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Abstract

Background: Large language models (LLMs) have shown remarkable capabilities in natural language processing (NLP),
especially in domains where labeled data are scarce or expensive, such as the clinical domain. However, to unlock the clinical
knowledge hidden in these LLMs, we need to design effective prompts that can guide them to perform specific clinical NLP tasks
without any task-specific training data. This is known as in-context learning, which is an art and science that requires understanding
the strengths and weaknesses of different LLMs and prompt engineering approaches.

Objective: The objective of this study is to assess the effectiveness of various prompt engineering techniques, including 2 newly
introduced types—heuristic and ensemble prompts, for zero-shot and few-shot clinical information extraction using pretrained
language models.

Methods: This comprehensive experimental study evaluated different prompt types (simple prefix, simple cloze, chain of
thought, anticipatory, heuristic, and ensemble) across 5 clinical NLP tasks: clinical sense disambiguation, biomedical evidence
extraction, coreference resolution, medication status extraction, and medication attribute extraction. The performance of these
prompts was assessed using 3 state-of-the-art language models: GPT-3.5 (OpenAI), Gemini (Google), and LLaMA-2 (Meta).
The study contrasted zero-shot with few-shot prompting and explored the effectiveness of ensemble approaches.

Results: The study revealed that task-specific prompt tailoring is vital for the high performance of LLMs for zero-shot clinical
NLP. In clinical sense disambiguation, GPT-3.5 achieved an accuracy of 0.96 with heuristic prompts and 0.94 in biomedical
evidence extraction. Heuristic prompts, alongside chain of thought prompts, were highly effective across tasks. Few-shot prompting
improved performance in complex scenarios, and ensemble approaches capitalized on multiple prompt strengths. GPT-3.5
consistently outperformed Gemini and LLaMA-2 across tasks and prompt types.

Conclusions: This study provides a rigorous evaluation of prompt engineering methodologies and introduces innovative
techniques for clinical information extraction, demonstrating the potential of in-context learning in the clinical domain. These
findings offer clear guidelines for future prompt-based clinical NLP research, facilitating engagement by non-NLP experts in
clinical NLP advancements. To the best of our knowledge, this is one of the first works on the empirical evaluation of different
prompt engineering approaches for clinical NLP in this era of generative artificial intelligence, and we hope that it will inspire
and inform future research in this area.

(JMIR Med Inform 2024;12:e55318) doi: 10.2196/55318

JMIR Med Inform 2024 | vol. 12 | e55318 | p. 1https://medinform.jmir.org/2024/1/e55318
(page number not for citation purposes)

Sivarajkumar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:yanshan.wang@pitt.edu
http://dx.doi.org/10.2196/55318
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

large language model; LLM; LLMs; natural language processing; NLP; in-context learning; prompt engineering; evaluation;
zero-shot; few shot; prompting; GPT; language model; language; models; machine learning; clinical data; clinical information;
extraction; BARD; Gemini; LLaMA-2; heuristic; prompt; prompts; ensemble

Introduction

Clinical information extraction (IE) is the task of identifying
and extracting relevant information from clinical narratives,
such as clinical notes, radiology reports, or pathology reports.
Clinical IE has many applications in health care, such as
improving diagnosis, treatment, and decision-making;
facilitating clinical research; and enhancing patient care [1,2].
However, clinical IE faces several challenges, such as the
scarcity and heterogeneity of annotated data, the complexity
and variability of clinical language, and the need for domain
knowledge and expertise.

Zero-shot IE is a promising paradigm that aims to overcome
these challenges by leveraging large pretrained language models
(LMs) that can perform IE tasks without any task-specific
training data [3]. In-context learning is a framework for
zero-shot and few-shot learning, where a large pretrained LM
takes a context and directly decodes the output without any
retraining or fine-tuning [4]. In-context learning relies on prompt
engineering, which is the process of crafting informative and
contextually relevant instructions or queries as inputs to LMs
to guide their output for specific tasks [5]. The use of prompt
engineering lies in its ability to leverage the powerful
capabilities of large LMs (LLMs), such as GPT-3.5 (OpenAI)
[6], Gemini (Google) [7], LLaMA-2 (Meta) [8], even in
scenarios where limited or no task-specific training data are
available. In clinical natural language processing (NLP), where
labeled data sets tend to be scarce, expensive, and
time-consuming to create, splintered across institutions, and
constrained by data use agreements, prompt engineering
becomes even more crucial to unlock the potential of
state-of-the-art LLMs for clinical NLP tasks.

While prompt engineering has been widely explored for general
NLP tasks, its application and impact in clinical NLP remain
relatively unexplored. Most of the existing literature on prompt
engineering in the health care domain focuses on biomedical
NLP tasks rather than clinical NLP tasks that involve processing
real-world clinical notes. For instance, Chen et al [9] used a
fixed template as the prompt to measure the performance of
LLMs on biomedical NLP tasks but did not investigate different
kinds of prompting methods. Wang et al [10] gave a
comprehensive survey of prompt engineering for health care
NLP applications such as question-answering systems, text
summarization, and machine translation. However, they did not
compare and evaluate different types of prompts for specific
clinical NLP tasks and how the performance varies across
different LLMs. There is a lack of systematic and comprehensive
studies on how to engineer prompts for clinical NLP tasks, and
the existing literature predominantly focuses on general NLP
problems. This creates a notable gap in the research, warranting
a dedicated investigation into the design and development of
effective prompts specifically for clinical NLP. Currently,
researchers in the field lack a comprehensive understanding of

the types of prompts that exist, their relative effectiveness, and
the challenges associated with their implementation in clinical
settings.

The main research question and objectives of this study are to
investigate how to engineer prompts for clinical NLP tasks,
identify best practices, and address the challenges in this
emerging field. By doing so, we aim to propose a guideline for
future prompt-based clinical NLP studies. In this work, we
present a comprehensive empirical evaluation study on prompt
engineering for 5 diverse clinical NLP tasks, namely, clinical
sense disambiguation, biomedical evidence extraction,
coreference resolution, medication status extraction, and
medication attribute extraction [11,12]. By systematically
evaluating different types of prompts proposed in recent
literature, including prefix [13], cloze [14], chain of thought
[15], and anticipatory prompts [16], we gain insights into their
performance and suitability for each task. Two new types of
prompting approaches were also introduced: (1) heuristic
prompts and (2) ensemble prompts. The rationale behind these
novel prompts is to leverage the existing knowledge and
expertise in rule-based NLP, which has been prominent and has
shown significant results in the clinical domain [17]. We
hypothesize that heuristic prompts, which are based on rules
derived from domain knowledge and linguistic patterns, can
capture the salient features and constraints of the clinical IE
tasks. We also conjecture that ensemble prompts, which are
composed of multiple types of prompts, can benefit from the
complementary strengths and mitigate the weaknesses of each
individual prompt.

One of the key aspects of prompt engineering is the number of
examples or shots that are provided to the model along with the
prompt. Few-shot prompting is a technique that provides the
model with a few examples of input-output pairs, while
zero-shot prompting does not provide any examples [3,18]. By
contrasting these strategies, we aim to shed light on the most
efficient and effective ways to leverage prompt engineering in
clinical NLP. Finally, we propose a prompt engineering
framework to build and deploy zero-shot NLP models for the
clinical domain. This study covers 3 state-of-the-art LMs,
including GPT-3.5, Gemini, and LLaMA-2, to assess the
generalizability of the findings across various models. This
work yields novel insights and guidelines for prompt engineering
specifically for clinical NLP tasks.

Methods

Tasks
We selected 5 distinct clinical NLP tasks representing diverse
categories of natural language understanding: clinical sense
disambiguation (text classification) [19], biomedical evidence
extraction (named entity recognition) [20], coreference
resolution [21], medication status extraction (named entity
recognition+classification) [22], and medication attribute
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extraction (named entity recognition+relation extraction) [23].
Table 1 provides a succinct overview of each task, an example

scenario, and the corresponding prompt type used for each task.

Table 1. Task descriptions.

Example promptDescriptionNLPa task categoryTask

What is the meaning of the abbreviation

CRb in the context of cardiology?

This task involves identifying the correct
meaning of clinical abbreviations within a
given context.

Text classificationClinical sense disambigua-
tion

Identify the psychological interventions in
the given text?

In this task, interventions are extracted from
biomedical abstracts.

Text extractionBiomedical evidence extrac-
tion

Identify the antecedent for the patient in the
clinical note.

The goal here is to identify all mentions in
clinical text that refer to the same entity.

Coreference resolutionCoreference resolution

What is the current status of [24] in the
treatment of [25]?

This task involves identifying whether a
medication is currently being taken, not
taken, or unknown.

NERc+classificationMedication status extraction

What is the recommended dosage of [26]
for [27] and how often?

The objective here is to identify specific
attributes of a medication, such as dosage
and frequency.

NER+REdMedication attribute extrac-
tion

aNLP: natural language processing.
bCR: cardiac resuscitation.
cNER: named entity recognition.
dRE: relation extraction.

Data Sets and Evaluation
The prompts were evaluated on 3 LLMs, GPT-3.5, Gemini, and
LLaMA-2, under both zero-shot and few-shot prompting
conditions, using precise experimental settings and parameters.
To simplify the evaluation process and facilitate clear
comparisons, we adopted accuracy as the sole evaluation metric
for all tasks. Accuracy is defined as the proportion of correct
outputs generated by the LLM for each task, using a resolver
that maps the output to the label space. Table 2 shows the data
sets and sample size for each clinical NLP task. The data sets
are as follows:

• Clinical abbreviation sense inventories: This is a data set
of clinical abbreviations, senses, and instances [28]. It
contains 41 acronyms from 18,164 notes, along with their
expanded forms and contexts. We used a randomly sampled
subset from this data set for clinical sense disambiguation,
coreference resolution, medication status extraction, and
medication attribute extraction tasks (Table 2).

• Evidence-based medicine-NLP: This is a data set of
evidence-based medicine annotations for NLP [29]. It
contains 187 abstracts and 20 annotated abstracts, with
interventions extracted from the text. We used this data set
for the biomedical evidence extraction task.

Table 2. Evaluation data sets and samples for different tasks.

SamplesData set exampleData setTask

11 acronyms from 55 notesThe abbreviation “CRb” can refer to “car-
diac resuscitation” or “computed radiogra-
phy.”

CASIaClinical sense disambigua-
tion

187 abstracts and 20 annotated abstractsIdentifying panic, avoidance, and agorapho-
bia (psychological interventions)

EBMc-NLPdBiomedical evidence extrac-
tion

105 annotated examplesResolving references to “the patient” or “the
study” within a clinical trial report.

CASICoreference resolution

105 annotated examples with 340 medica-
tion status pairs

Identifying that a patient is currently taking
insulin for diabetes.

CASIMedication status extraction

105 annotated examples with 313 medica-
tions and 533 attributes

Identifying dosage, frequency, and route of
a medication for a patient.

CASIMedication attribute extrac-
tion

aCASI: clinical abbreviation sense inventories.
bCR: cardiac resuscitation.
cEBM: evidence-based medicine.
dNLP: natural language processing.
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All experiments were carried out in different system settings.
All GPT-3.5 experiments were conducted using the GPT-3.5
Turbo application programming interface as of the September
2023 update. The LLaMA-2 model was directly accessed for
our experiments. Gemini was accessed using the Gemini
application (previously BARD)—Google’s generative artificial
intelligence conversational system. These varied system settings
and access methods were taken into account to ensure the
reliability and validity of our experimental results, given the
differing architectures and capabilities of each LLM.

In evaluating the prompt-based approaches on GPT-3.5, Gemini,
and LLaMA-2, we have also incorporated traditional NLP
baselines to provide a comprehensive understanding of the
LLMs’ performance in a broader context. These baselines
include well-established models such as Bidirectional Encoder
Representations From Transformers (BERT) [30], Embeddings
From Language Models (ELMO) [31], and
PubMedBERT-Conditional Random Field (PubMedBERT-CRF)
[32], which have previously set the standard in clinical NLP

tasks. By comparing the outputs of LLMs against these
baselines, we aim to offer a clear perspective on the
advancements LLMs represent in the field. This comparative
analysis is crucial for appreciating the extent to which prompt
engineering techniques can leverage the inherent capabilities
of LLMs, marking a significant evolution from traditional
approaches to more dynamic and contextually aware
methodologies in clinical NLP.

Prompt Creation Process
A rigorous process was followed to create suitable prompts for
each task. These prompts were carefully crafted to match the
specific context and objectives of each task. There is no
established method for prompt design and selection as of now.
Therefore, we adopted an iterative approach where prompts,
which are created by health care experts, go through a
verification and improvement process in an iterative cycle,
which involved design, experimentation, and evaluation, as
depicted in Figure 1.

Figure 1. Iterative prompt design process: a schematic diagram of the iterative prompt creation process for clinical NLP tasks. The process consists of
3 steps: sampling, prompt designing, and deployment. The sampling step involves defining the task and collecting data and annotations. The prompt
designing step involves creating and refining prompts using different types and language models. The deployment step involves selecting the best model
and deploying the model for clinical use. LLM: large language model; NER: named entity recognition; NLP: natural language processing; RE: relation
extraction.

Figure 1 illustrates the 3 main steps of our prompt creation
process: sampling, prompt designing, and deployment. In the
sampling step (step 1), we defined the clinical NLP task (eg,
named entity recognition, relation extraction, and text
classification) and collected a sample of data and annotations
as an evaluation for the task. In the prompt designing step (step
2), a prompt was designed for the task using one of the prompt
types (eg, simple prefix prompt, simple cloze prompt, heuristic
prompt, chain of thought prompt, question prompt, and
anticipatory prompt). We also optionally performed few-shot
prompting by providing some examples along with the prompt.
The LLMs and the evaluation metrics for the experiment setup
were then configured. We ran experiments with various prompt
types and LLMs and evaluated their performance on the task.
Based on the results, we refined or modified the prompt design
until we achieved satisfactory performance or reached a limit.
In the deployment step (step 3), the best prompt-based models

were selected based on their performance metrics, and the model
was deployed for the corresponding task.

Prompt Engineering Techniques

Overview
Prompt engineering is the process of designing and creating
prompts that elicit desired responses from LLMs. Prompts can
be categorized into different types based on their structure,
function, and complexity.

Each prompt consists of a natural language query that is
designed to elicit a specific response from the pretrained LLM.
The prompts are categorized into 7 types, as illustrated in Figure
2 (all prompts have been included in Multimedia Appendix 1).
Prefix prompts are the simplest type of prompts, which prepend
a word or phrase indicating the type or format or tone of
response for control and relevance. Cloze prompts are based on
the idea of fill in the blank exercises, which create a masked

JMIR Med Inform 2024 | vol. 12 | e55318 | p. 4https://medinform.jmir.org/2024/1/e55318
(page number not for citation purposes)

Sivarajkumar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


token in the input text and ask the LLM to predict the missing
word or phrase [3]. Anticipatory prompts are the prompts
anticipating the next question or command based on experience
or knowledge, guiding the conversation. Chain of thought

prompting involves a series of intermediate natural language
reasoning steps that lead to the final output [15].

In addition to the existing types of prompts, 2 new novel
prompts were also designed: heuristic prompts and ensemble
prompts, which will be discussed in the following sections.

Figure 2. Types of prompts: examples of 7 types of prompts that we used to query the pretrained language model for different clinical information
extraction tasks. [X]: context; [Y]: abbreviation; [Z]: expanded form.

Heuristic Prompts
Heuristic prompts are rule-based prompts that decompose
complex queries into smaller, more manageable components
for comprehensive answers. Adopting the principles of
traditional rule-based NLP, which relies on manually crafted,
rule-based algorithms for specific clinical NLP applications,
we have integrated these concepts into our heuristic prompts
approach. These prompts use a set of predefined rules to guide
the LLM in expanding abbreviations within a given context.
For instance, a heuristic prompt might use the rule that an
abbreviation is typically capitalized, followed by a period, and
preceded by an article or a noun. This approach contrasts with
chain of thought prompts, which focus on elucidating the
reasoning or logic behind an output. Instead, heuristic prompts
leverage a series of predefined rules to direct the LLM in
executing a specific task.

Mathematically, we can express a heuristic prompt as H(x), a
function applied to an input sequence x. This function is defined
as a series of rule-based transformations Ti, where i indicates
the specific rule applied. The output of this function, denoted
as yH, is then:

yH=H(x)=Tn(T{n–1}(... T1(x)))

Here, each transformation Ti applies a specific heuristic rule to
modify the input sequence, making it more suitable for
processing by LLMs.

From an algorithmic standpoint, heuristic prompts are
implemented by defining a set of rules R={R1, R2, ..., Rm}. Each
rule Rj is a function that applies a specific heuristic criterion to
an input token or sequence of tokens. Algorithmically, the
heuristic prompting process can be summarized as follows:

By merging the precision and specificity of traditional rule-based
NLP methods with the advanced capabilities of LLMs, the
heuristic prompts offer a robust and accurate system for clinical
information processing and analysis.

Ensemble Prompts
Ensemble prompts are prompts that combine multiple prompts
using majority voting for aggregated outputs. They use various
types of prompts to generate multiple responses to the same
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input, subsequently selecting the most commonly occurring
output as the final answer. For instance, an ensemble prompt
might use 3 different prefix prompts, or a combination of other
prompt types, to produce 3 potential expansions for an
abbreviation. The most frequently appearing expansion is then
chosen. For the sake of simplicity, we amalgamated the outputs
from all 5 different prompt types using a majority voting
approach.

Mathematically, consider a set of m different prompting methods
P1, P2, ..., Pm applied to the same input x. Each method generates
an output yi for i=1,2, ..., m. The ensemble prompt’s output yE

is then the mode of these outputs:

yE=mode (y1, y2, ..., ym)

Algorithmically, the ensemble prompting process is as follows:

The rationale behind an ensemble prompt is that by integrating
multiple types of prompts, we can use the strengths and

counterbalance the weaknesses of each individual prompt,
offering a robust and potentially more accurate response. Some
prompts may be more effective for specific tasks or models,
while others might be more resilient to noise or ambiguity.
Majority voting allows us to choose the most likely correct or
coherent output from the variety generated by different prompt
types.

Results

Overview
In this section, we present the results of our experiments on
prompt engineering for zero-shot clinical IE. Various prompt
types were evaluated across 5 clinical NLP tasks, aiming to
understand how different prompts influence the accuracy of
different LLMs. Zero-shot and few-shot prompting strategies
were also compared, exploring how the addition of context
affects the model performance. Furthermore, we tested an
ensemble approach that combines the outputs of different prompt
types using majority voting. Finally, the impact of different
LLMs on task performance was analyzed, and some interesting
patterns were observed. Table 3 illustrates that different prompt
types have different levels of effectiveness for different tasks
and LLMs. We can also observe some general trends across the
tasks and models.
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Table 3. Performance comparison of different prompt types and language models.

Few shotEnsembleChain of
thought

HeuristicAnticipatorySimple clozeSimple pre-
fix

Task and language model

Clinical sense disambiguation

0.820.90.90.96a0.880.860.88GPT-3.5

0.670.710.720.750.710.680.76bGemini

0.780.820.780.820.820.760.88bLLaMA-2

0.420.420.420.420.420.420.42BERTc (from [33])

0.550.550.550.550.550.550.55ELMOd (from [33])

Biomedical evidence extraction

0.96a0.880.940.940.880.820.92GPT-3.5

0.880.90.91b0.90.91b0.890.89Gemini

0.860.880.870.88b0.870.88b0.85LLaMA-2

0.350.350.350.350.350.350.35PubMedBERT-CRFe (from [29])

Coreference resolution

0.740.740.94a0.94a0.740.60.78GPT-3.5

0.70.690.710.670.730.81b0.69Gemini

0.680.780.8b0.760.740.640.8bLLaMA-2

0.690.690.690.690.690.690.69Toshniwal et al [34]

Medication status extraction

0.720.750.730.740.750.720.76aGPT-3.5

0.550.580.590.550.650.510.67bGemini

0.420.580.520.64b0.520.480.58LLaMA-2

0.520.520.520.520.520.520.52ScispaCy [35]

Medication attribute extraction

0.96a0.90.96a0.96a0.90.840.88GPT-3.5

0.88b0.760.740.70.88c0.720.68Gemini

0.60.640.72b0.660.580.660.6LLaMA-2

0.700.700.700.700.700.700.70ScispaCy

aBest performance on a task regardless of the model (ie, for each GPT-3.5 or Gemini or LLaMA-2 triple).
bBest performance for each model on a task.
cBERT: Bidirectional Encoder Representations From Transformers.
dELMO: Embeddings From Language Models.
ePubMedBERT-CRF: PubMedBERT-Conditional Random Field.

Prompt Optimization and Evaluation
For clinical sense disambiguation, the heuristic and prefix
prompts consistently achieved the highest performance across
all LLMs, significantly outperforming baselines such as BERT
[30] and ELMO, with GPT-3.5 achieving an accuracy of 0.96,
showcasing its advanced understanding of clinical context using
appropriate prompting strategies. For biomedical evidence
extraction, the heuristic and chain of thought prompts excelled
across all LLMs in zero-shot setting. This indicates that these

prompt types were able to provide enough information and
constraints for the model to extract the evidence from the clinical
note. GPT-3.5 achieved an accuracy of 0.94 with these prompt
types, which was higher than any other model or prompt type
combination. For coreference resolution, the chain of thought
prompt type performed best among all prompt types with 2
LLMs—GPT-3.5 and LLaMA-2. This indicates that this prompt
type was able to provide enough structure and logic for the
model to resolve the coreference in the clinical note. GPT-3.5
displayed high accuracy with this prompt type, achieving an
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accuracy of 0.94. For medication status extraction, simple prefix
and heuristic prompts yielded good results across all LLMs.
These prompt types were able to provide enough introduction
or rules for the model to extract the status of the medication in
relation to the patient or condition. GPT-3.5 excelled with these
prompt types, achieving an accuracy of 0.76 and 0.74,
respectively. For medication attribute extraction, we found that
the chain of thought and heuristic prompts were effective across
all LLMs. These prompt types were able to provide enough
reasoning or rules for the model to extract and label the attributes
of medications from clinical notes. Anticipatory prompts,
however, had the best accuracy for Gemini among all the

prompts. GPT-3.5 achieved an accuracy of 0.96 with these
prompt types, which was higher than any other model or prompt
type combination.

Thus, we can see that task-specific prompt tailoring is crucial
for achieving high accuracy. Different tasks require different
levels of information and constraints to guide the LLM to
produce the desired output. The experiments show that heuristic,
prefix, and chain of thought prompts are generally very effective
for guiding the LLM to produce clear and unambiguous outputs.
As shown in Figure 3, it is clear that GPT-3.5 is a superior and
versatile LLM that can handle various clinical NLP tasks in
zero-shot settings, outperforming other models in most cases.

Figure 3. Graphical comparison of prompt types in the 5 clinical natural language processing tasks used in this study.

Overall, the prompt-based approach has demonstrated
remarkable superiority over traditional baseline models across
all the 5 tasks. For clinical sense disambiguation, GPT-3.5’s
heuristic prompts achieved a remarkable accuracy of 0.96,
showcasing a notable improvement over baselines such as BERT
(0.42) and ELMO (0.55). In biomedical evidence extraction,
GPT-3.5 again set a high standard with an accuracy of 0.94
using heuristic prompts, far surpassing the baseline performance
of PubMedBERT-CRF at 0.35. Coreference resolution saw
GPT-3.5 reaching an accuracy of 0.94 with chain of thought
prompts, eclipsing the performance of existing methods such
as Toshniwal et al [34] (0.69). In medication status extraction,
GPT-3.5 outperformed the baseline ScispaCy (0.52) with an
accuracy of 0.76 using simple prefix prompts. Finally, for

medication attribute extraction, GPT-3.5’s heuristic prompts
achieved an impressive accuracy of 0.96, significantly higher
than the ScispaCy baseline (0.70). These figures not only
showcase the potential of LLMs in clinical settings but also set
a foundation for future research to build upon, exploring even
more sophisticated prompt engineering strategies and their
implications for health care informatics.

Zero-Shot Versus Few-Shot Prompting
The performance of zero-shot prompting and few-shot
prompting strategies was compared for each clinical NLP task.
The same prompt types and LLMs were used as in the previous
experiments, but some context was added to the input in the
form of examples or explanations. Two examples or
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explanations were used for each task (2-shot) depending on the
complexity and variability of the task. Table 3 shows that
few-shot prompting consistently improved the accuracy of all
combinations for all tasks except for clinical sense
disambiguation and medication attribute extraction, where some
zero-shot prompt types performed better. We also observed
some general trends across the tasks and models.

We found that few-shot prompting enhanced accuracy by
providing limited context that aided complex scenario
understanding. The improvement was more pronounced
compared to simple cloze prompts, which had lower accuracy
in most of the tasks. We also found that some zero-shot prompt
types were very effective for certain tasks, even outperforming
few-shot prompting. These prompt types used a rule-based or
reasoning approach to generate sentences that contained
definitions or examples of the target words or concepts, which
helped the LLM to understand and match the context. For
example, heuristic prompts achieved higher accuracy than
few-shot prompting for clinical sense disambiguation and
medication attribute extraction, while chain of thought prompts
achieved higher accuracy than few-shot prompting for
coreference resolution and medication attribute extraction.
Alternatively, the clinical evidence extraction task likely benefits
from additional context provided by few-shot examples, which
can guide the model more effectively than the broader inferences
made in zero-shot scenarios. This suggests that tasks requiring
deeper contextual understanding might be better suited to
few-shot learning approaches.

From these results, we can infer that LLMs can be effectively
used for clinical NLP in a no-data scenario, where we do not
have many publicly available data sets, by using appropriate
zero-shot prompt types that guide the LLM to produce clear
and unambiguous outputs. However, few-shot prompting can
also improve the performance of LLMs by providing some
context that helps the LLM to handle complex scenarios.

Other Observations

Ensemble Approaches
We experimented with an ensemble approach by combining
outputs from multiple prompts using majority voting. The
ensemble approach was not the best-performing strategy for
any of the tasks, but it was better than the low-performing
prompts. The ensemble approach was able to benefit from the
diversity and complementarity of different prompt types and
avoid some of the pitfalls of individual prompts. For example,
for clinical sense disambiguation, the ensemble approach
achieved an accuracy of 0.9 with GPT-3.5, which was the second
best–performing prompt type. Similarly, for medication attribute
extraction, the ensemble approach achieved an accuracy of 0.9
with GPT-3.5 and 0.76 with Gemini, which were close to the
best single prompt type (anticipatory). However, the ensemble
approach also had some drawbacks, such as inconsistency and
noise. For tasks that required more specific or consistent outputs,
such as coreference resolution, the ensemble approach did not
improve the accuracy over the best single prompt type and
sometimes even decreased it. This suggests that the ensemble
approach may introduce ambiguity for tasks that require more
precise or coherent outputs.

While the ensemble approach aims to reduce the variance
introduced by individual prompt idiosyncrasies, our specific
implementation observed instances where the combination of
diverse prompt types introduced additional complexity. This
complexity occasionally manifested as inconsistency and noise
in the outputs contrary to our objective of achieving higher
performance. Future iterations of this approach may include
refinement of the prompt selection process to enhance
consistency and further reduce noise in the aggregated outputs.

Impact of LLMs
Variations in performance were observed among different LLMs
(Table 3). We found that GPT-3.5 generally outperformed
Gemini and LLaMA-2 on most tasks. This suggests that GPT-3.5
has a better generalization ability and can handle a variety of
clinical NLP tasks with different prompt types. However,
Gemini and LLaMA-2 also showed some advantages over
GPT-3.5 on certain tasks and prompt types. For example,
Gemini achieved the highest accuracy of 0.81 with simple cloze
prompts and LLaMA-2 achieved the highest accuracy of 0.8
with simple prefix prompts for coreference resolution. This
indicates that Gemini and LLaMA-2 may have some
domain-specific knowledge that can benefit certain clinical NLP
tasks for specific prompt types.

Persona Patterns
Persona patterns are a way of asking the LLM to act like a
persona or a system that is relevant to the task or domain. For
example, one can ask the LLM to “act as a clinical NLP expert.”
This can help the LLM to generate outputs that are more
appropriate and consistent with the persona or system. For
example, one can use the following prompt for clinical sense
disambiguation:

Act as a clinical NLP expert. Disambiguate the word
“cold” in the following sentence: “She had a cold
for three days.”

We experimented with persona patterns for different tasks and
LLMs and found that they can improve the accuracy and quality
of the outputs. Persona patterns can help the LLM to focus on
the relevant information and constraints for the task and avoid
generating outputs that are irrelevant or contradictory to the
persona or system.

Randomness in Output
Most LLMs do not produce the output in the same format every
time. There is inherent randomness in the outputs the LLMs
produce. Hence, the prompts need to be specific in the way they
are done for the task. Prompts are powerful when they are
specific and if we use them in the right way.

Randomness in output can be beneficial or detrimental for
different tasks and scenarios. In the clinical domain, randomness
can introduce noise and errors in the outputs, which can make
them less accurate and reliable for the users. For example, for
tasks that involve extracting factual information, such as
biomedical evidence extraction and medication status extraction,
randomness can cause the LM to produce outputs that are
inconsistent or contradictory with the input or context.
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Guidelines and Suggestions for Optimal Prompt
Selection
In recognizing the evolving nature of clinical NLP, we expand
our discussion to contemplate the adaptability of our
recommended prompt types and LM combinations across a
wider spectrum of clinical tasks and narratives. This speculative
analysis aims to bridge the gap between our current findings
and their applicability to unexplored clinical NLP challenges,
setting a foundation for future research to validate and refine
these recommendations. In this section, we synthesize the main
findings from our experiments and offer some practical advice
for prompt engineering for zero-shot and few-shot clinical IE.
We propose the following steps for selecting optimal prompts
for different tasks and scenarios:

The first step is to identify the type of clinical NLP task, which
can be broadly categorized into three types: (1) classification,
(2) extraction, and (3) resolution. Classification tasks involve
assigning a label or category to a word, phrase, or sentence in
a clinical note, such as clinical sense disambiguation or
medication status extraction. Extraction tasks involve identifying
and extracting relevant information from a clinical note, such
as biomedical evidence extraction or medication attribute

extraction. Resolution tasks involve linking or matching entities
or concepts in a clinical note, such as coreference resolution.

The second step is to choose the prompt type that is most
suitable for the task type. We found that different prompt types
have different strengths and weaknesses for different task types,
depending on the level of information and constraints they
provide to the LLM. Table 4 summarizes our findings and
recommendations for optimal prompt selection for each task
type.

The third step is to choose the LLM that is most compatible
with the chosen prompt type. We found that different LLMs
have different capabilities and limitations for different prompt
types, depending on their generalization ability and
domain-specific knowledge. Table 5 summarizes our findings
and recommendations for optimal LLM selection for each
prompt type.

The fourth step is to evaluate the performance of the chosen
prompt type and LLM combination on the clinical NLP task
using appropriate metrics such as accuracy, precision, recall,
or F1-score. If the performance is satisfactory, then the prompt
engineering process is complete. If not, then the process can be
repeated by choosing a different prompt type or LLM or by
modifying the existing prompt to improve its effectiveness.

Table 4. Optimal prompt types for different clinical natural language processing task types.

Prompt typeTask type

Heuristic or prefixClassification

Heuristic or chain of thoughtExtraction

Chain of thoughtResolution

Table 5. Optimal language models for different prompt types.

Language modelPrompt type

GPT-3.5Heuristic

GPT-3.5 or LLaMA-2Prefix

Gemini or LLaMA-2Cloze

GPT-3.5Chain of thought

GeminiAnticipatory

Discussion

Principal Findings
In this paper, we have presented a novel approach to zero-shot
and few-shot clinical IE using prompt engineering. Various
prompt types were evaluated across 5 clinical NLP tasks: clinical
sense disambiguation, biomedical evidence extraction,
coreference resolution, medication status extraction, and
medication attribute extraction. The performance of different
LLMs, GPT-3.5, Gemini, and LLaMA-2, was also compared.
Our main findings are as follows:

1. Task-specific prompt tailoring is crucial for achieving high
accuracy. Different tasks require different levels of
information and constraints to guide the LLM to produce

the desired output. Therefore, it is important to design
prompts that are relevant and specific to the task at hand
and avoid using generic or vague prompts that may confuse
the model or lead to erroneous outputs.

2. Heuristic prompts are generally very effective for guiding
the LLM to produce clear and unambiguous outputs. These
prompts use a rule-based approach to generate sentences
that contain definitions or examples of the target words or
concepts, which help the model to understand and match
the context. Heuristic prompts are especially useful for tasks
that involve disambiguation, extraction, or classification of
entities or relations.

3. Chain of thought prompts are also effective for guiding the
LLM to produce logical and coherent outputs. These
prompts use a multistep approach to generate sentences that
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contain a series of questions and answers that resolve the
task in the context. Chain of thought prompts are especially
useful for tasks that involve reasoning, inference, or
coreference resolution.

4. Few-shot prompting can improve the performance of LLMs
by providing some context that helps the model to handle
complex scenarios. Few-shot prompting can be done by
adding some examples or explanations to the input
depending on the complexity and variability of the task.
Few-shot prompting can enhance accuracy by providing
limited context that aids complex scenario understanding.
The improvement is more pronounced compared to simple
prefix and cloze prompts, which had lower accuracy in most
of the tasks.

5. Ensemble approaches can also improve the performance
of LLMs by combining outputs from multiple prompts using
majority voting. Ensemble approaches can leverage the
strengths of each prompt type and reduce the errors of
individual prompts. Ensemble approaches are especially
effective for tasks that require multiple types of information
or reasoning, such as biomedical evidence extraction and
medication attribute extraction.

It is noteworthy that context size has a significant impact on
the performance of LLMs in zero-shot IE [36]. In the scope of
this study, we have avoided the context size dependence on
performance, as it is a complex issue that requires careful
consideration.

This study serves as an initial exploration into the efficacy of
prompt engineering in clinical NLP, providing foundational
insights rather than exhaustive guidelines. Given the rapid
advancements in generative artificial intelligence and the
complexity of clinical narratives, we advocate for continuous
empirical testing of these prompt strategies across diverse
clinical tasks and data sets. This approach will not only validate
the generalizability of our findings but also uncover new avenues
for enhancing the accuracy and applicability of LLMs in clinical
settings.

Limitations
In this study, we primarily focused on exploring the capabilities
and versatility of generative LLMs in the context of zero-shot
and few-shot learning for clinical NLP tasks. Our approach also
has some limitations that we acknowledge in this work. First,
it relies on the quality and availability of pretrained LLMs,
which may vary depending on the domain and task. As LLMs
are rapidly evolving, some parts of the prompt engineering
discipline may be timeless, while some parts may evolve and
adapt over time as different capabilities of models evolve.
Second, it requires a lot of experimentation and iteration to

optimize prompts for different applications, which may be
iterative and time-consuming. However, once optimal prompts
are identified, the approach offers time savings in subsequent
applications by reusing these prompts or making minor
adjustments for similar tasks. We may not have explored all the
possible combinations and variations of prompts that could
potentially improve the performance of the clinical NLP tasks.
Third, the LLMs do not release the details of the data set that
they were trained on. Hence, the high accuracy could be because
the models would have already seen the data during training
and not because of the effectiveness of the prompts.

Future Work
We plan to address these challenges and limitations in our future
work. We aim to develop more systematic and automated
methods for prompt design and evaluation, such as using
prompt-tuning or meta-learning techniques. We also aim to
incorporate more domain knowledge or external resources into
the prompts or the LLMs, such as using ontologies, knowledge
graphs, or databases. We also aim to incorporate more quality
control or error correction mechanisms into the prompts or the
LLMs, such as using adversarial examples, confidence scores,
or human feedback.

Conclusions
In this paper, we have benchmarked different prompt
engineering techniques for both zero-shot and few-shot clinical
NLP tasks. Two new types of prompts, heuristic and ensemble
prompts, were also conceptualized and proposed. We have
demonstrated that prompt engineering can enable the use of
pretrained LMs for various clinical NLP tasks without requiring
any fine-tuning or additional data. We have shown that
task-specific prompt tailoring, heuristic prompts, chain of
thought prompts, few-shot prompting, and ensemble approaches
can improve the accuracy and quality of the outputs. We have
also shown that GPT-3.5 is very adaptable and precise across
all tasks and prompt types, while Gemini and LLaMA-2 may
have some domain-specific advantages for certain tasks and
prompt types.

We believe that a prompt-based approach has several benefits
over existing methods for clinical IE. It reduces the cost and
time in the initial phases of clinical NLP application
development, where prompt-based methods offer a streamlined
alternative to the conventional data preparation and model
training processes. It is flexible and adaptable, as it can be
applied to various clinical NLP tasks with different prompt
types and LLMs. It is interpretable and explainable, as it uses
natural language prompts that can be easily understood and
modified by humans.
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BERT: Bidirectional Encoder Representations From Transformers
ELMO: Embeddings From Language Models
IE: information extraction
LLM: large language model
LM: language model
NLP: natural language processing
PubMedBERT-CRF: PubMedBERT-Conditional Random Field
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