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Abstract

Background: Understanding the multifaceted nature of health outcomes requires a comprehensive examination of the social,
economic, and environmental determinants that shape individual well-being. Among these determinants, behavioral factors play
a crucial role, particularly the consumption patterns of psychoactive substances, which have important implications on public
health. The Global Burden of Disease Study shows a growing impact in disability-adjusted life years due to substance use. The
successful identification of patients’ substance use information equips clinical care teams to address substance-related issues
more effectively, enabling targeted support and ultimately improving patient outcomes.

Objective: Traditional natural language processing methods face limitations in accurately parsing diverse clinical language
associated with substance use. Large language models offer promise in overcoming these challenges by adapting to diverse
language patterns. This study investigates the application of the generative pretrained transformer (GPT) model in specific GPT-3.5
for extracting tobacco, alcohol, and substance use information from patient discharge summaries in zero-shot and few-shot learning
settings. This study contributes to the evolving landscape of health care informatics by showcasing the potential of advanced
language models in extracting nuanced information critical for enhancing patient care.

Methods: The main data source for analysis in this paper is Medical Information Mart for Intensive Care III data set. Among
all notes in this data set, we focused on discharge summaries. Prompt engineering was undertaken, involving an iterative exploration
of diverse prompts. Leveraging carefully curated examples and refined prompts, we investigate the model’s proficiency through
zero-shot as well as few-shot prompting strategies.

Results: Results show GPT’s varying effectiveness in identifying mentions of tobacco, alcohol, and substance use across learning
scenarios. Zero-shot learning showed high accuracy in identifying substance use, whereas few-shot learning reduced accuracy
but improved in identifying substance use status, enhancing recall and F1-score at the expense of lower precision.

Conclusions: Excellence of zero-shot learning in precisely extracting text span mentioning substance use demonstrates its
effectiveness in situations in which comprehensive recall is important. Conversely, few-shot learning offers advantages when
accurately determining the status of substance use is the primary focus, even if it involves a trade-off in precision. The results
contribute to enhancement of early detection and intervention strategies, tailor treatment plans with greater precision, and ultimately,
contribute to a holistic understanding of patient health profiles. By integrating these artificial intelligence–driven methods into
electronic health record systems, clinicians can gain immediate, comprehensive insights into substance use that results in shaping
interventions that are not only timely but also more personalized and effective.

(JMIR Med Inform 2024;12:e56243) doi: 10.2196/56243
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Introduction

The use and misuse of psychoactive substances rank as critical
risk elements for global health, contributing substantially to the
worldwide disease burden [1,2]. Alcohol, tobacco, and illegal
drugs are implicated in more than 80 identified conditions that
lead to disease and injury [3,4], incurring significant health and
societal costs [5-7]. Tobacco use is primarily connected to
chronic diseases that often result in death, while alcohol
consumption is associated with both acute conditions, such as
injuries—both intentional and accidental—and chronic diseases,
varying in mortality risk (eg, high risk includes liver cirrhosis
and head and neck cancers; low risk covers conditions such as
depression and alcohol dependency). Illicit drug use carries
risks of infectious diseases, particularly through intravenous
methods that may transmit HIV, in addition to heightened risks
of suicide and drug use disorders. Unlike tobacco or illicit drugs,
alcohol presents a complex profile, as certain levels and patterns
of consumption have been shown to have protective effects
against some diseases, notably coronary heart disease [8-10].

The documentation of substance use information in patient
clinical notes plays an important role in care delivery by
impacting clinical decision-making processes. First, it furnishes
health care providers with vital information concerning a
patient’s addiction history, a fundamental component in
constructing a comprehensive medical profile [11]. This
knowledge is instrumental in devising patient-centered treatment
plans that not only address the primary medical concern but
also consider the complexities of the use and its potential impact
on treatment efficacy [12]. Furthermore, the extraction of this
information aids in risk assessment, enabling the identification
of patients who may be at higher risk of relapse or
complications, thereby allowing for more proactive and tailored
interventions [13]. The incorporation of extraction of substance
use information from clinical notes directly informs patient
treatment approaches. It enables health care providers to design
interventions that address not only the immediate health concern
but also the underlying addiction issue if exists [14]. The
integration of substance use information into treatment planning
facilitates the development of harm reduction strategies and
medication-assisted therapies, tailored to each patient’s unique
needs and readiness for change [15]. This patient-centered
approach not only enhances treatment outcomes but also fosters
a supportive therapeutic relationship, promoting long-term
recovery and well-being. Ultimately, this information enhances
the precision of clinical decision-making by fostering a holistic
understanding of the patient’s health, thus underscoring the
indispensability of addiction status extraction from clinical
documentation in modern health care practice. By incorporating
substance use information into risk assessment and treatment
decision-making, health care professionals can deliver more
precise, effective, and patient-centered care, identifying patients
at higher risk of complications, relapse, or adverse outcomes
due to their substance use history, ultimately leading to more
targeted interventions and improved patient outcomes.

Studies [16,17] have used machine learning techniques to predict
treatment outcomes for patients with substance use disorders,
demonstrating how addiction status data can inform risk
assessment and stratification. Studies [18,19] have explored
risk stratification for opioid overdose, incorporating addiction
status data and clinical information to identify patients at higher
risk, thereby informing targeted interventions and care plans.
Researchers also examine how addiction status information
informs the development of personalized treatment plans and
explore how health care providers tailor interventions to address
both the primary medical issue and the underlying addiction
concerns [20-22]. Many works emphasize the importance of
patient-centered care and how extraction of substance addiction
data enhances this approach. They highlight the significance of
understanding a patient’s history of addiction for delivering
more effective and empathetic care [23-28]. However,
implications for health care policy and the implementation of
substance use data into clinical practice have their own barriers
and challenges [29-33].

The traditional process of extracting data related to substance
use from clinical notes involves the use of rule-based approaches
to parse the unstructured clinical narratives, identifying and
categorizing relevant information pertaining to substance use.
However, rule-based approaches lack a standardized rule
language. On the other hand, the high variability in language
found within clinical notes imposes significant limits on the
accuracy of traditional techniques that rely on parsing rules to
detect text patterns. Clinician typographical errors,
abbreviations, and other linguistic variations hinder the
effectiveness of these methods. Conversely, deep learning
methods have shown impressive efficacy in extracting such
information from the intricate and complex texts within clinical
notes [34-36]. However, the necessity for extensive, high-quality
annotated data sets for training—as information extraction is a
supervised task in natural language processing—presents a
significant challenge that must be overcome to fully realize the
potential of these models in new and practical real-world
settings.

Recently, large language models (LLMs) have emerged as a
promising solution to this challenge, particularly due to their
significant ability to “learn” and adapt to diverse language
patterns without the need for additional model training [37].
LLMs demonstrate an unparalleled ability to comprehend
nuances of clinical narratives, extracting meaning from diverse
and complex medical texts. Although primarily trained on
open-source and non–domain-specific texts, generative
pretrained transformer (GPT) [38], as a recent development in
LLMs, has underscored its effectiveness when applied to clinical
notes [39,40]. GPT has also showcased its capability in US
medical licensing examinations by achieving or even surpassing
human-level performance in perception of clinical context [41].
This exceptional performance may be attributed to several
factors, including the extensive model parameters, large
pretraining data sets, and instruction tuning and optimization
with reinforcement learning human feedback [42]. Recent works
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in the extraction of substance use information leverage LLMs
such as Bidirectional Encoder Representations from
Transformers and T5, with models being fine-tuned specifically
for the social determinants of health extraction task [36,43].
The emergence of LLMs has also enabled new training
paradigms, including few-shot or zero-shot learning [38,44].

Leveraging GPT (GPT-3.5 model), in this work we explore the
extraction of patient’s substance use information in specific
patients’ tobacco, alcohol, and illicit substance use information
from their notes and assignment of a status to classifying the
individual’s engagement with the substance into categories
based on time-related factors (ie, past, present, or none). Since
prompt engineering is essential when interacting with GPT to
obtain high-quality responses, our proposed workflow involves
performing zero-shot as well as few-shot prompting. In zero-shot
learning, the model is expected to generalize to tasks without
having seen any examples from that specific task during training.
It relies on understanding the task description and applying
previously learned knowledge and patterns to new, unseen
situations. In a zero-shot learning scenario, the GPT is instructed
to perform a particular task through an input prompt, and it
produces text as a response, which serves as the output. For
instance, when provided with the prompt: List mentions of
substance use in the following note: <clinical note>. Then, the
GPT extracts the reference to substance use with surrounding
information relevant to it and produces the following output
text—h/o prior tobacco abuse × 60 pack years—while few-shot
learning involves training models on a very small data set. In
this prompting setting, the model is designed to learn
information from a few examples and generalize that knowledge
to new data. We first experimented and formulated prompts to
elicit the desired responses from the model. Then we used our
finalized prompt in zero-shot learning setting. For few-shot
prompting, we add a few examples to our finalized prompt to
directly address the types of errors observed in zero-shot
learning.

To the best of our knowledge, no scholarly publication has
investigated the use of zero-shot and few-shot learning
approaches with the GPT-3.5 model in the context of extracting
data on patients’ substance use as well as determining their
usage status. The substance use information is usually scattered
throughout multiple clinical notes and may be overlooked by a
new provider despite the fact that this information can affect
clinical decision-making. By automating extraction of substance
use profile from multiple clinical notes, the substance use status
can be provided in a summarized format. It can also be used in
automated clinical decision embedded into electronic health
records (EHR). Secondary analysis of real-world data can be
biased if it does not account for substance use profile.
Automated extraction of substance use profiles can greatly
facilitate generation of real-world evidence from EHR data. Our
evaluation aims to provide insights into the capabilities and
limitations of LLMs in substance use information extraction.
Ultimately, our goal is to contribute to the ongoing development
of the use of LLMs in the field of substance use information
extraction, with the aim of improving the quality of care.

Methods

Study Design
The main data source for analysis in this paper is Medical
Information Mart for Intensive Care III (MIMIC-III) data set.
This data set is a widely used and comprehensive source of
deidentified health care data. It contains detailed clinical
information from more than 60,000 critical care patients
admitted to the Beth Israel Deaconess Medical Center in Boston,
Massachusetts, spanning a period of nearly a decade. This rich
data set includes EHR, laboratory results, prescription records,
and clinical notes, making it a valuable resource for medical
research, particularly in the fields of critical care, epidemiology,
and health informatics. Among all notes in this data set, we
focused on discharge summaries. These notes typically provide
a comprehensive overview of a patient’s hospital stay, including
the reason for admission, the treatments and procedures
performed, and the patient’s medical and social history and
recommendations for postdischarge care. The social history
section of a discharge summary typically covers various aspects
of patients’ life, such as their marital status, living situation,
occupation, and lifestyle factors. If a patient has a history of
addiction, particularly if it is relevant to the reason for his or
her hospitalization or has implications for his or her
postdischarge care, it is included in this section. The MIMIC-III
contains 59,652 discharge summaries of 46,146 patients, among
which we selected the patients with history of chronic
obstructive pulmonary disease (COPD). Most of the patients
with COPD are represented by older adults for whom
identification of substance use information plays an important
role in establishing an optimal treatment plan. Patients with
COPD often have a history of smoking, as cigarette smoking
is a primary risk factor for the development of COPD. Many
individuals diagnosed with COPD have a significant smoking
history. Alcohol and drug addiction are not typically considered
direct risk factors for the development of COPD. However,
substance abuse can exacerbate COPD symptoms, hinder
treatment compliance, and lead to a more rapid decline in lung
function in individuals already diagnosed with the disease
[45-49].

Among 1646 patients with COPD, we selected discharge
summary for 500 random patients, which was shown sufficient
for assessing natural language processing pipeline accuracy in
previous studies [50-53]. In this study, we use GPT and in
specific GPT-3.5 model for generative question answering. We
leveraged most capable and most cost-effective model in the
GPT-3.5 family, which is GPT-3.5-turbo. This model has been
optimized for chat. We accessed this model through the chat
completions Application Programming Interface end point for
extraction of substance use information, in specific patient’s
tobacco, alcohol, and illicit substance use, in 2 learning settings:
zero-shot and few-shot.

In the zero-shot learning setting, a model is presented with tasks
or queries for which it has not received explicit training. It is
expected to extrapolate knowledge from its preexisting
understanding of language and context to generate meaningful
responses. This setting challenges the model to generalize
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effectively and showcase adaptability to novel prompts,
reflecting its capacity to comprehend and manipulate language
beyond the scope of its training data.

On the contrary, few-shot learning involves training a model
on a minimal number of task-specific examples. In this setting,
GPT is provided with a few examples, allowing it to learn
task-specific patterns and nuances. This approach leverages the
model’s pretrained knowledge to swiftly adapt to new tasks,
demonstrating a remarkable capability for transfer learning.
Few-shot learning is particularly advantageous when dealing
with tasks that require a prompt-specific understanding, as it
empowers the model to distill essential information from a
handful of examples and apply this knowledge to generate
coherent and contextually relevant responses.

Since prompt engineering is essential when interacting with
GPT to obtain high-quality responses, we first experimented
and formulated prompts to elicit the desired responses from the
model. Then we used our finalized prompt in zero-shot learning
setting. Multimedia Appendix 1 shows examples of our
examined prompts, and Multimedia Appendix 2 shows our
finalized prompt along with GPT responses to this prompt on
different notes. These multimedia appendices show that we
experimented different prompts and our finalized prompt was
selected to be as follows:

Using the following patient’s text, list tobacco use, illicit
substance use, and alcohol use mentions and each one's status
(“present,” “past,” and “none”) in the bullets: <clinical note>.

The reason for selecting this prompt is that it provides the most
comprehensive and detailed guidance for the task compared
with the other prompts. This prompt is the only one that provides
a clear and specific set of instructions. It not only asks to list
data of tobacco, illicit substances, and alcohol use but also
instructs GPT to include the status of usage as being “present,”
“past,” or “none.” This specificity helps guide the model to
provide a more detailed and informative response. This prompt,
in addition, is well structured and unambiguous in its request.
It leaves no room for interpretation regarding what information
is expected, making it easier for the model to generate accurate
and relevant content. Moreover, in the context of medical or
health care–related information, knowing the status of use
(whether it is current, past, or not present) is critical for patient
care and understanding their health history. This prompt includes
this essential aspect, making it the most informative and
complete prompt. While the last prompt in Multimedia Appendix
1 is also relatively detailed, it does not specify the need to
provide the usage status for each category, which can be a
crucial element in a medical or clinical context.

Next, we conducted error analysis that involves a detailed
examination of the model’s outputs to find specific instances
where the model is underperforming. This process helps in
selecting the most instructive examples to be included for
few-shot learning in order to improve the model’s performance.
Multimedia Appendix 3 shows instances in which GPT
underperformed. Considering first text, it can be seen that GPT
had errors on assigning the use status of “None” to all type of
substances. The clinical text indicates “No hx of tobacco or
EtOH,” where hx stands for history. The phrase “No hx”

explicitly indicates that there is no history, which should
correspond to the status of “none” for both tobacco and alcohol
use. GPT’s output failed to recognize this nuance. It interpreted
“No hx” as a lack of mention, rather than an absence of use,
and did not assign a status as instructed. GPT, like many
language models, relies heavily on context to make predictions.
Without a more extensive context, it might be challenging for
the model to deduce that “no history of tobacco” implies “None”
as tobacco use status without specific training or instructions.
On the other hand, the use of negative phrasing, such as “no hx
of,” can be challenging for models to interpret correctly,
especially without specialized training. Moreover, in shorter
phrases or isolated sentences, the model may not have enough
context to accurately infer the intended meaning. Furthermore,
GPT’s response “No mention of illicit substance use” suggests
that there was no information provided about illicit substances,
which is a correct extraction but lacks the explicit assignment
of none status.

The second clinical note states: “No h/o tobacco and rare Etoh,
no IVDA.” Here, h/o stands for history of, Etoh stands for ethyl
alcohol, and IVDA stands for intravenous drug abuse.
Investigating GPT’s response on this text shows that GPT’s
response was partially incorrect. While it did correctly identify
that there is “None” for tobacco use, it failed to echo the specific
language of the note, which included “No h/o tobacco,” with
h/o meaning “history of.” In clinical contexts, maintaining the
specific terminology used in patient records is crucial for
accuracy and clarity.

Similarly, for illicit substance use, GPT’s response of “None”
is correct in the absence of use but lacks the explicit mention
of “no IVDA” found in the clinical note. For alcohol use, the
phrase “rare Etoh” suggests infrequent but current use of
alcohol. The correct status should be “present” since it implies
ongoing use. GPT’s output incorrectly marked this as “past,”
which is an error. The phrase “rare” does not indicate cessation
of use but rather infrequency and should be understood within
the current context unless historical context is provided to imply
past use.

Investigating GPT’s response on third text also shows GPT’s
inability to correctly identify “Denies alcohol/drugs” as “None”
for alcohol and illicit substance use. The phrase “Denies
alcohol/drugs” is linguistically complex, and the model may
not easily interpret its negation. In addressing the identified
discrepancies within the model’s output, it is imperative to
rectify the inaccuracies by aligning the generated responses
with the precise medical terminology and context presented in
the clinical notes. The process entails reformulating the outputs
to accurately reflect the specific language used, such as “No
h/o tobacco” to denote a nonhistory of tobacco use. The refined
examples, embodying both the exact phrasing and the proper
status assignments, should then be systematically integrated
into the training regime of the model through few-shot learning.
This integration will facilitate the model’s proficiency in
comprehending and processing medical shorthand and
context-sensitive information, thereby enhancing its performance
on tasks that involve the extraction of nuanced data from clinical
documentation. Through iterative exposure to these corrected
instances, the model will incrementally improve its ability to
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discern and categorize substance use information with a higher
degree of accuracy and reliability, a crucial aspect for
applications within clinical settings. Finally, Multimedia
Appendix 4 shows the edited prompt for few-shot learning.

Ethical Considerations
No protected health information was collected, and the analytical
data set was fully de-identified. To process the data, HIPAA
(Health Insurance Portability and Accountability Act)-compliant
Microsoft Azure OpenAI Application Programming Interface
has been used.

Results

Among the 59,625 discharge summaries included in the MIMIC
data set, 2043 were specifically associated with patients having
a history of COPD. These particular summaries corresponded
to a total of 1646 distinct patients with COPD. From this cohort,
a random selection process was applied to obtain discharge
summaries for a subset of 500 individuals for further analysis.

Table 1 presents general statistics pertaining to the data set.
This table provides demographic information, presenting the
distribution of attributes among the surveyed population. The
data include the percentage breakdown of individuals based on
gender, ethnicity, and marital status. The gender distribution
shows a relatively balanced representation, with 53% male and
47% female respondents. This suggests a fair inclusion of both
genders in the study. The majority of the surveyed population

identifies as “White,” constituting 73.16%. “Black,” “Asian,”
and “Other” ethnicities make up 11.69%, 1.52%, and 13.63%,
respectively. The marital status distribution reveals that a
significant portion of the respondents is married (43.07%),
followed by widowed (23.81%) and single (22.29%) individuals.
There is also a small percentage with unknown marital status
(4.98%), and divorced (4.55%) and separated (1.30%)
individuals make up the rest. Accuracy, precession, recall, and
F1-score have been selected as evaluation metrics noting that
every metrics have been calculated by manually reviewing all
notes in data set.

Table 2 provides an overview of the results obtained from using
GPT for the extraction of substance-related mentions and the
corresponding status of the usage, comparing few-shot learning
and zero-shot learning settings across tobacco, drug, and alcohol
categories. The noticeable discrepancy between the accuracy
of substance use mentions and status extraction in the zero-shot
setting suggests a potential area for improvement, particularly
in the nuanced understanding of the status associated with all
categories of substance use. To leverage this insight and
transition toward few-shot learning, we examined the specific
instances where the zero-shot model struggled to accurately
extract usage statuses and identified patterns, types of sentences,
or contextual cues that may had contributed to the lower
accuracy in extraction. Multimedia Appendix 3 shows multiple
instances on which GPT made errors. These instances were used
to update the finalized prompt for few-shot learning. Multimedia
Appendix 4 shows our finalized prompt for few-shot learning.

Table 1. General statistics.

Proportion, %Attributes

Sex

47Female

53Male

Ethnicity

73.16White

11.69Black

1.52Asian

13.63Other

Marital status

43.07Married

23.81Widowed

22.29Single

4.98Unknown

4.55Divorced

1.30Separated
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Table 2. Performance of generative pretrained transformer in a zero-shot and few-shot learning setting.

Zero-shot learningFew-shot learning

Status (%)Mention (%)Status (%)Mention (%)

Tobacco

29936687Recall

87985158Precision

43.59657.570F1-score

26924060Accuracy

Drug

34928988Recall

100998993Precision

51958991F1-score

32907982Accuracy

Alcohol

29897889Recall

100997378Precision

45947683F1-score

29905771Accuracy

In zero-shot learning, for tobacco, the precision was at 98%,
and for both drug and alcohol mentions, it reached an impressive
99%. The recall for tobacco mentions was 93%, suggesting that
the model was able to identify a large majority of the relevant
instances. However, the recall for the status of tobacco use was
substantially lower at 29%. For drugs, the recall was also high
at 92% for mentions but significantly lower at 34% for the
status. Similarly, for alcohol, the recall was 89% for mentions
but dropped to 29% for the status. The F1-scores, which balance
recall and precision, were quite high for mentions, with tobacco
at 96%, drugs at 95%, and alcohol at 94%, indicating strong
overall performance in this aspect. Nevertheless, the F1-scores
for the status were lower: 43.5% for tobacco, 51% for drugs,
and 45% for alcohol.

After few-shot learning, the accuracy of extraction of status was
changed from 26%, 32%, and 29% to 40%, 79%, and 57%, for
tobacco, alcohol, and substance use, respectively. The observed
changes in the accuracy of extraction of status of the usage,
following the incorporation of a new crafted prompt and the
inclusion of examples where GPT previously had errors, indicate
a 14%, 47%, and 28% improvement in the model’s performance
in terms of tobacco, drug, and alcohol status use extraction,
respectively. On the other hand, few-shot learning led to
significant decrease in the accuracy of mentions of substance
use across all categories. The accuracy of extraction of tobacco,
alcohol, and substance use mentions in zero-shot setting scenario
was 92%, 90%, and 90%, respectively. While the accuracy for
the use mentions in few-shot setting was 60%, 82%, and 71%,
respectively.

Regarding the extraction of mentions of substance use, in
few-shot learning, for tobacco, the recall is high at 87%, but
precision is comparatively lower at 58%, resulting in a balanced
F1-score of 70%. Similar patterns are observed for alcohol

category. While in contrast, precision value for mentions of
drug use (93%) is higher than recall value (88%). Zero-shot
learning exhibits higher recall in extraction of use mentions for
all substance use categories, ranging from 89% to 93%, with
precision ranging from 98% to 99%. Consequently, F1-scores
vary between 94% and 96%.

Regarding the extraction of the usage status, in few-shot
learning, the recall value for tobacco is 66%, with precision just
more than 50% and F1-score of 57.5%. While in comparison
with few-shot learning, zero-shot learning resulted in 37% lower
recall and 14% lower F1-score but 36% higher precision. The
same pattern can be seen for alcohol and drug use status
extraction across both learning setting, meaning lower recall
and higher precision in zero-shot learning compared with
few-shot learning resulted in higher F1-score in few-shot
learning. The discrepancies observed in the extraction
performance metrics before and after few-shot learning may be
attributed to several factors related to model configuration,
prompt specificity, and data characteristics. First, the model
configuration in few-shot learning involves exposure to specific
examples that may not be diverse enough, potentially leading
the model to overfit to particular features of the examples
provided rather than generalizing effectively. This overfitting
could result in reduced precision in mention extraction as the
model becomes more sensitive to the nuances of the few-shot
examples at the cost of broader applicability.

Second, prompt specificity plays a significant role in directing
the model’s attention and interpretation mechanisms. In the
few-shot scenario, if the prompts are crafted with high
specificity toward the status of use, the model’s focus might
shift from mention detection toward status classification,
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explaining the improvement in status extraction accuracy and
the concomitant decline in mention extraction accuracy.

Finally, data characteristics, such as the complexity, ambiguity,
and representativeness of the clinical notes, can significantly
influence the outcomes. Few-shot learning might result in better
recall for status extraction if the examples chosen for training
closely resemble the test cases, indicating that these examples
were well selected to represent the variety of ways that status
can be expressed in clinical texts. Conversely, zero-shot
learning’s higher precision suggests that the model, without the
bias of the few-shot examples, might be more conservative and
specific in its outputs, thus avoiding false positives.

Discussion

Principal Findings
The process of trying diverse prompts and selecting the one that
yields the desired output was instrumental in harnessing the
capabilities of GPT to align with objectives of this study. The
act of crafting varied prompts allowed to explore the model’s
versatility and adaptability in correct extraction of patients’
substance usage status. By experimenting with different prompt
formulations, it becomes feasible to ascertain the prompt’s
impact on the model’s behavior, leading to high accuracy in
extraction. The finalized prompt in zero-shot is well structured
and unambiguous in its request. It leaves no room for
interpretation regarding what information is expected, making
it easier for the model to generate accurate and relevant content.
Moreover, in the context of medical or health care–related
information, knowing the status of substance use (whether it is
current, past, or none) is critical for patient care and
understanding their health history. This prompt includes this
essential aspect, making it the most informative and complete
prompt. While the last prompt in Multimedia Appendix 1 is
also relatively detailed, it does not specify the need to provide
the status of each mention, which can be a crucial element in a
medical or clinical context.

Crafting the new prompt by strategically using few-shot learning
and tailoring to the challenges observed in the zero-shot setting
resulted in increase on the accuracy of extraction of usage status.
This approach capitalizes the importance of providing targeted
guidance to enhance the model’s proficiency in extracting
nuanced information related to tobacco, alcohol, and substance
uses. While the progress is commendable, it is essential to
recognize that model refinement is an iterative process.
Continued iterations, incorporating additional examples and
refining the prompt, may further enhance accuracy, particularly
in scenarios with inherent complexities.

The presented results in Table 2 highlight the contrasting
performance of GPT in extracting mentions of tobacco, alcohol,
and substance use in both zero-shot and few-shot learning
scenarios. In the zero-shot setting, the accuracy for extraction
of tobacco, alcohol, and substance use mentions is notably high.
However, in the few-shot setting, the accuracy diminishes
significantly. On the contrary, few-shot learning led to
significant increase in devising the status of substance use
compared with zero-shot learning (significant increase in recall

and F1-score). However, this improvement comes at the cost of
a reduction in precision in both substance use information
extraction and devising the status of the use. Accordingly, the
selection between zero-shot and few-shot learning hinges on
the goals of the task. Zero-shot learning excels in precisely
extracting use mentions, demonstrating its effectiveness in
situations in which comprehensive recall is paramount.
Conversely, few-shot learning offers advantages when accurately
determining the status of use is the primary focus, even if it
involves a trade-off in precision.

The models we developed can be integrated with EHR systems
to automatically extract and update patient substance use
information. This integration facilitates real-time updates to
patient profiles, ensuring that health care providers have access
to the most current data when making treatment decisions. By
embedding our models into clinical decision support systems,
health care providers can receive proactive alerts and
recommendations based on the extracted data. For example, if
a patient’s history of substance use changes, the system could
automatically suggest modifications to his or her treatment plan
or recommend additional screenings.

In acknowledging the limitations of this study, it is important
to recognize the constraints imposed by the use of a single
model, GPT-3.5, which, while demonstrating substantial
capabilities, also exhibits specific challenges in processing
complex linguistic structures such as negations and subtle
context cues. This limitation notably impacted the accuracy of
status identification in zero-shot learning settings, where the
model sometimes failed to correctly interpret negations, leading
to errors in status assignment.

Furthermore, the study’s reliance on the MIMIC-III data set,
while extensive, limits the generalizability of findings across
diverse demographic and clinical settings. The data set’s inherent
biases and the specific clinical environment from which it was
derived might not fully represent the broader patient populations
encountered in different geographic or health care contexts. To
address these limitations, future research should consider using
a multimodel approach to validate findings and enhance the
robustness of the conclusions drawn. Incorporating additional
models such as Bidirectional Encoder Representations from
Transformers may provide comparative insights and help
mitigate the biases of a single model approach. Moreover,
expanding the data set to include a wider array of clinical
environments and patient demographics would enhance the
generalizability of the artificial intelligence tools developed. In
addition, the implementation of advanced training techniques,
including more sophisticated prompt engineering and error
analysis methodologies, could further refine the artificial
intelligence’s understanding of complex clinical narratives.

Conclusion and Future Work
The extraction of psychoactive substance use status from clinical
notes holds significant implications for risk assessment and
patient treatment. It empowers health care providers to perform
risk evaluations and to devise individualized treatment plans,
leading to enhancing the precision and efficacy of care delivery
while addressing the complex interplay between medical
conditions and addiction. In this study, we investigate the
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efficacy of 2 prompt-based approaches—zero-shot and few-shot
learning—for extracting patient’s substance use information
from discharge summaries of patients with COPD using GPT-3.
Our findings indicate that GPT-3’s few-shot learning capabilities
serve as a promising starting point for extracting status of
substance use without the need for annotated data. The GPT-3
exhibited high precision but lower recall, suggesting a
conservative approach that yields fewer false positives but may
miss relevant cases. Conversely, few-shot learning demonstrated
a marked improvement in recall, indicating a greater ability to
identify relevant instances, yet at the expense of precision. The
implications of these findings are significant for the landscape
of clinical practice, where the accurate assessment of usage
status is crucial for risk assessment and tailoring patient
treatment plans. The enhanced recall in few-shot learning
suggests its use in scenarios where missing a case of substance
use is highly detrimental, while the high precision of zero-shot
learning would be preferred in contexts where the cost of false

positives is greater. Therefore, researchers and practitioners
should carefully consider the emphasis on recall, precision, and
the overall balance between the 2 when deciding between these
learning scenarios based on the specific requirements of their
application. We prompted GPT-3 with only 4 randomly selected
samples. More examples for few-shot learning may improve
the performance. In addition, our reliance on the MIMIC-III
data set, though comprehensive, restricts the generalizability of
our findings. The data set’s inherent biases and its derivation
from a specific clinical environment may not accurately reflect
the varied patient populations found across different geographic
or health care settings. Despite these limitations, the study
presents a significant step forward in our understanding of the
capabilities and limitations of advanced language models in the
critical domain of health care. As the future work, we investigate
the capability of LLMs in extraction of the quantity, frequency,
duration, and severity of substance use disorder.
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Abbreviations
COPD: chronic obstructive pulmonary disease
EHR: electronic health record
GPT: generative pretrained transformer
HIPAA: Health Insurance Portability and Accountability Act
LLM: large language model
MIMIC-III: Medical Information Mart for Intensive Care III
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