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Abstract
Background: Increasing and substantial reliance on electronic health records (EHRs) and data types (ie, diagnosis, medica-
tion, and laboratory data) demands assessment of their data quality as a fundamental approach, especially since there is a
need to identify appropriate denominator populations with chronic conditions, such as type 2 diabetes (T2D), using commonly
available computable phenotype definitions (ie, phenotypes).
Objective: To bridge this gap, our study aims to assess how issues of EHR data quality and variations and robustness (or lack
thereof) in phenotypes may have potential impacts in identifying denominator populations.
Methods: Approximately 208,000 patients with T2D were included in our study, which used retrospective EHR data from
the Johns Hopkins Medical Institution (JHMI) during 2017‐2019. Our assessment included 4 published phenotypes and 1
definition from a panel of experts at Hopkins. We conducted descriptive analyses of demographics (ie, age, sex, race, and
ethnicity), use of health care (inpatient and emergency room visits), and the average Charlson Comorbidity Index score of each
phenotype. We then used different methods to induce or simulate data quality issues of completeness, accuracy, and timeliness
separately across each phenotype. For induced data incompleteness, our model randomly dropped diagnosis, medication, and
laboratory codes independently at increments of 10%; for induced data inaccuracy, our model randomly replaced a diagnosis
or medication code with another code of the same data type and induced 2% incremental change from −100% to +10% in
laboratory result values; and lastly, for timeliness, data were modeled for induced incremental shift of date records by 30 days
to 365 days.
Results: Less than a quarter (n=47,326, 23%) of the population overlapped across all phenotypes using EHRs. The population
identified by each phenotype varied across all combinations of data types. Induced incompleteness identified fewer patients
with each increment; for example, at 100% diagnostic incompleteness, the Chronic Conditions Data Warehouse phenotype
identified zero patients, as its phenotypic characteristics included only diagnosis codes. Induced inaccuracy and timeliness
similarly demonstrated variations in performance of each phenotype, therefore resulting in fewer patients being identified with
each incremental change.
Conclusions: We used EHR data with diagnosis, medication, and laboratory data types from a large tertiary hospital system
to understand T2D phenotypic differences and performance. We used induced data quality methods to learn how data
quality issues may impact identification of the denominator populations upon which clinical (eg, clinical research and trials,
population health evaluations) and financial or operational decisions are made. The novel results from our study may inform
future approaches to shaping a common T2D computable phenotype definition that can be applied to clinical informatics,
managing chronic conditions, and additional industry-wide efforts in health care.
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Introduction
Type 2 diabetes (T2D) is a common chronic disease affecting
more than 11% of the US population [1]. Given the rap-
idly increasing burden of T2D on health care services and
resources, health systems have devised strategies to address
such demands by identifying and managing T2D patients
across their populations [1]. However, despite clinical
guidelines to identify T2D at the point of care, identifying
T2D patients in large clinical repositories is still a challenge
[2]. Ambiguity of algorithms to identify T2D patients in
complex data sets and data quality issues in routine clinical
data sources such as electronic health records (EHRs) are
still hindering the development of generalizable approaches to
identify T2D patients across different health systems.

Over the last two decades, several approaches have
been developed for health care professionals to identify
patients with T2D in large clinical data repositories. Multiple
T2D phenotype definitions (also known as computational
algorithms) are available that define characteristics to identify
T2D populations. Some examples of T2D definitions include
the Surveillance, Prevention, and Management of Diabetes
Mellitus (SUPREME-DM) [3], the Centers for Medicare
and Medicaid Services (CMS) Chronic Conditions Data
Warehouse (CCW) [4], the Electronic Medical Records and
Genomics (eMERGE) Northwestern Group [5], and the
Durham Diabetes Coalition (DDC) [6] phenotypes. Each
phenotype definition has its own set of inclusion and
exclusion criteria using different data types. Data types may
include International Statistical Classification of Diseases,
Tenth Edition (ICD-10) diagnosis codes, RxNorm medication
codes, and Logical Observation Identifiers Names and Codes
(LOINC) laboratory codes, with sequences and frequencies
of occurrences of diagnosis, medication and laboratory codes;
defined time periods; and care pathways. However, despite
these detailed definitions, it is unclear which of the existing
T2D phenotypes are prone to inherit data quality issues from
clinical data sources such as EHRs. The uncertainty of T2D
phenotypes’ performance for identifying populations with
T2D using real-world data has led to the lack of a universally
agreed-upon T2D phenotype.

The concept of data quality in health care varies based
on the problems and functional needs of end users. Health
care providers, data scientists, or policy makers may differ in
their approach to data quality and its significance in practice
[7]. Typically, health care data such as captured in EHRs are
collected for continuity of clinical care, coding, and billing
purposes, and not necessarily to answer specific research
questions. Thus, the quality of data collected in EHRs may be
sufficient for clinical purposes but may not meet the needs of
a researcher or population health intervention. For example, a
clinician may identify a patient with T2D at the point of care
despite having incomplete data; however, a T2D phenotyping

algorithm may miss the same patient in a large EHR data
warehouse due to the underlying data quality issues; hence,
the patient may inadvertently be excluded from a research
study or population health intervention.

Various data quality frameworks have been proposed
to measure the quality of health care data. Completeness,
accuracy, and timeliness are a few key data quality charac-
teristics that are used across several frameworks [7-9]. The
assessment for completeness defines how complete the data
are, what the missing elements are, and how usable the data
are in their “as is” format. Accuracy is the correctness and
consistency of the data elements [8], and timeliness is how
recent or current the data are for research and analysis. The
assessment of data quality in health care is crucial with the
continuous and prominent use of EHRs; however, despite the
increasing use of EHR data to identify patients with T2D, the
effect of varying levels of key data quality characteristics (ie,
completeness, accuracy, and timeliness) on T2D phenotypes
is still unknown.

The ongoing challenge of understanding the effect of key
data quality issues on T2D phenotypes is further exacerbated
by the fact that T2D phenotypes use multiple data types,
such as diagnosis codes, medications, and laboratory results.
Additionally, given the variability of key data quality issues
of these data types across EHRs [10,11], measuring the effect
of key existing data quality issues on T2D phenotypes in
one EHR may not translate into generalizable findings. For
example, one provider’s EHR may suffer from incomplete-
ness of diagnosis codes, while another provider’s EHR may
be affected by inaccurate medication data. Thus, to measure
the effect of an EHR’s data quality on T2D phenotypes,
varying (simulated) levels of key data quality characteristics
across all data types (ie, diagnosis, medication, and labora-
tory) used by T2D phenotypes should be studied. These
simulated levels of key data quality issues will in turn help
providers to compare their EHR data quality issues with
the simulated levels, contrast the potential impact of such
data quality issues on identifying T2D patients using various
phenotypes, and eventually select the most suitable T2D
phenotype for their EHR data.

Currently, evidence is lacking on the effect of data
quality issues (eg, completeness, accuracy, and timeliness)
and the identification of T2D populations in large clinical
data sources such as EHRs. This gap in evidence is further
amplified given the variations in characteristics of published
T2D phenotypes and potential discrepancies in underlying
data types (ie, diagnosis, medication, and laboratory) in
EHRs. To address these gaps, our study aimed to assess the
impact of varying (simulated) levels of data quality issues
across the different data types used by T2D phenotypes. Our
study findings can inform health care providers and other
stakeholders to select T2D phenotype algorithms that best
match their underlying EHR data quality issues.
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Methods
Data Source
Our cross-sectional study used retrospective EHR data from
the Johns Hopkins Medical Institute (JHMI) data warehouse
over a 3-year period from 2017 to 2019. Clinical data
included T2D primary diagnostic data (ICD-10), laboratory
data (LOINC), and medication data (RxNorm). The dem-
ographic data included age, sex, race, ethnicity, and the
patients’ residential state.

Study Population
Our overall study population included approximately 208,000
patients in age groups of 18 to 90 years. This population
denominator was identified and extracted in a prior study
focusing on T2D patients and funded by the US Food and
Drug Administration (5U01FD005942-05). This population
denominator, also known as the raw data cut, was identi-
fied by the most inclusive query of the JHMI’s EHR data
warehouse, which also included patients with mentions of
diabetes in their clinical notes. Each of the identified T2D
phenotypes was applied to the overall study population. At
total of approximately 164,000 patients were included in at
least one of the T2D phenotypes assessed.

Considering the size of the EHR data set, and given the
impracticality of reviewing the individual records of almost a
quarter of a million patients, no gold standard population was
identified for this research. Indeed, the aim of this research
study was not to assess the accuracy of the common T2D
phenotypes; instead, we aimed to measure the performance of
T2D phenotypes given the underlying data quality issues in
EHR data repositories.
T2D Phenotype Definitions
Our assessment included 4 published T2D phenotype
definitions, from the CCW, DDC, SUPREME-DM, and
eMERGE, as well as 1 unpublished definition (Johns Hopkins
University; JHU). Since not all T2D phenotype definitions
were defined with the most current ICD codes, we conver-
ted the DDC, SUPREME-DM, and eMERGE diagnostic
phenotypes from ICD-9 to ICD-10 [12]. Additionally, not
all phenotype definitions using medications had the list of
specific RxNorm codes (eg, the DDC and SUPREME-DM
phenotypes included only the names of the T2D medication
and not the codes). We identified the RxNorm codes for each
medication using the National Library of Medicine’s RxNav
tool [13]. For the purposes of this study, we selected only
those RxNorm codes that were associated with the primary
ingredient or ingredients of the medication name in the T2D
phenotype definition.

Of the 4 published T2D phenotypes, CCW only inclu-
ded diagnosis codes with a reference period of 2 years in
the definition. The DDC, SUPREME-DM, and eMERGE
phenotypes included a series of detailed care pathways with
diagnosis, medication, and laboratory codes and results within
specified time periods. However, the unpublished definition
from JHU did not have pathways and was the most inclusive

definition, as it included all data types (diagnosis, medica-
tion, and laboratory) with wide eligibility criteria to identify
patients with T2D.

Factors Affecting T2D Phenotyping
The data included demographics, T2D-related data types
(ie, diagnosis, medication, and laboratory), and the Charlson
Comorbidity Index [14]. The demographic data included age,
sex (male, female, and other), race (White, Black, Asian, and
other), ethnicity (Hispanic/Latino or non-Hispanic/Latino)
and patient location (state of Maryland or other locations).
The “other” category for sex, race, and ethnicity was
primarily composed of missing data entries. Since the JHMI
is in Baltimore, Maryland, the majority (169,215/207,813,
81.4%) of our study population was from Maryland and the
remainder (38,598/207,813, 18.6%) was from the surrounding
states. The outcome measures included the extent of overlap
in identifying patients with T2D and the degree of robustness
against data quality issues across phenotypes.

Statistical Analysis
We performed descriptive data analyses across the 5 different
phenotypes to identify EHR populations with T2D. We
used the χ2 test for categorical variables and ANOVA for
continuous variables. Our analysis included distribution and
overlap of the population of interest by diagnosis, medication,
and laboratory data types across each of the 5 T2D pheno-
types. We introduced methods that simulated or induced
data incompleteness, inaccuracy, and lack of timeliness (eg,
date shifting) to assess the robustness of each phenotype
in capturing the populations of interest. We created unique
analytical functions for each data quality issue considering the
data types that were applicable across all T2D phenotypes.

To simulate or induce data incompleteness, our procedure
randomly dropped codes at 10% increments, from 0% to
100%, for diagnosis, medication, and laboratory codes within
each of the T2D phenotypes. Incompleteness was simulated
up to 100% as no thresholds of data missingness were known
to affect the performance of T2D phenotypes beforehand.
Incompleteness was induced for diagnosis, medication, or
laboratory codes independently of the other 2 data types.
For each increment of incompleteness, T2D phenotypes were
reapplied to identify a new (and logically smaller) cohort of
patients.

To gauge the impact of inconsistency and inaccuracy in
our denominator population for each T2D phenotype, the
diagnosis and medication codes were replaced at random at
increments of 10% (the same as for incompleteness) from 0%
to 100% with another code of the same data type, includ-
ing T2D and non-T2D codes. We included T2D codes to
illustrate expected data quality issues that may impact the
phenotypes’ performance. For example, 10% of instances of
the ICD-10 diagnosis code E08 (ie, diabetes mellitus due
to underlying condition) were replaced at random with the
ICD-10 code E09 (ie, drug- or chemical-induced diabetes
mellitus—endocrine, nutritional, or metabolic disease). For
laboratory codes, the laboratory values were induced with a
2% incremental change from −100% to 10% in laboratory
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results. For example, our procedure for simulated or induced
laboratory values yielded results of 5.6% to 5.8% for
hemoglobin A1c (LOINC code 55454‐3). Additionally, we
simulated or induced inaccuracy in units of laboratory data
results. We did this by intentionally converting reported
laboratory units from US standards to UK standards; in
particular, blood glucose level units in mg/dl were converted
to mmol/L, and hemoglobin A1c level from percentage to
mmol/mol [15].

For timeliness, we simulated or induced date shifts at
increments of 30 to 365 days for all phenotypes. For example,
our procedure induced a forward shift on December 1, 2019,
by 30 days, shifting the date to December 31, 2019, and
so on. Lastly, we also induced compounded data quality
issues (incompleteness, inaccuracy, and lack of timeliness)
to understand each phenotype’s resistance to changes that
occurred across diagnosis, medication, and laboratory codes
simultaneously. Induced compounded incompleteness would
mean dropping diagnosis, medication, and laboratory codes
randomly at increments of 10% up to 100%. Induced
compounded inaccuracy would mean replacing diagnosis and
medication codes randomly at increments of 10% up to
100% (laboratory codes were not replaced; their values were
manipulated instead). Induced compounded lack of timeliness
would mean inducing date shifts across diagnosis, medica-
tion, and laboratory codes at increments of 30 to 365 days.

SQL queries were written for data extraction. All
visualizations and statistical analyses were conducted using
R (version 4.2.0; R Foundation for Statistical Computing)
[16]. The overall findings are showcased as descriptive data

tables, Venn diagrams, and line charts depicting the effect of
simulated or induced data quality issues on identifying T2D
populations using the common T2D phenotype definitions.
Ethical Considerations
This study was reviewed and approved by the IRB committee
of the Johns Hopkins School of Public Health (00014440).
The deidentified population denominator used in this study
is from a prior study funded by the US Food and Drug
Administration (5U01FD005942-05).

Results
Characteristics of the Overall and
Phenotype-Identified T2D Populations
Our overall study population included 207,813 patients with
T2D from between 2017 and 2019 in the JHMI EHR data.
For the purposes of this analysis, we refer to this population
as the raw data cut or the overall study population/denomina-
tor. The mean age of the overall study population was 62.4
(SD 15.4) years, with 81.4% (n=169,215) of the population
residing in the state of Maryland. Women accounted for
51.3% (n=106,704) of the study population, with 31.8%
(n=66,073) Black patients and 89.9% (n=186,785) non-His-
panic/Latino patients. The overall population had a mean
number of 0.657 (SD 1.61) inpatient visits and 1.01 (SD
3.61) emergency department visits across the study duration.
The mean Charlson Comorbidity Index score was 2.17 (SD
2.25). Table 1 shows the overall characteristics of the study
population.

Table 1. Characteristics of the overall study population (N=207,813).
Characteristics Values
Age (years)

Mean (SD) 62.4 (15.4)
Median (range) 64.0 (18.0-90.0)

Sex, n (%)
Female 106,704 (51.3)
Male 101,079 (48.6)

Race, n (%)
Asian 11,644 (5.6)
Black 66,073 (31.8)
White 109,695 (52.8)
Other 20,401 (9.8)

Ethnicity, n (%)
Hispanic/Latino 10,979 (5.3)
Non-Hispanic/Latino 186,785 (89.9)
Other 10,049 (4.8)

Charlson Comorbidity Index score
Mean (SD) 2.17 (2.25)
Median (range) 1.33 (0-20.0)

State, n (%)
Maryland 169,215 (81.4)
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Characteristics Values

Other 38,598 (18.6)
Inpatient visits (n)

Mean (SD) 0.657 (1.61)
Median (range) 0 (0-59.0)

Emergency department visits (n)
Mean (SD) 1.01 (3.61)
Median (range) 0 (0-415)

T2D phenotypes were applied to the overall study popu-
lation. The characteristics of the population identified by
each phenotype were notably different due to the pheno-
types’ varying constraints on medical events and diagno-
sis, medication, and laboratory codes. The Venn diagram
displayed in Figure 1 shows the overlap of the population
with T2D across the phenotypes in comparison to the overall
study population (ie, the largest, gray circle denotes the raw
data cut). These T2D populations were identified using all
EHR data types (diagnosis, medication, and laboratory) as
needed by the T2D phenotypes. A total of 78% (n=160,030
patients) of the overall study population was identified by

at least 1 phenotype, but only 23% (n=47,326) of the
overall study population was identified by all T2D pheno-
types. DDC identified 139,832 patients with T2D, of which
11,154 (7.98%) were not identified by the other 4 phenotype
definitions. Of the 89,772 patients with T2D identified by
SUPREME-DM, there were 5911 (3%) patients with T2D
that were also identified by the DDC and JHU phenotypes.
Additionally, 23,659 (12%) patients were identified by all
phenotypes except eMERGE. Additional details of population
overlap counts are available in Multimedia Appendix 1, Table
S1.

Figure 1. Venn diagram showing overlap of type 2 diabetes populations identified across all phenotype definitions using electronic health record
data. CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; JHU: Johns Hopkins University; SUPREME-DM: Surveillance,
Prevention, and Management of Diabetes Mellitus; eMERGE: Electronic Medical Records and Genomics.

The distributions of T2D populations identified across
phenotype definitions by diagnosis, medication, and
laboratory data types were separately calculated (Table 2).

The SUPREME-DM phenotype identified the most patients
(n=33,268) across all 3 data types, followed by eMERGE
with 30,573 patients. Zero patients were observed for
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some phenotypes when using specific data types. The zero
observations were due to the representation of the data types
as defined by the criteria of each phenotype definition. For
example, the eMERGE phenotype does not have a pathway
to identify a patient with T2D based on diagnosis code
only, medication code only, or medication and laboratory
codes only. Hence, we observed zero patients with diagnosis
only, medication only, or medication and laboratory only for
eMERGE (Table 2). In the case of CCW, since the pheno-
type does not include medication or laboratory codes in its
definition, zero patients were observed when medication or
laboratory codes were required for the identification of T2D
patients (Table 2).

We measured the effect of simulated or induced data
quality issues of completeness, accuracy, and timeliness for
diagnosis, medication, and laboratory data across all T2D
phenotypes. The following results include the percentage of
patients identified by each phenotype while simulating data
quality issues using diagnosis codes. Figures S1 to S3 in
Multimedia Appendix 1 show the same diagnosis results but
depict the frequency of patients identified by each phenotype.
Figures S4 to S17 in Multimedia Appendix 1 show results
as the percentages and frequencies of patients identified by
each phenotype while simulating data quality issues using
medication and laboratory data types.

Table 2. Distribution of type 2 diabetes (T2D) populations identified by T2D phenotype definitions using different combinations of data types.

Data type
DDCa (n=139,832),
n

SUPREME-DMb
(n=89,772), n eMERGEc (n=77,977), n JHUd (n=139,231), n

CCWe (n=79,967),
n

Diagnosis 40,133 15,983 0 75,027 79,967
Medication 15,511 0 0 5874 0
Laboratory 5973 1907 10,467 2711 0
Diagnosis and medication 26,993 24,328 31,114 21,336 0
Diagnosis and laboratory 21,546 13,237 5823 19,452 0
Medication and laboratory 987 1049 0 83 0
Diagnosis, medication, and
laboratory

28,687 33,268 30,573 14,748 0

aDDC: Durham Diabetes Coalition.
bSUPREME-DM: Surveillance, Prevention, and Management of Diabetes Mellitus.
ceMERGE: Electronic Medical Records and Genomics.
dJHU: Johns Hopkins University.
eCCW: Chronic Conditions Data Warehouse.

Data Quality Issues

Completeness
To depict the impact of the simulated or induced incomplete-
ness of diagnosis codes on the identified population using
the T2D phenotypes, Figure 1 was recreated at increas-
ing levels of data incompleteness (Figure 2). As the per-
centage of induced missing diagnosis codes increased, the
size of the T2D population identified by each phenotype
decreased. The CCW phenotype saw the largest decline in
the identified population with increasing incompleteness. At
100% induced incompleteness, there were no T2D patients
identified by CCW, as the CCW phenotype relies entirely
on diagnosis codes for the identification of T2D patients.
Lastly, the eMERGE, SUPREME-DM, DDC, and JHU

phenotypes continued to identify patients with T2D despite
100% incompleteness of diagnosis codes (Figure 2).

Figure 3 shows the decrease in the percentage of T2D
population identified by each phenotype when diagnostic
incompleteness was induced from 0% to 100%, that is,
diagnosis codes from the ICD-10 were dropped in increments
of 10%. All phenotype definitions showed a similar decrease
in the percentage of patients from 0% to approximately
80% of diagnostic incompleteness. The eMERGE and CCW
phenotypes saw significant declines in T2D population sizes
when the induced incompleteness increased from 80% to
100%. At 100% incompleteness, CCW identified no patients
and eMERGE identified only 21% (16,348/77,977) of the
patients with T2D, consistent with Table 2 and Figure 2.
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Figure 2. Overall population identified by each of the type 2 diabetes phenotype definitions when diagnosis codes were dropped from 20% to 100%
to simulate increasing incompleteness of diagnosis codes. CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE:
Electronic Medical Records and Genomics; JHU: Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes
Mellitus.

Figure 3. Percent of type 2 diabetes population identified by each type 2 diabetes phenotype definition with increasing incompleteness of diagnosis
codes. CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE:lectronic Medical Records and Genomics; JHU:
Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes Mellitus.

Accuracy
Figures 4 and 5 show the overlap and percentages,
respectively, of T2D populations identified by each pheno-
type definition with an increasing percentage of induced
replacement of diagnosis codes at random. All phenotype

definitions were impacted and continued to identify
populations with T2D even with 100% induced inaccuracy
despite reductions overall. The CCW, SUPREME-DM, and
eMERGE phenotypes showed the greatest decrease when
75%‐100% of the diagnosis codes were replaced, resulting
in identification of only 27%‐45% of the patients with T2D.
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Figure 4. Overall population identified by each of the type 2 diabetes phenotype definitions when diagnosis codes are replaced at random to simulate
increasing diagnostic inaccuracy. CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE: Electronic Medical
Records and Genomics; JHU: Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes Mellitus.

Figure 5. Percentage of type 2 diabetes population identified by each type 2 diabetes phenotype definition with increasing inaccuracy of diagnosis
codes. CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE: Electronic Medical Records and Genomics; JHU:
Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes Mellitus.
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Timeliness
All T2D phenotypes were similarly impacted by simulated
or induced shifts in the date of recorded diagnosis from 30
days to 365 days. The patterns of overlap in population were
similar across all phenotypes with each incremental date shift
(Figure 6). The percentage of patients identified with T2D

showed a decrease over time, however, with at least 85%
(176,641/207,813) of the patients with T2D identified during
the progression of a year across all phenotypes. The data
quality issue of timeliness showed the least impact in the
DDC phenotype (Figure 7).

Figure 6. Overall population identified by each of the type 2 diabetes phenotype definitions with shifts in timeliness of diagnostic data ranging
from 30 to 365 days. CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE: Electronic Medical Records and
Genomics; JHU: Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes Mellitus.
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Figure 7. Percentage of type 2 diabetes population identified by each type 2 diabetes phenotype definition with an increasing shift in diagnostic
timeliness (ie, number of days shifted). CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE: Electronic
Medical Records and Genomics; JHU: Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes Mellitus.

Compounded Data Quality Issue:
Completeness
Figures 8 and 9 show the overlap and percentages, respec-
tively, of T2D populations identified by each phenotype
definition with an increasing percentage of induced com-
pounded incompleteness across diagnosis, medication, and
laboratory codes. All phenotype definitions were impacted
and continued to identify populations with T2D until 100%

induced incompleteness, as expected. While all phenotypes
exhibited similar rates of decrease with increased com-
pounded incompleteness, CCW was the most robust to
incompleteness. SUPREME-DM was the least resistant to
induced compounded incompleteness. Figures S18 and S21
in Multimedia Appendix 1 provide results for the percen-
tages and frequencies of patients identified by each pheno-
type while simulating the compounded data quality issues of
inaccuracy and lack of timeliness.

JMIR MEDICAL INFORMATICS Sood et al

https://medinform.jmir.org/2024/1/e56734 JMIR Med Inform 2024 | vol. 12 | e56734 | p. 10
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e56734


Figure 8. Overall population identified by each of the type 2 diabetes phenotype definitions with compounded increasing incompleteness (diagnostic,
medication, and laboratory codes). CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE: Electronic Medical
Records and Genomics; JHU: Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes Mellitus.
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Figure 9. Percentage of type 2 diabetes population identified by each type 2 diabetes phenotype definition with compounded increasing incomplete-
ness (diagnostic, medication, and laboratory codes). CCW: Chronic Conditions Data Warehouse; DDC: Durham Diabetes Coalition; eMERGE:
Electronic Medical Records and Genomics; JHU: Johns Hopkins University; SUPREME-DM: Surveillance, Prevention, and Management of Diabetes
Mellitus.

Discussion
T2D is a common chronic disease with no known univer-
sally defined phenotype definition. This is further complica-
ted by lack of assessments that are necessary to understand
the quality of data in real-world health care settings against
common phenotypes. In our study, we investigated how data
quality issues of completeness, accuracy, and timeliness may
impact the implementation of existing T2D phenotypes using
different data types of diagnosis, medication, and laboratory
codes extracted from common clinical data sources such
as EHRs. Each data quality issue and phenotype definition
may present unique implications at an unpredictable scale in
any given health care setting. Collectively, these variables
can pose challenges in identifying an eligible denominator
population and implementing study population enrollment
strategies for epidemiological studies, population health and
management, disease surveillance, financial operations, and
policies for populations with T2D.

Although each phenotype has distinct characteristics,
our results showed considerable overlap in the population
identified with T2D across the phenotype definitions (Figure
1 and Table 2). Given the uniqueness of the CCW phe-
notype, which only includes diagnosis codes, the CCW
phenotype identified approximately 38.4% (79,967/207,813)
of the overall study population with T2D, whereas the
DDC phenotype, which was inclusive of all data types,
identified approximately 67.2% (139,832/207,813) of the

total population with T2D. This was similar to the 66.9%
(139,231/207,813) of the total population identified by the
Hopkins phenotype. Additionally, we observed that the
T2D phenotype definitions of SUPREME-DM and eMERGE
had similar characteristics and therefore resulted in the
identification of approximately 43.2% (89,772/207,813) and
37.5% (77,977/207,813) of the overall study population,
respectively. Moreover, when analyzing the distribution of
population by data types, the identified populations were
significantly different, with no noticeable patterns.

This study revealed significant findings resulting from
simulated or induced data quality issues on the overall study
population using EHR data across different T2D pheno-
type definitions. Induced incompleteness of diagnostic data
showed the least impact on the DDC phenotype, however,
identifying only approximately 60% of the population with
T2D at 100% diagnostic incompleteness. The CCW pheno-
type was the most impacted, as 100% of the diagnosis
codes were missing with 100% induced incompleteness given
the characteristics of its phenotype definition. With more
incomplete data, the uniqueness of the population identified
by each phenotype may also shift, thereby showing a decrease
in overlap of the population with T2D across all pheno-
types. Although trends displayed by phenotype definitions
of Hopkins and SUPREME-DM may seem similar, the
quantification of the slightest differences in trends can
have significant population health implications, resulting in
compromised financial and logistical (eg, staffing needs)
outcomes. Thus, it is important to understand the resistance
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of data quality issues across phenotypes given different data
types.

The results for induced inaccuracy were similar to those
for completeness, but data quality issues for timeliness
showed a different trend. The phenotypes of eMERGE,
CCW, and SUPREME-DM showed significant decreases in
the number of identified patients when the majority of the
diagnosis codes were replaced. However, induced timeliness
continued to capture significant numbers of patients for all
phenotypes, at well above 85%. While the impact of induced
inaccuracies of laboratory values (in the negative direction)
was mitigated by other pathways of the phenotypes, overall,
completeness and accuracy showed a much larger impact on
the identification of the population with T2D. The trends for
the data quality issues of completeness and accuracy paint a
similar picture, which may translate into considerations for
population health interventions. The effect of data quality on
identifying T2D populations using commonly available T2D
phenotypes can affect a variety of interventions and out-
comes, such as clinical research, financial analysis, staffing
needs, and logistical issues, to name a few.

Lastly, induced compounded (diagnosis, medication, and
laboratory) data quality issues showed different trends
compared to induced single component (diagnosis, medica-
tion, or laboratory) data quality issues. Overall, all pheno-
types captured fewer patients when there were compounded
data quality issues compared to single-component data quality
issues. The CCW phenotype was the most resistant phenotype
across compounded incompleteness, inaccuracy, and lack of
timeliness. The CCW phenotype’s robustness to compoun-
ded incompleteness owes to its reliance solely on diagno-
sis codes; other phenotypes with medication and laboratory
components faced steeper drops in patients captured when
medication and laboratory codes were both incomplete.
When it came to induced compounded inaccuracy, the CCW
phenotype demonstrated the greatest resistance until 80% of
both diagnosis and medication codes were replaced, at which
point the Hopkins phenotype became the most robust (Figure
S19 in Multimedia Appendix 1). Similarly, compounded
lack of timeliness became a bigger problem for phenotypes
that rely on time interval for not only diagnosis, but also
medication and laboratory codes. Simulating compounded
data quality issues has implications for evaluating the fit of
phenotype definitions for various data sources and availabili-
ties of multiple data elements. For instance, if a particular
data source only has reliable diagnosis codes, then the CCW
phenotype would be the most robust. However, it may come
with more false positives due to its sole reliance on diagnosis
codes.

Our study highlights the importance of understanding the
effects of data quality issues on phenotypes, particularly for
common diseases such as T2D. The results from our study are
novel and can inform how to better identify denominators for
a given purpose, which may be beneficial for both research
and operational decisions. Although there is no gold standard
data set to compare and analyze baseline thresholds of impact
on phenotypes, the results of this study can be used by
any researcher using real-world data. Additionally, our study

describes methods for assessment of multiple data quality
issues that can be applied simultaneously in any clinical and
health care research setting.

Our study has some limitations. First, the results dis-
cussed are based on the EHR data of JHMI over a period
of 3 years; hence, generalizability of the findings may be
limited to populations like that of this study population. That
said, it may also be not applicable to populations of much
smaller sample sizes. Second, our study results should be
tested against the epidemiological trends and spread of T2D
over time. Third, our study did not measure the embed-
ded issues of data quality problems (ie, only simulated or
induced data quality issues); understanding and resolving
these issues at the beginning of any study can be vital.
Fourth, we did not study other data quality dimensions such
as concordance and provenance, the assessment of which
can be important. Fifth, all T2D phenotypes used in this
study relied on diagnosis, medication, and laboratory codes
to identify T2D patients; however, some patients may only
have clinically diagnosed information in physician notes (ie,
unstructured data or free text) that will be missed using
structured diagnosis, medication, or laboratory codes. As a
result, there may be some false negatives that may have
been excluded from our overall study population despite
incorporating the most inclusive criteria for the raw data
cut. Sixth, we explored compounded data incompleteness,
inaccuracy, and timeliness by dropping multiple data types
together at the same increments for each data quality domain.
However, there could be alternative versions of compounded
simulation where diagnosis, medication, and laboratory data
qualities are induced at different levels simultaneously; this
may be of interest for future research. Seventh, we assessed
the robustness of the phenotypes as they were designated.
However, future research could stratify the analysis by the
severity of the condition of interest, as severity could impact
diagnosis, medication, and laboratory coding behavior and
quality. And lastly, our study did not consider any existing
data quality thresholds to assess epidemiological impacts on
T2D patients using EHRs (eg, comparing national rates of
T2D in a neighborhood vs T2D rates identified using EHR
data of patients residing in the same neighborhood).

As a result of these observations, we believe that there
is a growing need in the United States for a standardized
phenotype definition to identify T2D populations while
considering the challenges of data quality issues in real-world
data, such as from EHRs. The universal phenotype definition
should have the ability to integrate features of EHR data
while being resistant to common data quality issues. Such
a phenotype definition ought to also consider factors that
may introduce racial bias and disparities, which eventually
may result in health inequities. And lastly, this fundamental
definition must also consider integration and interoperability
with other data sources, such as claims data, and alignment
with existing data interoperability standards. Our research
hopes to inspire T2D subject matter experts, at least, to
begin conversations toward creating a universal definition
for a disease that is extremely common. That said, there is

JMIR MEDICAL INFORMATICS Sood et al

https://medinform.jmir.org/2024/1/e56734 JMIR Med Inform 2024 | vol. 12 | e56734 | p. 13
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e56734


opportunity for additional research that ties issues of data
quality with those of phenotypes, data types, and data sources.

Our research provides novel results to understand the
effect of data quality issues in data sources like EHRs
to identify T2D population-level groups of interest using

commonly available T2D phenotype definitions. The study
results can inform research or operational efforts using large
clinical data repositories to identify T2D populations. Lastly,
the study findings can inform efforts to consolidate T2D
phenotypes in the near future.
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