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Abstract
Background: Synthetic patient data (SPD) generation for survival analysis in oncology trials holds significant potential for
accelerating clinical development. Various machine learning methods, including classification and regression trees (CART),
random forest (RF), Bayesian network (BN), and conditional tabular generative adversarial network (CTGAN), have been used
for this purpose, but their performance in reflecting actual patient survival data remains under investigation.
Objective: The aim of this study was to determine the most suitable SPD generation method for oncology trials, specifically
focusing on both progression-free survival (PFS) and overall survival (OS), which are the primary evaluation end points in
oncology trials. To achieve this goal, we conducted a comparative simulation of 4 generation methods, including CART, RF,
BN, and the CTGAN, and the performance of each method was evaluated.
Methods: Using multiple clinical trial data sets, 1000 data sets were generated by using each method for each clinical trial
data set and evaluated as follows: (1) median survival time (MST) of PFS and OS; (2) hazard ratio distance (HRD), which
indicates the similarity between the actual survival function and a synthetic survival function; and (3) visual analysis of
Kaplan-Meier (KM) plots. Each method’s ability to mimic the statistical properties of real patient data was evaluated from
these multiple angles.
Results: In most simulation cases, CART demonstrated the high percentages of MSTs for synthetic data falling within the
95% CI range of the MST of the actual data. These percentages ranged from 88.8% to 98.0% for PFS and from 60.8%
to 96.1% for OS. In the evaluation of HRD, CART revealed that HRD values were concentrated at approximately 0.9.
Conversely, for the other methods, no consistent trend was observed for either PFS or OS. CART demonstrated better
similarity than RF, in that CART caused overfitting and RF (a kind of ensemble learning approach) prevented it. In SPD
generation, the statistical properties close to the actual data should be the focus, not a well-generalized prediction model. Both
the BN and CTGAN methods cannot accurately reflect the statistical properties of the actual data because small data sets are
not suitable.
Conclusions: As a method for generating SPD for survival data from small data sets, such as clinical trial data, CART
demonstrated to be the most effective method compared to RF, BN, and CTGAN. Additionally, it is possible to improve
CART-based generation methods by incorporating feature engineering and other methods in future work.
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Introduction
When submitting an application for the approval of a new
pharmaceutical product to health authorities, it is impera-
tive to demonstrate its efficacy and safety through multi-
ple clinical trials. However, 86% of these trials encounter
difficulties meeting the targeted number of subjects within the
designated recruitment period, often leading to extensions of
the trial duration or completion of the trial without reaching
the target number of subjects [1-3]. The challenge of patient
recruitment not only delays the submission of regulatory
applications but also hinders the timely provision of effective
treatment to patients, which consequently contributes to
increased development costs and the escalation of drug prices
and potentially exacerbates the strain on health care financ-
ing.

In recent years, the use of real-world data (RWD) has
emerged as a potential solution for addressing these issues.
The Food and Drug Administration has also released draft
guidelines [4], garnering attention on the application of RWD
as an external control arm in clinical trials [5,6]. Furthermore,
it has been reported that it is possible to optimize eligibility
using RWD and machine learning, thereby increasing the
number of eligible subjects that can be included [7].

In addition to these approaches, we hypothesize that it
is possible to generate synthetic patient data (SPD) from
control arm data in past clinical trials and use it to estab-
lish a control arm for a new clinical trial. The use of SPD,
an emerging research approach in the health care research
field [8-17], involves the generation of fictitious individual
patient-level data from real data, which possess statistical
properties similar to those of actual data. This approach is
anticipated to facilitate health care research while addressing
data privacy concerns [14,18-21].

Regarding its application in clinical trials, concerns have
been raised about the feasibility of generating SPDs with
statistical properties similar to those of actual data due to
the relatively smaller volume of clinical trial data com-
pared to RWD, such as electronic health records or registry
data. However, previous studies [22-25] have reported the

successful generation of SPDs with statistical properties
generally comparable to the actual data, although there
are certain limitations. Additionally, with the expansion of
clinical trial data-sharing platforms such as ClinicalStudyDa-
taRequest.com, Project Data Sphere, and Vivli, acquiring
subject-level clinical trial data has become more accessible.
Consequently, advancements in research on the utility of SPD
and the expansion of clinical trial data-sharing platforms are
expected to have potential applications in clinical trials.

Our focus lies in the application of this technology in
oncology clinical trials that evaluate popular efficacy end
points such as overall survival (OS) and progression-free
survival (PFS)–related survival functions and median survival
time (MST) [26]. In previous studies on SPD, there has been
a notable emphasis on reporting patient background data and
single–time point data [22-25]. However, research focusing
specifically on the relationship between SPD and survival
data remains relatively insufficient [27].

As the first step in examining our hypothesis that the use
of SPD can be beneficial in accelerating health care research,
the aim of this study was to determine the most suitable SPD
generation method for oncology trials, specifically focusing
on both OS and PFS, which are set as the primary evalua-
tion end points in oncology trials. To achieve this goal, we
conducted a comparative simulation of 4 generation methods:
classification and regression trees (CART) [28], random
forest (RF) [29], Bayesian network (BN) [30], and the
conditional tabular generative adversarial network (CTGAN)
approach [31], and the performance of each method was
evaluated.

Methods
Overview
To generate the SPD, subject-level clinical trial data were
obtained from Project Data Sphere for the following 4 clinical
trials (Table 1): (1) each had a different cancer type, (2)
included control arm data, (3) contained both OS and PFS
data, and (4) had a ready data format for analysis.

Table 1. List of selected oncology clinical trials in this study.
ClinicalTrials.gov
ID Titles Phase Cancer type

Intervention for the
control arm

Subjects in the
control arm, n

NCT00119613 A Randomized, Double-Blind,
Placebo-Controlled Study of Subjects
With Previously Untreated Extensive-
Stage Small-Cell Lung Cancer (SCLC)
Treated With Platinum Plus Etopo-
side Chemotherapy With or Without
Darbepoetin Alfa.

III Small cell lung cancer Placebo 232

NCT00339183 A Randomized, Multicenter Phase 3
Study to Compare the Efficacy of
Panitumumab in Combination With
Chemotherapy to the Efficacy of
Chemotherapy Alone in Patients With
Previously Treated Metastatic Colorectal
Cancer.

III Metastatic colorectal
cancer

FOLFIRIa Alone 476
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ClinicalTrials.gov
ID Titles Phase Cancer type

Intervention for the
control arm

Subjects in the
control arm, n

NCT00339183 A Phase 3 Randomized Trial of
Chemotherapy With or Without
Panitumumab in Patients With
Metastatic and/or Recurrent Squamous
Cell Carcinoma of the Head and Neck
(SCCHN).

III Recurrent or metastatic
(or both) head and neck
cancer

Cisplatin and
5-fluorouracil

260

NCT00703326 A Multicenter, Multinational,
Randomized, Double-Blind, Phase III
Study of IMC-1121B Plus Doce-
taxel versus Placebo Plus Docetaxel
in Previously Untreated Patients
With HER2-Negative, Unresectable,
Locally-Recurrent or Metastatic Breast
Cancer.

III Breast cancer Placebo and
docetaxel

382

aFOLFIRI: panitumumab plus fluorouracil, leucovorin, and irinotecan.

Preparation of the Training Data Set
The patient data for the control arm contained within each
trial data set were extracted and used as the actual data
for the training data set. The selection of variables in the
training data set aimed to include as many variables related
to the subjects’ background as possible, excluding varia-
bles concerning tests and evaluations conducted during the
trials. Furthermore, variables that had the same value were
excluded, even if they were related to the subjects’ back-
ground (Multimedia Appendices 1-4).
Generation of Synthetic Data
The SPDs in this study were generated using the following 4
methods:

1. CART: the synthpop package (version 1.8) in R (The
R Foundation) was used, specifying the cart method for
the syn function’s method argument.

2. RF: the synthpop package (version 1.8) in R was used,
specifying the Ranger method for the syn function’s
method argument.

3. BN: the bnlearn package (version 4.9) in R was
used to conduct structural learning through the score-
based algorithm hill-climbing, followed by parame-
ter estimation using the bn.fit function. The default
maximum likelihood estimator was used for parameter
estimation.

4. CTGAN: the CTGANSynthesizer module included in
the Python package sdv (version 1.3) was used.

In all these generation methods, to ensure the absence of
conflicting data regarding the relationship between PFS and
OS, constraints were set to ensure that the values of PFS and
OS were greater than zero and that PFS was less than or equal
to OS. Specific individual patient data in the generated SPD,
which did not meet these constraints, were excluded, and
new individual patient data were regenerated. The SPDs were
generated in a manner that equaled the number of subject-
level data to the record count in the actual data.

To ensure the reproducibility of SPD generation, 1000
random numbers were generated as seed values using the

Mersenne Twister algorithm. The same seed value set was
used for all generation methods.

Statistical Analysis

Histogram
Histograms were created to visually inspect the distributions
of the MST of the synthetic data (MSTS) for PFS and OS
for the 1000 SPD data sets generated by each method. The
histograms also included the MST of the actual data (MSTA)
as a vertical line and the range of its 95% CI as a rectan-
gular background. For PFS and OS, a higher percentage of
MSTS covered by the 95% CI of the MSTA was determined
to indicate a greater level of reliability for the generation
method.

Evaluation of Similarity
A hazard ratio (HR) of 1 signifies that the 2 survival functions
are entirely identical. Thus, the closer the HR is to 1, the more
similar the 2 survival functions are. Accordingly, based on
the following calculation formula, the HR distance (HRD) for
PFS and OS from the SPD and the actual data were computed
and evaluated:

HRD = 1 − abs(HR − 1)
Kaplan-Meier Plot
In the evaluation of similarity, the SPD that showed the
highest HRD value was considered the best case, and the
SPD with the lowest HRD value was considered the worst
case. Three groups of Kaplan-Meier (KM) plots were created,
including the actual data, the best case, and the worst case
for each SPD generation method. The best case and worst
case for each SPD generation method in both PFS and OS
were compared to actual survival by using the log rank test.
Multiple comparisons were not performed, nor were P values
adjusted because controlling for the type I error rate does not
affect the conclusions of this study.

Since the purpose of this study was to evaluate the method
of generating SPD that closely resemble actual survival data,
it might be unnecessary to calculate a P value that indicates

JMIR MEDICAL INFORMATICS Akiya et al

https://medinform.jmir.org/2024/1/e55118 JMIR Med Inform 2024 | vol. 12 | e55118 | p. 3
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e55118


a significant difference from actual survival, but the P value
was calculated in this study from the viewpoint that if a
significant difference is also observed in the best-case, that
method should not be adopted.

All analyses and data generation were performed using R
(version 4.3.1; The R Foundation) and Python (version 3.10;
Python Software Foundation).
Ethical Considerations
Ethical review was not needed for this simulation study for
methodology comparison. All actual clinical trial data sets
obtained from Project Data Sphere were used in accordance
with relevant guidelines and regulations when the clinical
trials were conducted.

Results
Figure 1 shows a histogram of the MSTS for PFS in the
NCT00703326 trial. Using CART, RF, and BN, most of
the generated MSTS values were within the 95% CI of the
MSTA. In contrast, when CTGAN was used, SPD generation

resulted in a widened variance in the distribution of MSTS.
For the MSTS of PFS in the other 3 trials, RF exhibited a
shift in the distribution of the MSTS, shortening the survival
period, while BN displayed a shift in the distribution and
prolonged the survival period. Similar trends to Figure 1 were
observed for CART and CTGAN (Multimedia Appendices
5-7).

Figure 2 displays a histogram of the MSTS for OS in the
NCT00460265 trial. The divergence from the PFS findings is
that the MSTS of RF was more frequently included within the
95% CI of the MSTA, with similar results observed in other
trials (Multimedia Appendices 8-10). In other aspects, similar
findings were obtained as with the PFS.

Table 2 presents the number and proportion of the
generated MSTS values included within the 95% CI of the
MSTA for each trial and each method. In the case of CART
for PFS, a high percentage ranging from 88.8% to 98.1% was
exhibited for all trials. However, the OS ranged from 60.8%
to 96.1%, with some trials displaying a lower percentage than
the PFS.

Figure 1. Histogram of the median survival time of the synthetic data for progression-free survival in the NCT00703326 trial. The dashed vertical
line represents the median survival time of the actual data, and the light blue background indicates its 95% CI. BN: Bayesian network; CART:
classification and regression tree; CTGAN: conditional tabular generative adversarial network; MST: median survival time; RF: random forest.
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Figure 2. Histogram of the median survival time of the synthetic data of overall survival in the NCT00460265 trial. The dashed vertical line
represents the median survival time of the actual data, and the light blue background indicates its 95% CI. BN: Bayesian network; CART:
classification and regression tree; CTGAN: conditional tabular generative adversarial network; MST: median survival time; RF: random forest.

Table 2. The number and proportion of median survival times of the synthetic data (MSTSs) falling within the 95% CI of the median survival time of
the actual data (MSTA).

ClinicalTrials.gov ID
NCT00119613 NCT00339183 NCT00460265 NCT00703326

Progression-free survival
MSTA (95% CI) 169 (163-183) 155 (121-168) 133 (121-167) 424 (380-504)

MSTSs, n (%)
CARTa (n=1000) 981 (98.1) 888 (88.8) 955 (95.5) 918 (91.8)
RFb (n=1000) 693 (69.3) 248 (24.8) 426 (42.6) 919 (91.9)
BNc (n=1000) 10 (1.0) 0 (0.0) 37 (3.7) 976 (97.6)
CTGANd (n=1000) 65 (6.5) 378 (37.8) 322 (32.2) 254 (25.5)

Overall survival
MSTA (95% CI) 276 (259-303) 361 (319-393) 286 (255-357) 1452

(1417-1507)
MSTSs, n (%)

CART (n=1000) 831 (83.1) 608 (60.8) 719 (71.9) 961 (96.1)
RF (n=1000) 757 (75.7) 697 (69.7) 980 (98.0) 599 (59.9)
BN (n=1000) 0 (0.0) 0 (0.0) 0 (0.0) 622 (62.2)
CTGAN (n=1000) 72 (7.2) 155 (15.5) 197 (19.7) 81 (8.5)

aCART: classification and regression tree.
bRF: random forest.
cBN: Bayesian network.
dCTGAN: conditional tabular generative adversarial network.

For RF, a high proportion of 91.9% was observed for
PFS in the NCT00703326 trial and 98.0% for OS in the
NCT00460265 trial, whereas in other cases, the proportion for
RF was not as high as that for CART.

In the case of BN, proportions of 97.6% and 62.2% were
observed for PFS and OS, respectively, in the NCT00703326
trial, but in the other 3 trials, BN showed an extremely low
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percentage ranging from proportion ranging from 0.0% to
3.7%.

CTGAN showed a low proportion ranging from 6.5% to
37.8% for both PFS and OS in all trials.

Figure 3 shows the KM plot for PFS in the NCT00703326
trial. The best-case curves of CART and RF were similar to
the actual data curve. In contrast, for BN and CTGAN, even
the best-case curves deviated from the actual data curve. In
other trials, some SPD did not show a similar trend. How-
ever, at least for the best-case scenarios of CART and RF,
the generated synthetic survival curves closely resembled the
actual survival curve (Multimedia Appendices 11-13).

Figure 4 displays the KM plot for OS in the NCT00460265
trial. Similar to the KM plots for PFS, the best-case curves
of CART and RF resembled the actual data curve, whereas
those of BN and CTGAN deviated from the actual data curve.
These trends were also observed in other trials (Multimedia
Appendices 14-16).

Figures 5 and 6 present box plots of the HRD. When using
CART, the HRD values for both PFS and OS in all trials were
concentrated at approximately 0.9. Conversely, for the other
methods, no consistent trend was observed for either PFS or
OS.

Figure 3. Kaplan-Meier plots for progression-free survival in the NCT00703326 trial. BN: Bayesian network; CART: classification and regression
tree; CTGAN: conditional tabular generative adversarial network; RF: random forest.
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Figure 4. Kaplan-Meier plots for overall survival in the NCT00460265 trial. BN: Bayesian network; CART: classification and regression tree;
CTGAN: conditional tabular generative adversarial network; RF: random forest.

Figure 5. Box plot of progression-free survival hazard ratio distance (HRD) for each method and clinical trial. BN: Bayesian network; CART:
classification and regression tree; CTGAN: conditional tabular generative adversarial network; RF: random forest.
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Figure 6. Box plot of overall survival hazard ratio distance (HRD) for each method and clinical trial. BN: Bayesian network; CART: classification
and regression tree; CTGAN: conditional tabular generative adversarial network; RF: random forest.

Discussion
Regarding the survival SPD, CART often yielded better
results than the other methods in evaluations using MST,
HRD, and visual analysis via KM plots. Given the crucial
importance of the hazard ratio and MST as end points in
oncology trials [26], demonstrating the utility of both of
these evaluation metrics is essential. Therefore, using CART
for generating survival SPD was suggested as a beneficial
approach.

While both CART and RF generally yielded preferable
results across all trials, they share the common characteristic
of using tree models. RF, with its use of the bootstrap method
for resampling and constructing tree models for ensemble
learning, is known to prevent overfitting. In general, in
terms of constructing machine learning models with high
generalization performance, RF performs better than CART.
However, CART is prone to overfitting as the layers of
the tree become deeper [32]. Although RF is considered
a superior method for constructing high–generalization-per-
formance machine learning models, the results from Table
2 and the KM plots in this study suggest that CART is a
better approach than RF. This discrepancy might be due to
differing views on what is a higher performance between the
machine learning prediction model and SPD. In the machine
learning prediction model, it is important to prevent overfit-
ting and reduce bias; however, SPD is expected to match its
statistical properties with actual data. Thus, in the case of
SPD, the overfitting suppression mechanism possessed by RF
might have resulted in inferiority to that of CART from the
perspective of improving similarity.

In the case of using BN, the percentage of MSTSs
falling within the 95% CI of MSTAs was 0% for the PFS
of the NCT00339183 trial, and for OS, this phenomenon
also occurred in the NCT00119613, NCT00339183, and
NCT0046265 trials. This implies that the SPD failed to
accurately reflect the statistical properties of the actual data.
Conversely, a high value of 97.6% was observed for the PFS
in the NCT00703326 trial. The reason for this discrepancy
could not be determined on the basis of the results of this
study. Tucker et al [24] reported that they could generate data
highly similar to actual data when using BN for the genera-
tion of SPD, which differs from our findings. One notable
difference is that while Tucker et al [24] used a large-scale
actual data set of 27.5 million patients for their study, this
study used only a few hundred patients for training data. This
difference likely had a significant impact on the accuracy of
the SPD generation model, resulting in conflicting results.
However, the SPD generated by BN were not distributed in
the direction of shortening PFS or OS. Thus, this would not
be harmful when the SPD generated by BN is used as a more
conservative control arm in clinical trials.

Using CTGAN, the percentage of the MSTSs falling
within the 95% CI of the actual data was low, indicating
low performance associated with the generation of SPD that
reflect the statistical properties of the actual data. However,
Krenmayr et al [23] reported favorable performance results
when using the same generative adversarial network (GAN)–
based methods and RWD. The differences between their
study and our study were as follows: their study did not
include SPD on survival time or generate multiple SPD data
sets from the same actual data, and there was a large amount
of individual patient data in their study. In particular, focusing
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on the amount of individual patient data, the number of
patients in each trial included in this study was relatively
small, with the NCT00119613 trial having 232 patients, the
NCT00339183 trial having 476 patients, the NCT0046265
trial having 260 patients, and the NCT00703326 trial having
382 patients, while the trial conducted by Krenmayr et al
[23] had 500 or more patients. GAN-based methods using
deep neural networks are known to perform poorly with
small amounts of data [25,33]. In this study, although the
NCT00339183 trial had the largest number of individual
patient data, the best case of CTGAN for NCT00339183
produced a KM plot similar to the actual data, suggesting
that a larger data set yields better results. Thus, there is no
contradiction. Another characteristic of using CTGAN in this
study was the larger variance in the estimated MSTSs, as
indicated in Figures 1 and 2. Goncalves et al [34] showed
that using MC-MedGAN, a GAN-based method, to generate
an SPD from small data resulted in a large SD of the data
utility metrics, leading to results with larger variance, similar
to those of this study. Therefore, it is extremely challenging
to generate useful SPD by applying GAN-based methods to
small data sets, such as clinical trial data.

When generating SPDs for survival data and using them
as a certain arm in a clinical trial, it is important to verify
that the statistical properties closely match those of the actual
data with the MST and the hazard ratio with the actual data
being close to 1. Based on our results, we conclude that
CART, which can concentrate the MSTSs within the range
of 95% CI of MSTAs and approximately 0.9 for HRD, is an
efficient method for generating SPD that meets the above-
mentioned conditions. However, even when using CART,
slight variations were observed in the MSTSs, and some
cases fell outside the 95% CI of the MSTAs, as revealed
by our results. Therefore, for practical use, it is necessary
to verify that the MSTSs are included in the 95% CI of the

MSTAs and that both are close in value. It is also necessary
to verify whether the HRD of the actual data and the SPD
are close to 1 and then decide whether to adopt the generated
SPD. Hence, the generation process must be repeated until an
acceptable SPD is obtained. There may also be a need to use
statistical methods to match characteristics between the SPD
and the actual treatment arm in clinical trials.

In this study, even the most useful CART method
produced SPDs that did not meet the requirements of MST
and HRD. We expect that this issue will be addressed
by incorporating feature engineering, such as dimension
reduction, imputing missing values, derived variable creation,
and other processing. Additionally, in clinical research, as
subgroup analyses are frequently conducted, it is necessary
to improve the generation method to reflect the statistical
properties of the actual data even when the data are divi-
ded into subgroups under certain conditions. Moreover, from
the perspective of data privacy, it is essential to incorporate
approaches to prevent data reidentification into the generation
method [35].

In conclusion, as a method for generating SPD for survival
data from small data sets, such as clinical trial data, CART is
the most effective method for generating SPD that meet the 2
conditions of having an MSTSs close to the MSTAs and an
HRD close to 1. However, as SPD might be generated, which
do not meet these 2 conditions, it is necessary to incorporate
mechanisms to improve a CART-based generation method
in future studies. Overcoming these challenges would make
it possible to reduce the recruitment period and costs of
clinical trial participants to ≥50% in comparative trials of new
drug development against existing therapeutic drugs. This
approach could accelerate clinical development, similar to the
use of RWD.
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dashed vertical line represents the median survival time of the actual data, and the light blue background indicates its 95% CI.
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Histogram of the median survival times of the synthetic data for overall survival in the NCT00119613 trial. The dashed vertical
line represents the median survival time of the actual data, and the light blue background indicates its 95% CI.
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Multimedia Appendix 9
Histogram of the median survival times of the synthetic data for overall survival in the NCT00339183 trial. The dashed vertical
line represents the median survival time of the actual data, and the light blue background indicates its 95% CI.
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Multimedia Appendix 10
Histogram of the median survival times of the synthetic data for overall survival in the NCT00703326 trial. The dashed vertical
line represents the median survival time of the actual data, and the light blue background indicates its 95% CI.
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Kaplan-Meier plots for progression-free survival in the NCT00119613 trial.
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Kaplan-Meier plots for progression-free survival in the NCT00339183 trial.
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Kaplan-Meier plots for progression-free survival in the NCT00460265 trial.
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Kaplan-Meier plots for overall survival in the NCT00119613 trial.
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Kaplan-Meier plots for overall survival in the NCT00339183 trial.
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Kaplan-Meier plots for overall survival in the NCT00703326 trial.
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