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Abstract

Inhaled corticosteroid (ICS) is a mainstay treatment for controlling asthma and preventing exacerbations in patients with persistent
asthma. Many types of ICS drugs are used, either alone or in combination with other controller medications. Despite the widespread
use of ICSs, asthma control remains suboptimal in many people with asthma. Suboptimal control leads to recurrent exacerbations,
causes frequent ER visits and inpatient stays, and is due to multiple factors. One such factor is the inappropriate ICS choice for
the patient. While many interventions targeting other factors exist, less attention is given to inappropriate ICS choice. Asthma is
a heterogeneous disease with variable underlying inflammations and biomarkers. Up to 50% of people with asthma exhibit some
degree of resistance or insensitivity to certain ICSs due to genetic variations in ICS metabolizing enzymes, leading to variable
responses to ICSs. Yet, ICS choice, especially in the primary care setting, is often not tailored to the patient’s characteristics.
Instead, ICS choice is largely by trial and error and often dictated by insurance reimbursement, organizational prescribing policies,
or cost, leading to a one-size-fits-all approach with many patients not achieving optimal control. There is a pressing need for a
decision support tool that can predict an effective ICS at the point of care and guide providers to select the ICS that will most
likely and quickly ease patient symptoms and improve asthma control. To date, no such tool exists. Predicting which patient will
respond well to which ICS is the first step toward developing such a tool. However, no study has predicted ICS response, forming
a gap. While the biologic heterogeneity of asthma is vast, few, if any, biomarkers and genotypes can be used to systematically
profile all patients with asthma and predict ICS response. As endotyping or genotyping all patients is infeasible, readily available
electronic health record data collected during clinical care offer a low-cost, reliable, and more holistic way to profile all patients.
In this paper, we point out the need for developing a decision support tool to guide ICS selection and the gap in fulfilling the
need. Then we outline an approach to close this gap via creating a machine learning model and applying causal inference to
predict a patient’s ICS response in the next year based on the patient’s characteristics. The model uses electronic health record
data to characterize all patients and extract patterns that could mirror endotype or genotype. This paper supplies a roadmap for
future research, with the eventual goal of shifting asthma care from one-size-fits-all to personalized care, improve outcomes, and
save health care resources.
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Introduction

Asthma is a chronic disease characterized by inflammation,
narrowing, and hyperactivity of the airways causing shortness
of breath, chest tightness, coughing, and wheezing [1]. Asthma
affects about 25 million people in the United States [2]. In 2021,
there were 9.8 million exacerbations of asthma symptoms (or
asthma attacks) leading to over 980,000 emergency room (ER)
visits and over 94,500 hospitalizations [2]. Asthma costs the
US economy over US $80 billion in health care expenses each
year, work and school absenteeism, and deaths [3].

Inhaled corticosteroid (ICS) is a mainstay treatment for
controlling asthma and preventing exacerbations in patients
with persistent asthma [4] accounting for over 60% of people
with asthma [5,6]. Many types of ICS drugs are used, either
alone like fluticasone (Flovent, Arnuity, and Aller-flo),
budesonide (Pulmicort, Entocort, and Rhinocort), mometasone
(Asmanex), beclomethasone (Beclovent, Qvar, Vancenase,
Beconase, Vanceril, and Qnasl), ciclesonide (Alvesco), and so
forth, or in combination with a long-acting beta2 agonist like
fluticasone/salmeterol (Advair), budesonide/formoterol
(Symbicort), mometasone/formoterol (Dulera), and
fluticasone/vilanterol (Breo), and so forth [4]. Regular use of
appropriate ICSs improves asthma control and reduces airway
inflammation, symptoms, exacerbations, ER visits, and inpatient
stays [7-9].

Despite the widespread use of ICSs, asthma control remains
suboptimal in many people with asthma [10-13] including 44%
of children and 60% of adults based on asthma exacerbations
in the past year [14,15], 72% of patients based on asthma control
test [10], 53% of children and 44% of adults based on asthma
attacks in the past year [16], and 59% of children based on the
2007-2013 Medical Expenditure Panel Survey [17]. Suboptimal
control leads to recurrent exacerbations, causes frequent ER
visits and inpatient stays, and is projected to have an economic
burden of US $963.5 billion over the next 20 years [18].
Suboptimal control is due to multiple factors [19-23] including
(1) failure to recognize and act on early signs of declining
control [24,25], (2) lack of self-management skills, (3)
nonadherence to therapy [26], and (4) inappropriate ICS choice
for the patient [27-32]. While interventions targeting other
factors exist, less attention has been given to inappropriate ICS
choice.

Asthma is heterogeneous with variable profiles in terms of
clinical presentations (phenotypes) and underlying mechanisms
(endotypes) [33,34]. Molecular techniques have revealed a few
phenotype and endotype relationships, allowing the
categorization of asthma into two main groups (1) T-helper type
2 (Th2)-high (eg, atopic and late onset) and (2) Th2-low (eg,
nonatopic, smoking-related, and obesity-related) [33,34]. It is
known that within the 2 groups, there are many subgroups
[33,35] with different biomarker expressions (eg,
immunoglobulin E [IgE], fractional exhaled nitric oxide [FeNO],
interleukin [IL]-4, IL-5, and IL-13) [36]. So far, only a few

biomarkers have been characterized for use in clinical practice.
Despite a few successes using biomarkers for targeted therapy,
ICS choice, especially in the primary care setting, is largely by
trial and error and many patients remain uncontrolled [37-42].

Besides patient nonadherence and environmental factors,
response to ICS treatment is affected by genetic variations in
ICS metabolizing enzymes [43,44], regardless of whether the
ICS is used alone or is combined with another asthma
medication like a long-acting beta2 agonist. Single nucleotide
polymorphisms in cap methyltransferase 1 (CMTR1), tripartite
motif containing 24 (TRIM24), and membrane associated
guanylate kinase, WW and PDZ domain containing 2 (MAGI2)
genes were found to be associated with variability in asthma
exacerbations [43]. Additional evidence supports that these
genes also cause variability in ICS response [44]. Due to genetic
variations in cytochrome P (CYP) 450 enzymes that metabolize
over 80% of drugs including ICS, up to 50% of people with
asthma have altered metabolism to certain ICSs [45-51]
impacting asthma control [52,53]. CYP3A5*3/*3 and
CYP3A4*22 genotypes were found to be linked to ICS response
[54,55]. These studies provide evidence that genetic variations
greatly affect ICS responsiveness, although the exact
relationships between genetic variations and ICS response
remain largely unknown [36,56,57]. Currently, many candidate
genes are being studied, and pharmacogenetics has not yet
reached routine clinical practice in asthma care.

ICS choice for patients is often dictated by insurance
reimbursement, organizational policies, or cost, leading to a
one-size-fits-all approach [37-42]. Some insurers require patients
to first fail on a cheaper ICS before authorizing a more
expensive ICS [39]. Nonmedical switch due to preferred drug
formulary change is common and leads to bad outcomes, with
70% of patients reporting more exacerbations after the switch
[39]. Patients also often report that they tried a few different
ICSs before ending up with the drug that gave them the most
relief, with 60% reporting it was hard for their providers to find
the effective drug [37-39]. Cycling through various ICSs delays
the start of an effective ICS and is neither efficient nor
cost-effective [39]. New strategies are needed to allow a faster
and more efficient way to tailor ICS selection to each patient’s
characteristics [36].

While the biologic heterogeneity of asthma is vast, few, if any,
biomarkers or genotypes can currently be used to systematically
profile all patients with asthma and predict ICS response
[36,58,59]. Readily available electronic health record (EHR)
data collected during clinical care offer a low-cost, reliable, and
more holistic way to profile all patients [36,60]. With a high
accuracy of 87%-95% [36], machine learning models using
EHR data have been used to profile patients in various areas,
for example, to develop a phenotype for patients with Turner
syndrome [61], identify low medication adherence profiles [62],
find variable COVID-19 treatment response profiles [63], and
predict hypertension treatment response [64]. Yet, while
machine learning has helped find various asthma profiles
[65-72], no prior study has predicted ICS response. Also, prior
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studies are mostly from single centers with small sample sizes
and have not moved the needle of precision treatment for asthma
[58,60].

A decision support tool is greatly needed, especially in the
primary care setting, to guide providers to select at the point of
care the ICS that will most likely and quickly ease patient
symptoms and improve asthma control. Forecasting which
patient will respond well to which ICS is the first step toward
creating this tool, but no prior study has predicted ICS response,
forming a gap.

To shift asthma care from one-size-fits-all to personalized care,
improve outcomes, and save health care resources, we make
three contributions in this paper, supplying a roadmap for future
research: (1) we point out the above-mentioned need for creating
a decision support tool to guide ICS selection; (2) we point out
the above-mentioned gap in fulfilling this need; and (3) to close
this gap, we outline an approach to create a machine learning
model and apply causal inference to predict a patient’s ICS
response in the next year based on the patient’s characteristics.
We present the central ideas of this approach in the following
sections.

Creating a Machine Learning Model and
Applying Causal Inference to Predict ICS
Response

Overview of Our Approach
We use EHR data from a large health care system to develop a
machine learning model and apply casual inference to predict
a patient’s ICS response based on the patient’s characteristics.
As endotyping or genotyping all patients is infeasible, our model
uses EHR data to characterize all patients and extract patterns
that could mirror endotype or genotype. Our model is trained
on historical data, and can then be applied to new patients to
guide ICS selection during an initial or early encounter for
asthma care. The optimal ICS choice identified by our approach
can be either an ICS (generic name and dosage) alone or an ICS
combined with another asthma medication like a long-acting
beta2 agonist.

Both pediatric and adult patients with asthma are treated by
primary care providers (PCPs) who are mostly generalists and
asthma specialists including allergists, immunologists, and
pulmonologists. Large differences exist between PCPs and
specialists in terms of knowledge, care patterns, and asthma
outcomes, with asthma specialists adhering more often to
guideline recommendations [73-76]. A greater difference exists
between PCPs and specialists in controller medication use [76].
Compared to PCPs, asthma specialists tend to achieve better
outcomes [77], including higher physical functioning [78], better
patient-reported care [78], and fewer ER visits and inpatient
stays [78-84]. As over 60% of people with asthma are cared for
by PCPs [85], our machine learning model primarily targets
PCPs, although asthma specialists could also benefit from this
model.

The asthma medication ratio (AMR) is the total number of units
of asthma controller medications dispensed divided by the total

number of units of asthma medications (controllers + relievers)
dispensed [86,87]. Higher AMR (≥0.5) is associated with less
oral corticosteroid use (a surrogate measure for asthma
exacerbations), fewer ER visits and inpatient stays, and lower
costs [87-89]. Lower AMR (<0.5) is associated with more
exacerbations, ER visits, and inpatient stays [90,91]. Approved
by Healthcare Effectiveness Data and Information Set (HEDIS)
as a quality measure, AMR is widely used by health care
systems [89]. AMR is a reliable reflection of asthma control
and gives an accurate assessment of asthma exacerbation risk
[92]. We use change in AMR as the prediction target of our
model for predicting ICS response, as AMR can be calculated
on all patients. In comparison, neither asthma control nor acute
outcomes (eg, ER visits, inpatient stays, or oral corticosteroid
use) is used as the prediction target, as the former is often
missing in EHRs and the latter does not occur in all patients.
An effective ICS will lead to less reliever use and increased
AMR. An ineffective ICS will lead to more reliever use and
reduced AMR. We formerly used EHR data to build accurate
models to predict hospital use (ER visit or inpatient stay) for
asthma [93-95]. We expect EHR data to have great predictive
power for AMR, which is associated with hospital use for
asthma [87-91]. Using the AMR can facilitate the dissemination
of our approach across health care systems.

We outline the individual steps of our approach in the following
sections.

Step 1: Building a Machine Learning Model to Predict
a Patient’s ICS Response Defined by Changes in AMR
We focus on patients with persistent asthma for whom ICSs are
mainly used. We use the HEDIS case definition of persistent
asthma [96,97], the already validated [98] and the most
commonly used administrative data marker of persistent asthma
[97]. A patient is deemed to have persistent asthma if in each
of 2 consecutive years, the patient meets at least one of the
following criteria: (1) at least 1 ER visit or inpatient stay with
a principal diagnosis code of asthma (ICD-9 [International
Classification of Diseases, Ninth Revision] 493.0x, 493.1x,
493.8x, 493.9x; ICD-10 [International Classification of
Diseases, Tenth Revision] J45.x), (2) at least 2 asthma
medication dispensing and at least 4 outpatient visits, each with
a diagnosis code of asthma, and (3) at least 4 asthma medication
dispensing. In the rest of this paper, we always use patients with
asthma to refer to patients with persistent asthma. The prediction
target or outcome is the amount of change in a patient’s AMR
after 1 year. The AMR is computed over a 1-year period [86,87].

We combine patient, air quality, and weather features computed
on the raw variables to build the model to predict ICS response.
Existing predictive models for asthma outcomes [93-95,99-110]
rarely use air quality and weather variables, but these variables
impact asthma outcomes [111-117] (eg, short-term exposure to
air pollution, even if measured at the regional level, is associated
with asthma exacerbations [113-117]). For each such variable,
we examine multiple features (eg, mean, maximum, SD, and
slope). We examine over 200 patient features listed in our
papers’ [93-95] appendices and formerly used to predict hospital
use for asthma, which is associated with AMR [87-91]. Several
examples of these features are comorbidities, allergies, the
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number of the patient’s asthma-related ER visits in the prior 12
months, the total number of units of systemic corticosteroids
ordered for the patient in the prior 12 months, and the number
of primary or principal asthma diagnoses of the patient in the
prior 12 months. We also use as features the patient’s current
AMR computed over the prior 12 months [86,87], the generic
name and the dosage of the ICS that the patient currently uses,
and those of the long-acting beta2 agonist, leukotriene receptor
antagonist, biologic or another asthma medication, if any, that
is combined with the ICS.

Step 2: Conducting Causal Machine Learning to
Identify Optimal ICS Choice
Our goal is to integrate machine learning and G-computation
to develop a method to estimate the causal effects of various
ICS choices on AMR for patients with specific characteristics.
This causal machine learning method [118] processes large data
sets by capturing complex nonlinear relationships between
features, thereby revealing the cause-and-effect relationships
between ICS choice and change in AMR. We use the machine
learning model built in step 1. Using G-computation [119,120],
an imputation-based causal inference method, we estimate the
potential effects of hypothetical ICS choices with specific
dosages on changes in AMR after 1 year. G-computation builds
on the machine learning model of the outcome as a function of
ICS indicators, ICS dosages, and other features to predict AMR
outcomes under different counterfactual ICS choice scenarios.
CIs are estimated through 10,000 bootstrap resampling with
replacement [121].

We apply causal machine learning to estimate the impact of
ICS choices on patients with specific characteristics by
averaging predicted AMR after 1 year for a given ICS and these
characteristics across all participants. This estimation is
contrasted with the averaged predicted outcome in the absence
of any ICS choice. The ICS choice with the highest and
statistically significant contrast estimation is identified as the
optimal choice for patients with these characteristics. All
hypotheses can be tested at a significance level of .05.

Step 3: Assessing the Impact of Adding External
Patient-Reported Asthma Control and ICS Use
Adherence Data on the Model’s Predictions
EHRs have limitations regarding patient-reported data with
extra predictive power such as asthma control and ICS use
adherence. For asthma, asthma control and ICS use adherence
are critical variables, as (1) a patient’s asthma control fluctuates
over time and drives the provider’s decision to prescribe or
adjust ICSs and (2) ICS use adherence impacts the patient’s
asthma control and helps assess whether the patient is actually
responding to an ICS. However, despite their high predictive
power for patient outcomes, these variables are not routinely
collected or included in EHRs in clinical practice. At
Intermountain Healthcare, the largest health care system in Utah,
we pioneered the electronic AsthmaTracker, a mobile health
(mHealth) app used weekly to assess, collect, and monitor
patients’ asthma control and actual ICS use adherence [122].

Like most patient-reported data, these patient-reported variables
have been collected on only a small proportion of patients with
asthma. To date, 1380 patients with asthma have used the app
and produced about 45,000 records of weekly asthma control
scores and ICS use adherence data (eg, the ICS’ name and the
number of days an ICS is actually used by the patient in that
week). If we train a predictive model using EHR and
patient-reported data limited to this small proportion of patients,
the model will be inaccurate due to insufficient training data.
Yet, for these patients, combining their patient-reported data
with the outputs of a model built on all patients’ EHR data can
help raise the prediction accuracy for them. To realize this, we
propose the first method to combine external patient-reported
data available on a small proportion of patients with the outputs
of a model built on all patients’ EHR data to raise prediction
accuracy for the small proportion of patients while maintaining
prediction accuracy for the other patients.

To illustrate how our method works, we consider the case that
the model created in step 1 is built using Intermountain
Healthcare EHR data. The weekly asthma control scores and
ICS use adherence data collected from the 1380 patients with
asthma are unused in step 1. Now we add features (eg, mean,
SD, and slope) computed on patient-reported asthma control
and ICS use adherence data to raise prediction accuracy for
these patients. Among all patients with asthma, only 1% have
asthma control and ICS use adherence data. We use the method
shown in Figure 1 to combine the asthma control and ICS use
adherence data from this small proportion of patients with the
outputs of a model trained on EHR, air quality, and weather
data of all patients with asthma. We start from the original model
built in step 1. This model is reasonably accurate, as it is trained
using EHR, air quality, and weather data of all patients with
asthma and all features excluding those computed on asthma
control and ICS use adherence data. For each patient with
asthma control and ICS use adherence data, we apply the model
to the patient, obtain a prediction result, and use this result as
a feature. We then combine this new feature with the features
computed on asthma control and ICS use adherence data to train
a second model for these patients using their data. The second
model is built upon and thus tends to be more accurate than the
original model for these patients. The original model is used
for the other patients. Our method is general, works for all kinds
of features, and is not limited to any specific disease, prediction
target, cohort, or health care system. Whenever a small
proportion of patients have extra predictive variables, we could
use this method to raise prediction accuracy for these patients
while maintaining prediction accuracy for the other patients.

For the patients with asthma control and ICS use adherence
data, we compare the mean squared and the mean absolute
prediction errors gained by the model built in step 1 and the
second model built here. We expect adding asthma control and
ICS use adherence data to the model to lower both prediction
errors. The error drop rates help reveal the value of routinely
collecting asthma control and ICS use adherence data in clinical
care to lower prediction errors. Currently, such data are rarely
collected.
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Figure 1. Our method to raise prediction accuracy for the small proportion of patients with asthma and asthma control and ICS use adherence data
while maintaining prediction accuracy for the other patients with asthma. EHR: electronic health record; ICS: inhaled corticosteroid.

Discussion

Principal Findings
Besides the variables mentioned in the “Step 1: Building a
machine learning model to predict a patient’s ICS response
defined by changes in AMR” section, environmental variables
beyond air quality and weather and many other factors can
impact patient outcomes. Moreover, there are almost infinite
possible features. For any first future study that one will do
along the direction pointed out in this paper, a realistic goal is
to show that using our methods can build decent models and
improve asthma care rather than to exhaust all possible useful
variables and features and obtain the theoretically highest
possible model performance. Not accounting for all possible
factors limits the generalizability of these models to medication
selection for other diseases.

We use the G-computation method to conduct causal inference.
This method relies heavily on correctly specifying the predictive
model for ICS response, including accurately identifying all
relevant confounders and interactions and incorporating them
into the model. Misspecification of the model can lead to biased
estimated effects of various ICS choices on AMR. To address
this issue, we can adopt several preventive strategies during
model development. We engage with subject matter experts to
ensure that the model includes all relevant variables and reflects
the underlying process. To guide model development and help
identify potential sources of bias, we construct a directed acyclic
graph that lays out the relationships among the independent and
dependent variables. We use machine learning techniques that
provide flexible modeling approaches to capture complex
relationships among variables. When reporting our findings,
we keep transparent about the final model specification and the
rationale behind our model building process. We believe using
these strategies will mitigate the risk of model misspecification

and strengthen the reliability of our estimated effects of various
ICS choices on AMR.

AMR is reported to be a reliable reflection of asthma control
and of asthma exacerbation risk [92]. In a future study that we
plan to do along the direction pointed out in this paper, we can
use Intermountain Healthcare data to validate this relationship.
Specifically, we use multivariable linear regression to assess
the relationship between the AMR computed on EHR data and
the patient’s asthma control level obtained from the external
patient-reported data, while controlling for other factors. We
expect to see a strong and positive association between the AMR
and the patient’s asthma control level.

When creating the model in step 1, we can include medication
persistence measures computed on insurance claim data [123],
such as the proportion of days covered for ICS, as features.
However, this does not obviate the need to examine
patient-reported ICS use adherence data in step 3. ICS
persistence measures give information on the possession of ICS,
but not on actual use of ICS. Each ICS persistence measure is
computed at a coarse time granularity as an average value over
a long period. In comparison, our patient-reported ICS use
adherence data offer information on the actual use of ICS. The
data are at a fine time granularity, with 1 set of values per week
for a patient. This enables us to compute features on various
patterns and trends that can be useful for making predictions.

Conclusions
In asthma care, ICS choice is largely by trial and error and often
made by a one-size-fits-all approach with many patients not
achieving optimal outcomes. In this paper, we point out the
need for creating a decision support tool to guide ICS selection
and a gap in fulfilling this need. Then we outline an approach
to close this gap via creating a machine learning model and
applying causal inference to predict a patient’s ICS response in
the next year based on the patient’s characteristics. This supplies
a roadmap for future research.
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