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Abstract

Background: Medical image analysis, particularly in the context of visual question answering (VQA) and image captioning,
is crucial for accurate diagnosis and educational purposes.

Objective: Our study aims to introduce BioMedBLIP models, fine-tuned for VQA tasks using specialized medical data sets
such as Radiology Objects in Context and Medical Information Mart for Intensive Care-Chest X-ray, and evaluate their performance
in comparison to the state of the art (SOTA) original Bootstrapping Language-Image Pretraining (BLIP) model.

Methods: We present 9 versions of BioMedBLIP across 3 downstream tasks in various data sets. The models are trained on a
varying number of epochs. The findings indicate the strong overall performance of our models. We proposed BioMedBLIP for
the VQA generation model, VQA classification model, and BioMedBLIP image caption model. We conducted pretraining in
BLIP using medical data sets, producing an adapted BLIP model tailored for medical applications.

Results: In VQA generation tasks, BioMedBLIP models outperformed the SOTA on the Semantically-Labeled
Knowledge-Enhanced (SLAKE) data set, VQA in Radiology (VQA-RAD), and Image Cross-Language Evaluation Forum data
sets. In VQA classification, our models consistently surpassed the SOTA on the SLAKE data set. Our models also showed
competitive performance on the VQA-RAD and PathVQA data sets. Similarly, in image captioning tasks, our model beat the
SOTA, suggesting the importance of pretraining with medical data sets. Overall, in 20 different data sets and task combinations,
our BioMedBLIP excelled in 15 (75%) out of 20 tasks. BioMedBLIP represents a new SOTA in 15 (75%) out of 20 tasks, and
our responses were rated higher in all 20 tasks (P<.005) in comparison to SOTA models.

Conclusions: Our BioMedBLIP models show promising performance and suggest that incorporating medical knowledge through
pretraining with domain-specific medical data sets helps models achieve higher performance. Our models thus demonstrate their
potential to advance medical image analysis, impacting diagnosis, medical education, and research. However, data quality,
task-specific variability, computational resources, and ethical considerations should be carefully addressed. In conclusion, our
models represent a contribution toward the synergy of artificial intelligence and medicine. We have made BioMedBLIP freely
available, which will help in further advancing research in multimodal medical tasks.
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Introduction

Background
In recent decades, the fields of data analysis, machine learning,
and deep learning have undergone remarkable advancements,
with profound implications for various professional domains
[1,2]. One of the most promising frontiers for these
advancements is medical science, where data-driven models
have the potential to bring about significant breakthroughs [3,4].
Medical data predominantly exist in the form of images and
textual reports, encompassing x-ray images, medical records,
and more. To harness the full potential of these data sources, a
visual language model capable of extracting insights from both
images and text becomes paramount. Visual language models,
which are at the core of this research, represent a fusion of
computer vision and natural language processing (NLP). These
models possess the capability to understand and generate
text-based descriptions for visual content, making them
invaluable in contexts where both images and text are essential
for comprehensive analysis.

This study explored and adapted visual language models
specifically for medical data sets, building upon the foundation
laid by existing models. The primary objective was to enhance
the performance of these models when confronted with medical
data, such as the Radiology Objects in Context (ROCO) [5] and
Medical Information Mart for Intensive Care-Chest X-ray
(MIMIC-CXR) [6] data sets. This was achieved through a
comprehensive process of pretraining on medical data sets and
rigorous fine-tuning, with the ultimate goal of determining the
optimal model configurations and parameters. This study thus
facilitates advancements in health care, contributing to more
accurate diagnoses; streamlined medical reporting; and,
ultimately, improved patient care. We have made BioMedBLIP
models freely available, facilitating the progress of research in
diverse medical applications involving multiple modalities [7].

Related Work
In the domain of visual language models and their applications
within the medical field, several notable studies and
advancements have paved the way for this research project.
These works solve different problems within health care
analytics and have played critical roles in shaping this study’s
foundation.

Within the medical domain, image captioning has emerged as
a valuable tool that enables health care professionals and
researchers to enhance their diagnostic and reporting processes.
Image captioning technology allows for the automatic generation
of textual descriptions for medical images, such as x-rays,
magnetic resonance imaging (MRI) scans, and computed
tomography (CT) scans. This capability brings about several
significant benefits. First, it aids clinicians in the diagnostic
process by providing detailed descriptions of medical images,
helping medical professionals to quickly and accurately identify
abnormalities or pathologies in the images, thus improving the

efficiency and accuracy of diagnoses. Second, image captions
serve as a means of clear and standardized communication
among health care professionals, reducing the potential for
misinterpretation when multiple experts are involved in the
diagnostic process. Third, image captions make medical images
more accessible to a broader audience, including patients,
promoting health literacy and patient engagement. Moreover,
in a clinical setting, image captions expedite the process of
creating medical reports, improving the overall quality of patient
records. They also play a valuable role in medical education
and training, aiding in the learning and teaching of medical
imaging and diagnostics. Pavlopoulos et al [8] proposed that
biomedical image captioning can significantly expedite
clinicians’diagnostic processes and presented a comprehensive
survey covering various aspects of medical image captioning,
including data sets and evaluation measures. Furthermore, the
task of the automatic generation of medical image reports,
introduced by Jing et al [9], aimed to streamline the reporting
process for physicians, enhancing both efficiency and accuracy.
To address this, Jing et al [9] used a hierarchical Long
Short-Term Memory model, which was tested on 2 publicly
available data sets, Indiana University X-Ray [10] and Pathology
Education Informational Resource (PEIR)-Gross [9].

This connection between image captioning and medical report
generation underscores the practical utility of visual language
models in improving health care processes. In addition to these
advancements, the field of medical visual question answering
(VQA) has gained increasing relevance. Medical VQA tasks
involve developing models capable of answering questions
related to medical images and bridging the gap between textual
queries and visual data. Lin et al [11] introduced various medical
data sets and proposed methods to enhance model performance
in medical VQA tasks. We used various data sets presented by
Lin et al [11] in our experiments. Furthermore, Li et al [12]
emphasized the significance of pretraining models on general
images to capture meaningful representations of medical data,
thus laying the groundwork for our approach. This insight served
as our motivation to explore an approach of pretraining models
on domain-specific medical data sets, with the aim of achieving
enhanced performance for medical VQA (MedVQA) tasks.
Notably, Li et al [12] encountered a limitation in their work, as
they did not pretrain models using medical data sets. Their
decision was influenced by computational resource constraints,
and they believed that domain-specific pretraining would be
the key to improving model performance in MedVQA tasks.
To address this gap in the research landscape, we took the
initiative to pretrain our model using medical data sets, thereby
bridging the gap between general and medical image
understanding.

Transformer models have become instrumental in a diverse
array of applications in various vision and language (V+L) tasks,
including medical VQA. The Transformer, proposed by Vaswani
et al [13], represents a departure from traditional recurrent or
convolutional neural networks. Its architecture replaces recurrent
layers with a multihead self-attention encoder and decoder
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structure. Compared to traditional recurrent neural network
models, the Transformer significantly reduces training time,
making it a scalable solution capable of handling a wide range
of inputs and applicable to diverse V+L tasks, including the
analysis of medical images.

Several prominent transformer-based models have had a
significant impact on the landscape of NLP and multimodal
tasks. One of the most influential models is Bidirectional
Encoder Representations From Transformers (BERT). Proposed
by Devlin et al [14], BERT has demonstrated its efficacy in a
wide variety of NLP tasks. This is achieved through a pretraining
phase where 15% of input sequences are masked. These masked
tokens can be replaced with random words, original words, or
MASK tokens. Subsequently, the transformer auto-encodes
these tokens, and fine-tuning is applied to adapt the pretrained
model to downstream tasks. The generalization capabilities of
BERT are remarkable, making it adept at handling a wide array
of semantic tasks. This is due in part to its bidirectional training,
which allows the model to learn contextual information from
both the left and right sides of a given word.

BERT’s versatility allows it to be tailored for various
applications, and one domain where it has shown great promise
is the biomedical field. In the biomedical domain, text data often
exhibit complex language patterns and domain-specific
terminology. Lee et al [15] recognized the need for a model that
could adapt to these linguistic intricacies and introduced
BioBERT, a BERT-based model fine-tuned on biomedical text.
BioBERT effectively addresses the word distribution shift from
general data to biomedical data, making it a valuable tool for
tasks such as biomedical text mining. The BioBERT model’s
workflow involves transferring weights from BERT, which is
pretrained on general domain data, to BioBERT. Subsequently,
BioBERT is pretrained on biomedical domain data, followed
by fine-tuning and evaluation of various downstream tasks. This
adaptation enhances BioBERT’s performance in domain-specific
tasks, such as biomedical text classification and named entity
recognition.

The success of BERT and its adaptations has paved the way for
exploring their application in multimodal tasks, where both text
and image data are involved. For instance, VisualBERT,
proposed by Li et al [16], was inspired by BERT and designed
to capture rich semantics in V+L tasks. It uses a stack of
Transformer layers and integrates pretrained object proposal
systems for image feature extraction. In the training process,
VisualBERT uses self-supervised learning with masked word
tokens and performs image caption classification tasks with true
and false captions. This approach enables the model to capture
intricate relationships between text and image content, making
it highly suitable for multimodal tasks where textual descriptions
are needed for visual content.

Learning Cross-Modality Encoder Representations from
Transformers (LXMERT), another notable model, builds upon
the success of BERT and its variants [17]. Tan and Bansal [17]
recognized the importance of interpreting the semantic meaning
of both images and text while exploring the relationships
between V+L. LXMERT’s encoders, based on the Transformer
architecture, are pretrained on large volumes of image-text pairs.

The pretraining process, inspired by BERT, includes techniques
such as adding random masks. Interestingly, LXMERT’s
pretraining approach has been found to outperform data
augmentation, a common practice used to increase the amount
of training data. Consequently, LXMERT is well suited for
tasks that involve understanding and generating textual
descriptions for visual content, such as image captioning and
VQA.

As the field of V+L tasks continues to evolve, so do the
transformer-based models designed to tackle them. The Vision
Transformer (ViT), introduced by Dosovitskiy et al [18],
represents an innovation to address the challenges of applying
the Transformer architecture directly to computer vision tasks.
ViT operates by dividing an image into 16×16 patches and
processing them with position embeddings using a standard
Transformer encoder. This approach has shown promise, but it
demands substantial computational resources and extensive
training data. Notably, ViT32 ViT was used by Eslami et al
[19] as part of fine-tuned versions of Contrastive
Language-Image Pretraining (CLIP), comparing the performance
of different models in the medical domain.

Similarly, Universal Image-Text Representation (UNITER),
proposed by Chen et al [20], takes inspiration from the BERT
model. The UNITER model has demonstrated strong
performance in various V+L tasks. The architecture of UNITER
uses the Transformer as its core, with the image and text
embedder working in tandem to encode image and text features
into a common embedding space. This approach enables the
generation of contextual embeddings, facilitating a better
understanding of the relationships of V+L. These
transformer-based models collectively represent a spectrum of
approaches and adaptations within the broader field of V+L
tasks.

The landscape of transformer-based models, ranging from BERT
to ViT, demonstrates their adaptability and effectiveness in
various domains, including NLP and multimodal tasks. CLIP,
introduced by Radford et al [21], represents a significant step
forward in the multimodal domain. CLIP was designed to
connect images and text through a shared embedding space,
enabling it to understand the relationship between the 2
modalities. By pretraining on a massive data set containing
images and their associated textual descriptions, CLIP can align
images with natural language descriptions, making it a versatile
tool for a wide range of tasks. This novel approach has
significant implications for the medical field, where visual data,
such as medical images, often require textual descriptions for
comprehensive analysis and interpretation.

Building upon the success of CLIP, PubMedCLIP emerged as
a tailored solution for MedVQA. Eslami et al [19] recognized
the need for a model specifically adapted to the medical domain
and developed PubMedCLIP, a fine-tuned version of CLIP
trained on a data set of medical image-text pairs from PubMed
articles. This adaptation enables PubMedCLIP to better
understand the nuances of medical images and text, resulting
in improved performance on MedVQA tasks.

One of the recent works fusing medical imaging and text data
is MedBLIP [22]. MedBLIP uses a trainable 3D vision encoder,

JMIR Med Inform 2024 | vol. 12 | e56627 | p. 3https://medinform.jmir.org/2024/1/e56627
(page number not for citation purposes)

Naseem et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


MedQFormer, which connects medical images with language
models. However, MedBLIP could not significantly improve
VQA performance and classification accuracy. For the
experimental evaluation of MedBLIP, authors only used MRI
scans and text, which will limit the use of MedBLIP in the case
of other modalities, such as positron emission tomography, CT,
and x-ray images.

Despite performing well in vision-language tasks, CLIP suffers
from a number of limitations. Firstly, it is primarily focused on
vision-language understanding tasks, such as image retrieval
and VQA. This means that it is not well suited for generation
tasks, such as image captioning. Secondly, CLIP is trained on
a large data set of image-text pairs collected from the web.
However, these data are often noisy and contain incorrect or
misleading captions. This can lead to CLIP making mistakes
when performing tasks that require an accurate understanding
of the relationship between images and text.

To address these limitations, Li et al [23] proposed
Bootstrapping Language-Image Pretraining (BLIP), a
vision-language pretraining framework. BLIP, as shown in
Figure 1, is a unified model that can be used for both
understanding and generation tasks. This is achieved by
incorporating a captioning module into the model, which allows
BLIP to generate captions for images. In addition, BLIP
addresses the issue of noisy web data by bootstrapping the
captions. This means that a captioner generates synthetic
captions and a filter removes the noisy ones. This results in a
cleaner data set that can be used to train a more robust model.
As a result of these improvements, BLIP has been shown to
achieve state-of-the-art (SOTA) results on a wide range of
vision-language tasks, including image retrieval, VQA, image
captioning, and visual grounding. In addition, BLIP is more
efficient to train and can be fine-tuned for downstream tasks
with lesser data. Finally, BLIP is more interpretable than CLIP,
as the captioning module allows users to understand how the
model is reasoning about images.

Figure 1. Pretraining architecture of Bootstrapping Language-Image Pretraining (BLIP). CLS: classification; ITC: image-text contrastive; ITM:
image-text matching; LM: language modeling.

Capitalizing on the strengths of BLIP, we propose BioMedBLIP
by pretraining and fine-tuning the model with a medical data
set to achieve SOTA results on medical vision-language tasks.
Specifically, BLIP’s unified approach to vision-language
understanding and generation makes it well suited for tasks such
as medical image classification, medical image retrieval, and
medical image captioning. In addition, BLIP’s ability to handle
noisy data makes it well suited for training on medical data sets,
which can often be noisy and contain incomplete or inaccurate
information. We evaluated our pretrained model using various
standard task-specific performance metrics.

Methods

In this section, we describe our pretraining process along with
training strategies and resources used.

BioMedBLIP

Overview
BLIP, initially pretrained on general image data sets, possesses
knowledge rooted in general image understanding. However,
medical images exhibit distinct characteristics that differentiate

them from general images. Many medical images are gray scale,
such as x-rays and MRI scans, which results in a significant
divergence between the general image domain and the medical
image domain. To bridge this gap, we conducted the pretraining
of BLIP using medical data sets, producing an adapted BLIP
model tailored for medical applications.

As shown in Figure 1, BLIP is organized into 4 key modules.

• Visual transformer block (image encoder): the first module
serves as an image encoder, using a visual transformer to
extract features from medical images.

• BERT-based text encoder: the second module is a text
encoder based on BERT. It processes textual data, ensuring
a comprehensive understanding of medical texts.

• Cross-attention and binary classification: the third module
shares parameters with the text encoder, facilitating joint
image-text embeddings through cross-attention. It uses a
binary classifier to confirm the pairing of images and text.

• Text decoder: the final module is a text decoder, which
shares some components with the preceding encoders, such
as feed-forward and cross-attention layers. However, it
maintains its own causal self-attention layers. The text
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decoder generates text auto-regressively, and cross-entropy
loss is applied during this process.

For BLIP, we explored various pretraining approaches. Initially,
we attempted to pretrain BLIP from scratch. Subsequently, we
pretrained BLIP from a provided checkpoint using the ROCO
and MIMIC data sets. Further experimentation involved
extending the checkpoint with the inclusion of the ROCO data
set onto the MIMIC data set. To apply BLIP to downstream
tasks, we followed the BLIP framework’s process to refactor

the model’s modules and assembled an adapted model tailored
for specific tasks.

BioMedBLIP VQA Generation Model
For VQA tasks, we adopted the structure provided by BLIP, as
depicted in Figure 2. VQA tasks require the model to generate
textual answers based on given images and question pairs. The
process involves encoding the image to create image
embeddings, producing image-question joint embeddings with
the help of the question encoder, and using the answer decoder
to generate the final answer.

Figure 2. BioMedBLIP visual question answering generation model.

Modified BLIP Classification Model
The modified BLIP classification model, illustrated in Figure
3, shares similarities with the generation model. It generates
joint image-text embeddings using the image encoder and text

encoder. However, instead of using the answer decoder, a
pooling layer is introduced to reduce the vector dimension.
Subsequently, a linear classification layer is applied to produce
multiple classification results.

Figure 3. BioMedBLIP classification model. ViT: Vision Transformer.

BioMedBLIP Image Caption Model
The image caption model, presented in Figure 4, is composed
of the image encoder and text decoder, following BLIP’s
implementation. Unlike VQA tasks, the image captioning task

involves generating text based solely on images. Therefore, the
text encoder is omitted, and the text decoder takes image
embeddings provided by the image encoder and the [Decode]
token as input to produce image captions.

Figure 4. BioMedBLIP image caption model.

Data Sets
Our research leverages a diverse range of medical data sets,
encompassing a variety of visual and textual medical data

sources. These data sets serve as the foundation for pretraining
and fine-tuning our visual language model.
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ROCO Data Set
The ROCO data set [5] plays a pivotal role in pretraining
BioMedBLIP. It encompasses over 81,000 radiology images
representing multiple medical imaging modalities, including
CT, ultrasound, x-ray, fluoroscopy, positron emission
tomography, mammography, MRI, and angiography [5]. Our

approach involved consolidating the training, validation, and
test data into a single comprehensive JSON file, enabling the
pretraining of BioMedBLIP. Notably, the captions in the ROCO
data set were sourced from peer-reviewed scientific biomedical
literature and downloaded from a GitHub link [24]. Some
examples are shown in Figure 5.

Figure 5. Some images in the Radiology Objects in Context data set.

MIMIC-CXR Data Set
The MIMIC-CXR data set is a large data set that consists of
377,110 chest x-rays corresponding to 227,827 imaging studies
[6]. Some examples of chest x-rays from this data set are shown
in Figure 6. In our context, we used this data set for
BioMedBLIP’s pretraining. It is worth noting that each medical
study extracted from the hospital’s electronic health record

system can be related to multiple chest x-rays. Our efforts
focused on filtering the chest x-rays, retaining those with
anteroposterior and posteroanterior positions, and ensuring that
each medical report had a single associated chest x-ray. After
preprocessing, we obtained 218,139 image-caption pairs, which
were instrumental in pretraining BioMedBLIP. The medical
studies are XML files, and we extracted the “Findings” and
“Impressions” sections as the caption for medical images.
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Figure 6. Chest x-rays in the Medical Information Mart for Intensive Care-Chest X-ray data set.

Image Cross-Language Evaluation Forum 2019 Data
Set
The Image Cross-Language Evaluation Forum (ImageCLEF)
2019 data set [25,26], provided by the ImageCLEF organization
for evaluation, served as a critical component in our work. This

data set comes in 3 parts: training, validation, and testing sets.
No preprocessing was performed on the data set, and it was
leveraged for our VQA generation task. It contains 12,792;
2000; and 500 image-caption pairs for the training, validation,
and testing sets, respectively. An example of a radiology image
in the ImageCLEF data set is shown in Figure 7.

Figure 7. A radiology image from the Image Cross-Language Evaluation Forum 2019 data set.

Semantically-Labeled Knowledge-Enhanced Data Set
The Semantically-Labeled Knowledge-Enhanced (SLAKE)
data set [27] was designed for medical VQA tasks [28]. We
used this data set for VQA generation and VQA classification
tasks. The SLAKE data set has both Chinese question-answer
pairs and English question-answer pairs. Our data set preparation
included filtering to retain only English question-answer pairs.

After filtering, the SLAKE data set consisted of 4919, 1053,
and 1061 image-caption pairs for the training, validation, and
testing sets, respectively. Notably, the SLAKE data set features
2 different answer types, open and close, allowing us to assess
model performance for open-ended and close-ended questions.
An example of a radiology image from the SLAKE data set is
shown in Figure 8.

JMIR Med Inform 2024 | vol. 12 | e56627 | p. 7https://medinform.jmir.org/2024/1/e56627
(page number not for citation purposes)

Naseem et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. A radiology image from the Semantically-Labeled Knowledge-Enhanced data set.

PathVQA Data Set
The PathVQA data set is a VQA data set for “AI pathologist”
development [29]. It contains numerous pathology images
together with questions and corresponding answers. All
image-question-answer triplets are manually checked to ensure
correctness. In our setting, we obtained a data set with 32,795
image-question-answer pairs after initial preprocessing. We

further categorized questions into open-ended and close-ended
questions using our own splitting, yielding 20,968; 5241; and
6552 image-question-answer pairs for the training, validation,
and testing sets, respectively. All these images in the validation
and testing sets were picked randomly. An example of a
pathology image from the PathVQA data set is shown in Figure
9. We used this data set to perform the VQA generation and
VQA classification tasks in our project.

Figure 9. A pathology image from the PathVQA data set.

VQA-RAD Data Set
VQA-RAD is the first data set that was manually constructed.
During the data collection process, clinicians asked natural
questions about radiology images. Meanwhile, their reference
answers would be provided [30]. It has radiology images
together with question-answer pairs. We used the original data

[31] splitting and did not perform any data preprocessing on
this data set. It contains 2452, 614, and 452
image-question-answer pairs for the training, validation, and
testing sets, respectively. An example of a radiology image from
the VQA-RAD data set is shown in Figure 10. We used the
VQA-RAD data set to implement the VQA generation and VQA
classification tasks.
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Figure 10. A radiology image from the Visual Question Answering in Radiology data set.

Open-I Data Set
The Open-I data set [32] is a compilation of chest x-ray images
collected from open-source literature and biomedical image
collections. Our focus was specifically on the chest x-ray images
within this data set. We downloaded the data set from the official
Open-I website, which comprises 2 parts: images and medical

reports. The medical reports were stored as XML files, with the
“Finding” and “Impression” sections extracted as captions for
the images. Our downloaded version contained 2452, 614, and
452 image-caption pairs for the training, validation, and testing
sets, respectively. An example of a radiology image from the
Open-I data set is shown in Figure 11.

Figure 11. A radiology image from the Open-I data set.

PEIR-Gross Data Set
The PEIR-Gross data set originated from the PEIR and contains
7442 image-caption pairs across 21 subcategories [9]. Our data
set preparation involved splitting it into training and testing sets.

We also generated a validation set by randomly selecting 10%
of the training data. After preprocessing, we had 6029, 669, and
745 image-caption pairs for the training, validation, and testing
sets, respectively. An example of a medical image from the
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PEIR-Gross data set is shown in Figure 12. This data set was used for image captioning tasks.

Figure 12. A medical image from Pathology Education Informational Resource-Gross data set.

Implementation

Overview
In addition to the original BLIP base model checkpoint obtained
from the original BLIP GitHub repository [33], we also
meticulously pretrained a series of checkpoints on various
medical data sets. These checkpoints serve as critical resources
that we are making available for the broader research community
and our clients. Here, we provide a comprehensive list of these
checkpoints:

• Original BLIP base model checkpoint (ViT-Base): this
checkpoint represents the foundational BLIP model
pretrained on the LAION115M data set.

• Pretraining on combined-MED checkpoints: these
checkpoints were derived from pretraining on a
comprehensive data set combining SLAKE, Open-I,
ImageCLEF, and PathVQA data sets from scratch, with
versions available for both 20 and 50 epochs.

• Pretraining on SLAKE checkpoint: this checkpoint is the
result of pretraining on the SLAKE data set from scratch,
spanning 20 epochs.

• Pretraining on ROCO checkpoint: pretrained on the ROCO
data set from scratch, this checkpoint encapsulates
knowledge gained over 10 epochs.

• Pretraining on MIMIC-CXR checkpoint: for up to 10
epochs, this checkpoint embodies the insights obtained from
pretraining on the MIMIC-CXR data set from scratch.

• Pretraining on ROCO from the BLIP original checkpoint:
this checkpoint extends the pretraining on the ROCO data
set from the existing BLIP checkpoint up to 50 epochs.

• Pretraining on MIMIC-CXR from the BLIP original
checkpoint: similar to the ROCO extension, this checkpoint
involves the pretraining on the MIMIC-CXR data set from
the original BLIP checkpoint and spans up to 50 epochs.

• Pretraining on ROCO and MIMIC-CXR from the BLIP
original checkpoint: this checkpoint represents an
amalgamation of knowledge acquired from both ROCO
and MIMIC-CXR data sets, building upon the original BLIP
checkpoint and extending to 50 epochs.

Pretraining Details
To undertake the pretraining of the BLIP model, our approach
involved several key steps. Initially, we used the ROCO data
set for the pretraining of the BLIP original checkpoint, resulting
in the creation of the BioMedBLIP-ROCO models. These
models were uniquely identified by the number of epochs they
were pretrained for, with “BioMedBLIP-ROCO-10,” for
instance, signifying the original BLIP checkpoint pretrained on
the ROCO data set for 10 epochs. This choice was informed by
the fact that the original BLIP checkpoint had been trained on
millions of standard images and, therefore, already possessed
the fundamental knowledge required for a visual language
model. Our attempt to pretrain BLIP from scratch yielded
unsatisfactory performance. Subsequently, we embarked on
pretraining the original BLIP checkpoint with the MIMIC-CXR
data set to produce the BLIP-MIMIC models. Finally, we took

JMIR Med Inform 2024 | vol. 12 | e56627 | p. 10https://medinform.jmir.org/2024/1/e56627
(page number not for citation purposes)

Naseem et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the BLIP-MIMIC checkpoints and further pretrained them using
the ROCO data set, resulting in the creation of the
BioMedBLIP-ROCO and MIMIC models. In this study, we
retained checkpoints representing 10, 20, and 50 epochs for
each of these models.

To optimize the pretraining process, we conducted a series of
experiments aimed at identifying the most suitable
hyperparameters. The selected hyperparameters for the

pretraining process were as follows: initial learning rate: 3e–5;

warmup learning rate: 1e–6; warmup steps: 3000; and optimizer:
AdamW.

Fine-Tuning Details
The fine-tuning phase involved an extensive process
encompassing various BLIP checkpoints and data sets, which
included the BLIP original base model checkpoint,
BioMedBLIP-ROCO-10, BioMedBLIP-ROCO-20,
BioMedBLIP-ROCO-50, BioMedBLIP-MIMIC-10,
BioMedBLIP-MIMIC-20, BioMedBLIP-MIMIC-50,
B i o M e d B L I P - R O C O & M I M I C - 1 0 ,
BioMedBLIP-ROCO&MIMIC-20,  and
BioMedBLIP-ROCO&MIMIC-50. These checkpoints were
fine-tuned on a selection of data sets, namely, ImageCLEF,
SLAKE, VQA-RAD, PathVQA, Open-I (Indiana University
X-RAY), and PEIR-Gross.

For the fine-tuning process, we adhered to the common practice
of splitting the data sets into training, validation, and test sets.
Typically, the training set constitutes 80% of the total data set,
while the test set encompasses the remaining 20%. In certain
cases, the data set authors had already performed the necessary
data set splits, and we made no further modifications to these
sets. In addition, we created an answer list to facilitate the
evaluation of predicted VQA generation sentences, VQA
classification labels, and image captions.

As part of our methodology, we used a YAML configuration
file, which proved essential for adapting to different running
environments. Through a series of meticulously designed
experiments, we optimized the hyperparameters for each
checkpoint’s fine-tuning process. These hyperparameters
included train batch size, test batch size, learning rates, and the
number of epochs. Importantly, the optimal hyperparameters
varied for each checkpoint when applied to different data sets,
ensuring the fine-tuning process was meticulously tailored for
each specific scenario.

Resources
This study relied on a combination of hardware and software
resources to execute efficiently. We used 3 primary platforms
for code execution: Google Colab (Google Inc), Google Cloud
Platform (Google Inc), and the University of Sydney’s Artemis
HPC supercomputer. Google Colab we used had an Intel(R)
Xeon(R) central processing unit (CPU) running at 2.30 GHz,
an Nvidia Tesla P100-PCIE-16GB (Nvidia Corp) graphics
processing unit (GPU), and 12.8 GB of RAM. The version of
the Google Cloud platform we used had 4 CPU cores, a Tesla
A100-PCIE-40GB GPU, and 26 GB of RAM. On the Artemis
HPC platform [34], we had access to an impressive array of

resources, including 7636 CPU cores, 45 TB of RAM, 108
NVIDIA V100 GPUs, 378 TB of storage, and 56 Gbps FDR
InfiniBand networking. For our pretraining tasks, we specifically
used 4 CPU cores, Tesla V100-PCIE GPUs, and 48 GB of RAM.
Our code is available on HuggingFace [7].

Ethical Considerations
In our study, ethical considerations were meticulously observed
to ensure compliance with relevant regulations and standards.
We did not require ethics approval for this research because the
data sets used, including ROCO, MIMIC-CXR, SLAKE,
PathVQA, VQA-RAD, ImageCLEF, Open-I, and PEIR-Gross,
are publicly available. These data sets have been previously
collected, anonymized, and made accessible for research
purposes by their respective organizations and custodians. No
user data or human data were collected directly by us for this
study. We strictly adhered to data use policies specified by the
data providers, ensuring that all data handling was performed
in accordance with ethical guidelines. In addition, the data sets
used did not contain personally identifiable information, and
appropriate measures were taken to maintain data privacy and
security throughout the research process. Using publicly
available data, we ensured that our research complied with
institutional and local policies regarding the use of medical data
for research purposes.

Results

Overview
In this section, we describe our evaluation metrics along with
the results and findings. The purpose of our experimentation
was to evaluate how adding domain-specific information helps
in improving the performance of downstream tasks in the
biomedical domain. For this reason, we have compared the
results of our models with the original BLIP model.

Evaluation Metrics
In this subsection, we provide a detailed overview of the specific
evaluation metrics used to assess the performance of our model
across various downstream tasks.

• VQA generation: for VQA generation, we used exact match
(EM) as the metric. EM assesses the model’s performance
by treating predictions that precisely match the ground truth
as correct answers. It is particularly relevant for evaluating
generative tasks.

• VQA classification metrics: for VQA classification, we
used accuracy. Accuracy is a fundamental metric for
classification tasks, quantifying the proportion of correctly
classified instances.

• Report generation or image captioning metrics: Bilingual
Evaluation Understudy (BLEU) is a metric that assesses
the similarity between the generated answer and the
reference answer, considering n-grams. BLEU-1, in
particular, focuses on 1-grams.
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VQA Generation Results

Overview
For the VQA eneration task, we used the SLAKE, VQA-RAD,
PathVQA, and ImageCLEF data sets to check the performance

of our models BLIP-Original, BioMedBLIP-ROCO, and
BioMedBLIP-MIMIC&ROCO. These models were designed
to generate answers for visual questions and underwent different
pretraining strategies. Tables 1 and 2 present a comparison of
BioMedBLIP models with the SOTA model.

Table 1. Comparison of BioMedBLIP models versus the SOTAa on VQAb generation tasks (part 1).

BioMedBLIP models (accuracy)Original BLIPc (SOTA; accuracy)Data set

MIMICe-10ROCO-30ROCO-20ROCOd-10

78.5180.2180.1180.8777.95SLAKEf-Overall

73.8075.0474.5775.8173.80SLAKE-Open

85.8289.4288.7088.7087.26SLAKE-Close

26.1635.0337.03 h35.7034.37VQA-RADg-Overall

26.8243.0246.3743.0239.66VQA-RAD-Open

25.7429.7830.8830.5130.88VQA-RAD-Close

51.4555.4664.6563.0066.64PathVQA-Overall

18.2623.8440.7938.4543.78PathVQA-Open

84.7587.1688.5787.6288.35PathVQA-Close

56.4157.6356.8158.2748.20ImageCLEFi

aSOTA: state of the art.
bVQA: visual question answering.
cBLIP: Bootstrapping Language-Image Pretraining.
dROCO: Radiology Objects in Context.
eMIMIC: Medical Information Mart for Intensive Care.
fSLAKE: Semantically-Labeled Knowledge-Enhanced.
gVQA-RAD: Visual Question Answering in Radiology.
hBest performing models are italicized.
iImageCLEF: Image Cross-Language Evaluation Forum.
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Table 2. Comparison of BioMedBLIP models versus the SOTAa on VQAb generation tasks (part 2).

BioMedBLIP models (accuracy)Data set

MIMIC&ROCO-50MIMIC&ROCO-20MIMIC&ROCO-10MIMIC-50MIMICc-20

81.3481.5382.00 e70.5079.92SLAKEd-Overall

76.5976.2876.2865.1275.50SLAKE-Open

88.7076.2890.8778.8586.78SLAKE-Close

35.7029.9332.5925.5030.38VQA-RADf-Overall

40.7829.0532.9622.3536.87VQA-RAD-Open

32.3530.5132.3527.5726.10VQA-RAD-Close

60.2754.0961.7450.8953.31PathVQA-Overall

33.6922.6236.2217.7120.79PathVQA-Open

86.9285.6487.3284.1485.91PathVQA-Close

56.4254.8019.8953.6352.27ImageCLEFg

aSOTA: state of the art.
bVQA: visual question answering.
cMIMIC: Medical Information Mart for Intensive Care.
dSLAKE: Semantically-Labeled Knowledge-Enhanced.
eBest performing models are italicized.
fVQA-RAD: Visual Question Answering in Radiology.
gImageCLEF: Image Cross-Language Evaluation Forum.

Results on the SLAKE Data Set
For the overall SLAKE data set, the BioMedBLIP
MIMIC&ROCO-10 model exhibited the highest EM accuracy,
reaching an impressive 82%, outperforming the BLIP original
model and other variants. The results in SLAKE-Open
highlighted the superiority of the BioMedBLIP
MIMIC&ROCO-50 model, which achieved the best performance
with an EM accuracy of 76.59%. Finally, in the SLAKE-Close
category, the BioMedBLIP MIMIC&ROCO-10 model stood
out with an impressive accuracy of 90.87%, demonstrating its
strong performance in generating answers that match ground
truth answers exactly.

Results on the VQA-RAD Data Set
The original BLIP (SOTA) model, serving as the baseline,
achieved an EM score of 34.37 in the “VQA-RAD-Overall”
category. However, it was surpassed by our BioMedBLIP model,
specifically “ROCO-20,” which demonstrated exceptional
performance with an EM score of 37.03, indicating its
effectiveness in generating accurate answers to visual questions.
This trend continued in the “VQA-RAD-Open” data set, where
BioMedBLIP-ROCO-20 outperformed the baseline with an EM
score of 46.37, highlighting its strong performance in
open-ended VQA tasks. Notably, the close-ended category also
saw success for the BioMedBLIP models, with
“MIMIC&ROCO-10” and “MIMIC&ROCO-50” achieving the
top EM score of 32.35.

Results on the PathVQA Data Set
In the evaluation of VQA generation tasks on the PathVQA
data set, the original BLIP (SOTA) model exhibited an EM

score of 66.64, setting a high standard. Among the BioMedBLIP
models, “ROCO-20” emerged as the top performer in the
PathVQA-Overall and PathVQA-Open categories, achieving
scores of 64.65 and 40.79, respectively. Particularly noteworthy
is “MIMIC&ROCO-10,” which achieved a competitive EM
score of 61.74 in the PathVQA-Overall task. In the
PathVQA-Close category, “BioMedBLIP-ROCO-20” stood out
with an EM score of 88.57, surpassing the original BLIP
(SOTA) model. The BioMedBLIP models “MIMIC&ROCO-10”
and “MIMIC&ROCO-50” also displayed a strong performance.
These results emphasize the effectiveness of different pretraining
strategies and the potential for improved performance in VQA
generation tasks using the PathVQA data set with BioMedBLIP.

Results on the ImageCLEF Data Set
The SOTA original BLIP model achieved an EM score of 48.20.
In contrast, the BioMedBLIP models, which were pretrained
with different data sets and epochs, demonstrated notable
improvements. Notably, the BioMedBLIP model pretrained
with ROCO (10 epochs) emerged as the top performer with an
impressive EM score of 58.27, surpassing the SOTA model.
This suggests that the use of the ROCO data set for pretraining
significantly enhances the ability of the model to generate
precise answers to visual questions on the ImageCLEF data set.
Other variants of the BioMedBLIP model, pretrained with
different data sets and epochs, also exhibited varying degrees
of success in this task.

VQA Classification Results

Overview
For the VQA classification task, we used the SLAKE,
VQA-RAD, and PathVQA data sets to check the performance
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of our models BLIP-Original, BioMedBLIP-ROCO, and
BioMedBLIP-MIMIC-CXR. These models were designed to
generate answers for visual questions and underwent different

pretraining strategies. Tables 3 and 4 present a comparison of
the BioMedBLIP models with the SOTA models.

Table 3. Comparison of BioMedBLIP models versus the SOTAa on VQAb classification tasks (part 1).

BioMedBLIP models (accuracy)Original BLIPc (SOTA; accuracy)Data set

MIMICe-10ROCO-30ROCO-20ROCOd-10

78.7080.0480.2181.06 g77.85SLAKEf-Overall

75.6677.5277.0575.6675.50SLAKE-Open

83.4184.8685.1083.3181.49SLAKE-Close

34.3623.9519.9633.7040.35VQA-RADh-Overall

28.4926.3325.1027.3720.67VQA-RAD-Open

38.2339.7133.0939.7151.84VQA-RAD-Close

58.8558.6557.7759.2560.09PathVQA-Overall

34.0533.1730.0633.6037.21PathVQA-Open

83.7184.2085.5484.9685.15PathVQA-Close

aSOTA: state of the art.
bVQA: visual question answering.
cBLIP: Bootstrapping Language-Image Pretraining.
dROCO: Radiology Objects in Context.
eMIMIC: Medical Information Mart for Intensive Care.
fSLAKE: Semantically-Labeled Knowledge-Enhanced.
gBest performing models are italicized.
hVQA-RAD: Visual Question Answering in Radiology.

Table 4. Comparison of BioMedBLIP models versus the SOTAa on VQAb classification tasks (part 2).

BioMedBLIP models (accuracy)Data set

MIMIC&ROCO-50MIMIC&ROCO-20MIMIC&ROCOd-10MIMIC-50MIMICc-20

69.1080.8973.9074.1877.57SLAKEe-Overall

71.3277.90 f71.6272.2574.88SLAKE-Open

68.0484.7776.6977.1681.73SLAKE-Close

31.4929.4934.5934.1533.70VQA-RADg-Overall

27.9326.2628.4928.4928.49VQA-RAD-Open

33.8231.6238.6937.8737.13VQA-RAD-Close

61.1360.2460.4136.8658.04PathVQA-Overall

34.0933.3232.6118.9631.98PathVQA-Open

86.2985.3859.7054.8084.17PathVQA-Close

aSOTA: state of the art.
bVQA: visual question answering.
cMIMIC: Medical Information Mart for Intensive Care.
dROCO: Radiology Objects in Context.
eSLAKE: Semantically-Labeled Knowledge-Enhanced.
fBest performing models are italicized.
gVQA-RAD: Visual Question Answering in Radiology.
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Results on the SLAKE Data Set
In the context of VQA classification tasks using the SLAKE
data set, the evaluation results are presented in terms of
accuracy, allowing for a comprehensive comparison between
the original BLIP model and several BioMedBLIP variants,
each pretrained with specific data sets and epochs. The
BioMedBLIP models demonstrated their potential for significant
improvements over the original BLIP model. In the
“SLAKE-Overall” data set category, BioMedBLIP models
pretrained with the ROCO data set consistently outperformed
the original BLIP model, with ROCO-10 achieving an accuracy
of 81.06. Furthermore, BioMedBLIP models pretrained with
the MIMIC-CXR data set, particularly MIMIC-20, showcased
strong performance. For the SLAKE open-ended data set
subtask, the model pretrained with both MIMIC-CXR and
ROCO for 20 epochs achieved an accuracy of 77.90, surpassing
the original BLIP model. For the SLAKE close-ended data set,
the ROCO-20 variant of BioMedBLIP stood out with an
accuracy of 85.10, clearly surpassing the original BLIP model’s
performance. These results emphasize the significance of data
set choice and pretraining duration, with BioMedBLIP models
showcasing their potential for improved accuracy in classifying
visual questions within the SLAKE data set.

Results on the VQA-RAD Data Set
In the VQA-RAD-Overall data set, encompassing both
open-ended and closed-ended questions, none of the
BioMedBLIP models outperformed the original BLIP model,
highlighting the challenges in achieving superior accuracy in a
mixed question type. However, in the VQA-RAD open-ended
data set, all the BioMedBLIP models excelled, surpassing the
original BLIP model’s accuracy and showcasing their
effectiveness in open-ended question answering. Four variants
of BioMedBLIP models, namely, MIMIC-10, MIMIC-20,
MIMIC-50, and MIMIC&ROCO-10, had the highest score of
28.49. For the VQA-RAD close-ended data set, the
BioMedBLIP models did not surpass the original BLIP model,
with the best performers being ROCO-10 and ROCO-30. This
shows that further research is warranted on strategies to improve
the performance on the close-ended VQA-RAD data set.

Results on the PathVQA Data Set
On the PathVQA-Overall data set, the original BLIP model
achieved an accuracy of 60.09, while the BioMedBLIP models
demonstrated varied performance. Notably, the model pretrained
with both MIMIC-CXR and ROCO data sets for 50 epochs
emerged as the top performer, achieving an accuracy of 61.13.
This dual pretraining approach showed significant promise in
enhancing classification accuracy. For the PathVQA-Open data
set, the original BLIP model achieved the highest accuracy of
37.21, with BioMedBLIP models pretrained on ROCO and
MIMIC-CXR data yielding slightly lower results. The highest
performance among BioMedBLIP models came from the model
pretrained with both data sets for 50 epochs, reaching an
accuracy of 34.09, which is very close to the original BLIP
model’s accuracy. In contrast, the original BLIP model excelled
on the PathVQA-Close data set, achieving an impressive
accuracy of 85.15. Nevertheless, the BioMedBLIP model
pretrained with both MIMIC-CXR and ROCO for 50 epochs

outperformed the original BLIP model, achieving an accuracy
of 86.29.

These results collectively indicate that the choice of pretraining
strategy and the duration of training significantly influence the
classification accuracy of BioMedBLIP models on the various
VQA classification data sets, with the combined data set
pretraining demonstrating notable advantages in certain contexts.

Image Captioning Task Results
We used the PEIR-Gross data set for the image captioning task
to check the performance of our BioMedBLIP models. For the
image captioning task, BLIP-original had a BLEU-1 score of
24.8. Similarly, when using the ROCO data set for training, the
BioMedBLIP models had scores of 24.4, 24.6, and 25.1 for 10,
20, and 30 epochs respectively. Furthermore, when the MIMIC
data set was used, the BLEU-1 score of 23.1, 23.9, and 24.1
was achieved by BioMedBLIP models when trained for 10, 20,
and 50 epochs respectively. Additionally, when the training
data combined MIMIC and ROCO, the BLEU-1 score of 23.9,
24.3, and 24.2 was achieved for 10, 20, and 30 epochs
respectively by BioMedBLIP models. In terms of BLEU-1
scores, higher values are indicative of better performance. The
results show that the BioMedBLIP-ROCO-50 model surpassed
the original BLIP model in the image captioning task with a
BLEU-1 score of 25.1 (over 1.2% improvement from the score
of the original BLIP model), demonstrating that our approach
has the potential to enhance the model’s capabilities for
generating captions. In contrast, all other models, including
various pretraining strategies and epochs, exhibited slightly
lower BLEU-1 scores. While some models may have exhibited
minor variations in performance, it is essential to emphasize
that, overall, our results were quite consistent. This consistency
indicates that our pretraining strategies and fine-tuning
approaches are robust and capable of producing reliable
outcomes.

Discussion

Principal Findings
In the presented VQA generation, VQA classification, and report
generation tasks, we aimed to assess the performance of our
BioMedBLIP models against the SOTA original BLIP model
using diverse medical image data sets and pretraining strategies.
The findings indicate that our BioMedBLIP models, pretrained
with specialized medical data sets, exhibit substantial
improvements in generating answers for visual questions, as
well as in classifying images and questions, depending on the
specific data set and pretraining strategy used.

In this section, it is important to emphasize the general trends
and insights that can be drawn from these results:

• Data set specificity: the choice of pretraining data sets, such
as ROCO and MIMIC-CXR, significantly impacts model
performance in both VQA generation and VQA
classification tasks. Specialized medical data sets have
proven to be valuable for enhancing model capabilities in
medical image analysis and question answering.

• Pretraining duration: longer pretraining durations, as
evidenced by models such as MIMIC&ROCO-50, have
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shown their potential to improve classification accuracy in
specific categories of questions, demonstrating the
importance of considering pretraining strategies tailored to
the task.

• Diverse performance: our models exhibit varying levels of
success across different data sets and task categories. This
underscores the need for flexibility in selecting pretraining
strategies, depending on the specific goals and data sets of
a given application.

• Image captioning: our approach, particularly the one
followed for BioMedBLIP-ROCO-50, demonstrates
improvements in generating captions for medical images,
showcasing the model’s capacity to excel in both VQA and
image captioning tasks.

• Selection of epoch numbers: in our experiments, we
observed that the BioMedBLIP models converge at varying
numbers of epochs, depending on the data set and the
specific downstream tasks involved. This variability is
typical in deep learning, where a model’s loss decreases up
to a certain point and then may increase, indicating that
longer training periods do not necessarily yield better
performance.

These results underscore the potential of our BioMedBLIP
models to excel in a wide range of medical image analysis and
question answering tasks, with their performance varying
depending on the specific data set and task at hand.
BioMedBLIP was tested using 20 different data sets and task
combinations. Our method excelled in 15 (75%) out of 20 tasks.
BioMedBLIP represents a new SOTA in 15 (75%) out of 20
tasks, and our responses were rated higher in all 20 tasks
(P<.005) in comparison to SOTA models. Regression analyses
showed that our model’s VQA generation has a statistically
significant predictor (P<.002) on the SLAKE, PathVQA, and
ImageCLEF data sets. In contrast, our model’s VQA
classification has a relatively lower predictor (P<.003) on the
SLAKE, PathVQA, and VQA-RAD data sets in accordance
with the regression analyses.

VQA Generation
For the SLAKE data set, our model, pretrained on a combination
of general domain data sets and medical domain data sets
(MIMIC-CXR and ROCO), consistently outperformed other
models across various SLAKE data sets, including open-ended,
close-ended, and aggregated types. In contrast to the study by
Li et al [12], our results affirm the benefits of pretraining on
both general and medical data sets, addressing limitations in
their work. This underscores the advantage of a domain-specific
model for specialized downstream tasks. Notably, our
observations align with the findings of Eslami et al [35],
indicating that a pretrained ViT, such as our BLIP model,
possesses a comprehensive understanding of image content and
long-range dependencies, essential for interpreting the SLAKE
data set. Surprisingly, in the VQA-RAD data set, the model
pretrained solely on the ROCO data set (for 20 epochs) excelled
in open-ended and aggregated tasks, while the MIMIC-CXR
and ROCO model performed better in the close-ended task.
Contrary to expectations, the model pretrained on general
domain data sets and ROCO outperformed the model pretrained
on larger domain-specific data sets for PathVQA and

ImageCLEF. We attribute this to the superior preprocessing of
the ROCO data set, incorporating red bounding boxes that aid
in learning crucial image regions. Moreover, our 50-epoch
pretraining might not suffice for larger data sets, suggesting the
need for further exploration with extended training. Overall,
our models demonstrated superior performance on the medical
data sets compared to the original BLIP model, emphasizing
the efficacy of our approach in medical image analysis.

VQA Classification
In the exploration of VQA classification tasks, diverse models
underwent experimentation and fine-tuning across data sets
such as SLAKE, PathVQA, and VQA-RAD, encompassing
open-ended, close-ended, and aggregated question types.
Notably, the SLAKE data set consistently emerged as the data
set where BioMedBLIP models consistently exhibited superior
performance. Tables 3 and 4 highlight that, in the majority of
cases, the BioMedBLIP models performed better than the
original BLIP model.

Furthermore, our experiments delved into the impact of different
epoch settings on model performance. An intriguing observation
emerged, indicating that the relationship between a model’s
performance and the number of epochs is not consistently
positive. This suggests the critical importance of judiciously
selecting epoch configurations during the construction of visual
language models for medical data sets, challenging the notion
that more epochs always lead to improved accuracy.

Image Captioning
In the context of the image captioning task, our findings, while
not entirely satisfactory, reveal promising aspects, particularly
with the BLIP-ROCO 50 model. This variant surpasses the
original BLIP model in BLEU measurements, hinting at
potential improvements in using the BLIP model for image
captioning. However, the overall performance of the modified
models hovers around 23% to 25%, suggesting that the BLIP
model may not be inherently well suited for image captioning
tasks.

Further Insights
The development and application of our BioMedBLIP models
have far-reaching implications across the health care and
educational sectors. First and foremost, our models can
significantly contribute to improving medical diagnosis and
decision support systems. By enhancing the capacity to analyze
medical images and answer visual questions, they have the
potential to facilitate more accurate and timely health care
interventions, ultimately benefiting patient outcomes. In medical
education and training, our models can serve as valuable tools
for students and professionals alike. Automated question
answering capabilities can bridge knowledge gaps and improve
learning outcomes in a field that demands continuous learning.
Moreover, the automation of image analysis and question
answering tasks has the potential to reduce the workload on
medical professionals, allowing them to allocate more time to
complex aspects of patient care. In terms of research, our models
can expedite medical investigations by streamlining the analysis
of extensive data sets, potentially leading to groundbreaking
discoveries and advancements in the field. Finally, on a global
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scale, the availability of advanced artificial intelligence models
such as ours can improve medical services in underserved
regions where access to specialized medical expertise is limited,
thereby contributing to more equitable health care delivery.
However, these opportunities are accompanied by ethical and
societal responsibilities. Ensuring patient privacy, addressing
biases in the data, and maintaining transparency in the
development and deployment of artificial intelligence models
are pivotal steps to maximize their positive impact while
mitigating potential risks and pitfalls in the medical field and
beyond.

Our BioMedBLIP models, while showing promise in medical
image analysis, come with inherent limitations. First, their
performance is heavily contingent on the quality and diversity
of the training data. Limitations in data availability, such as
smaller or less representative medical data sets, can hinder the
model’s ability to generalize to real-world scenarios and may
introduce biases. Second, the variability in model performance
across different data sets and task categories poses a challenge.
Achieving optimal results often demands the fine-tuning of
pretraining strategies for specific tasks, which may not always
be straightforward in practical applications. While choosing the
models appropriate for real-world applications, there are various
considerations to be made. In our work, we have presented
widely used metrics to evaluate model’s performance. Different
downstream tasks might have different metrics that are used for
evaluation. In this case, comparison on the grounds of the most
relevant metrics should be made. Moreover, the computational
demands for pretraining models, especially in the context of
medical tasks, can be substantial, potentially limiting the
accessibility of our approach to settings with limited

computational resources. We recommend training models for
different epochs before selecting them for real-world
applications. This is because for different data sets and tasks,
the models tend to show convergence at different numbers of
epochs. Finally, ethical and privacy concerns are paramount in
the use of medical image data. Striving to ensure strict
compliance with data protection regulations and maintaining
patient privacy and data security are imperative in any real-world
implementation.

Conclusions
In conclusion, our development and evaluation of BioMedBLIP
models for medical image analysis tasks reveal both promise
and practical considerations. These models have shown
substantial potential in enhancing the interpretation of medical
images and responding to visual questions in a health care
context. The choice of pretraining data sets, including ROCO
and MIMIC-CXR, plays a pivotal role in model performance,
underscoring the importance of specialized medical data for
training. Furthermore, a longer duration of pretraining,
exemplified by the MIMIC&ROCO-50 model, has demonstrated
the potential to elevate classification accuracy in specific
question categories. However, our findings highlight the
variability in performance across different data sets and tasks,
necessitating a flexible approach to pretraining strategies.
Moreover, our models have promising implications across health
care and education. They can bolster medical diagnosis, decision
support systems, and research efforts while also streamlining
medical education and reducing the workload on health care
professionals. The global accessibility of these models can bring
specialized medical expertise to underserved regions.
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