incorporated into the
complete AMC data set (Figure 2, Table S2A in Multimedia
Appendix 1). As more EUMC records were progressively added,
a significant improvement in AUROC was observed, eventually
reaching 0.954 (Figure 2, Table S2A in Multimedia Appendix
1). Similarly, the AUPRC initially decreased from 0.09 to 0.075
with the addition of the initial 1000 EUMC data to the total
AMC data (Figure 2, Table S2A in Multimedia Appendix 1).
However, as we continued introducing more EUMC data, the
AUPRC began increasing (Figure 2, Table S2A in Multimedia
Appendix 1). Upon the inclusion of 30,000 EUMC records, the
AUPRC ascended to 0.11 (Figure 2, Table S2A in Multimedia
Appendix 1). Using the SNUH data set, we began with an
AUROC of 0.916. The increase was less pronounced than that
observed with the EUMC data set (Figure 3, Table S2B in
Multimedia Appendix 1). However, as we progressively
included segments of the SNUH data set, the AUROC exhibited
a moderate trend of progressive improvement, eventually
reaching 0.926 (Figure 3, Table S2B in Multimedia Appendix
1). A decrease in the AUPRC from 0.151 to 0.131 was observed
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when the first 1000 SNUH data were added to the AMC data
set (Figure 3, Table S2B in Multimedia Appendix 1). As more
SNUH data were added, the AUPRC gradually increased,
improving to approximately 0.149, compared to the AMC

single-institution model’s performance, once 30,000 data points
were included (Figure 3, Table S2B in Multimedia Appendix
1).

Figure 2. Validation results of bootstrap samples using increased EUMC data size with the AMC whole data set for postoperative 30-day mortality.
(a) Boxplot analysis of AUROC using bootstrap samples; (b) boxplot analysis of AUPRC using bootstrap samples. AMC: Asan Medical Center; AUPRC:
area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve; EUMC: Ewha Womans University Medical
Center; SNUH: Seoul National University Hospital.

Figure 3. Validation results of bootstrap samples using increased SNUH data size with the AMC whole data set for postoperative 30-day mortality.
(a) Boxplot analysis of AUROC; (b) boxplot analysis of AUPRC. AMC: Asan Medical Center; AUPRC: area under the precision-recall curve; AUROC:
area under the receiver operating characteristic curve; EUMC: Ewha Womans University Medical Center; SNUH: Seoul National University Hospital.

Discussion

Overview of Multi-Institutional Model Performance
and Implications
This study demonstrated the potential of overcoming limitations
associated with single-institution models, such as reduced
external predictive power and data overfitting, through secure
multi-institutional data integration using HE technology. Our
approach effectively adapts predictive models to specific
hospital environments, indicating a substantial improvement in
model performance across different data sets. The results suggest
that small- and medium-sized hospitals with limited data can
enhance the predictive performance of their AI models by

adopting data from larger hospitals and conducting additional
combined learning using HE technology. The significance of
this study lies in its practical application and validation of HE
technology using real-world, multi-institutional clinical data,
laying the groundwork for its potential applicability to various
forms of multi-institutional clinical data in future research.

Advantages and Challenges of Multicenter Studies
The transition from single-center to multicenter studies generates
large data sets (“big data”), enhancing the robustness and
generalizability of research findings. These larger and more
diverse data sets increase the accuracy and applicability of the
results. However, multicenter studies introduce challenges such
as secure and legal data sharing, inherent incompatibility
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between data security and research efficacy, and potential biases
from selective participant inclusion [21]. To address these issues,
researchers are exploring innovative PETs like HE, federated
learning, and multiparty computation, which enable secure data
analyses while preserving patient confidentiality.

Federated Learning and Comparison to HE
Federated learning has been proposed as a security solution in
multi-institutional data environments, as it only shares each
local model’s weights or parameters. The strength of federated
learning—a more decentralized approach than ours—is that no
patient-level data are transferred to third parties with or without
encryption. However, even with aggregate-level data, such as
weights of a model, patient-level information can potentially
be inferred [22-25].

In this multicenter study, we used cutting-edge HE to protect
personal information leakage and data security. Additionally,
HE enables operations and predictive modeling on encrypted
data, providing an ultimate solution that can completely resolve
issues related to personal information leakage and data security.
Furthermore, HE provides the maximum (strongest) security
when used appropriately, such as in outsourced computation,
wherein HE secures data breaches in computation. In medical
fields, HE has been applied to numerous cases for fulfilling
privacy requirements [26]. Previous computational inefficiency
of HE may have limited its application in computation-intensive
steps, such as in developing a prediction model; however, recent
advancements have led the technology to be used in practice.
The present multicenter study demonstrated that a prediction
model can be developed completely without a data breach risk
in training using HE.

Limitations and Future Directions
While HE technology allowed secure data integration, it
introduced several challenges. Notably, encrypting data led to
a marked increase in data size compared to plaintext,
intensifying data storage requirements. Additionally, the
encrypted model necessitated longer training time. Furthermore,
in multi-institutional contexts, such as health care data sharing,
key management in multiparty HE becomes a complex, practical
challenge. These factors—expanded data size, prolonged
training periods, and intricacies of key management—are
essential considerations in the effective deployment and ongoing
development of secure logistic regression models within
encrypted data frameworks.

The study also highlighted limitations in predictive performance
when models trained on diverse data sets were applied to
individual hospitals. In some data sets, the merged data model's
predictive performance fell short of the single-institution data
model. This discrepancy indicates a complex interplay between
data heterogeneity and model performance, suggesting that
predictive performance may not always be enhanced through
data augmentation alone, as evidenced in this study. A prediction
model may lose prediction power in some institutions when
trained using data from institutions with disparate data
distributions. Consequently, when implementing a trained model
on individual hospital data, we occasionally observed a deviation
from our initial expectation that a model trained on the merged
set would invariably outperform others.

Another limitation of the study was the reliance on
retrospectively collected data, featuring varying extraction
periods across institutions. The effects of temporal changes,
including advancements in medical technology, were not fully
adjusted for, potentially reducing the results' discernibility.

To address these limitations, future research should explore
methods for data integration that adjust for heterogeneity. This
can be achieved by prospectively collecting data from multiple
institutions and conducting comparative studies on predictive
performance using HE technology. Such methodologies would
help to mitigate the impact of varying data extraction periods
and temporal changes in medical technology. Additionally, the
use of advanced statistical methods to better account for data
heterogeneity might be explored as a promising avenue for
further research. These studies would undoubtedly offer
invaluable insights into potential strategies for enhancing
predictive performance in multi-institutional settings while
preserving data privacy and security.

Conclusions
In conclusion, this study demonstrated the practicality of using
HE technology to combine data from real-world
multi-institutional sources and develop predictive models for
in-hospital mortality within 30 days postoperatively.
Additionally, we showcased the implementation of
privacy-preserving artificial intelligence prediction models. The
findings highlight the potential for both practical applications
and protection of personal information in the realm of predictive
modeling. HE technology should be applied to diverse forms
of multi-institutional clinical data in future endeavors to
replicate, validate, and extend this study’s findings.
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