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Abstract
The growing adoption and use of health information technology has generated a wealth of clinical data in electronic format,
offering opportunities for data reuse beyond direct patient care. However, as data are distributed across multiple software,
it becomes challenging to cross-reference information between sources due to differences in formats, vocabularies, and
technologies and the absence of common identifiers among software. To address these challenges, hospitals have adopted
data warehouses to consolidate and standardize these data for research. Additionally, as a complement or alternative, data
lakes store both source data and metadata in a detailed and unprocessed format, empowering exploration, manipulation, and
adaptation of the data to meet specific analytical needs. Subsequently, datamarts are used to further refine data into usable
information tailored to specific research questions. However, for efficient analysis, a feature store is essential to pivot and
denormalize the data, simplifying queries. In conclusion, while data warehouses are crucial, data lakes, datamarts, and feature
stores play essential and complementary roles in facilitating data reuse for research and analysis in health care.
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Introduction
Over the last few decades, the widespread adoption and use
of health information systems (HISs) have transitioned a
substantial amount of clinical data from manual to electronic
format [1]. HISs collect and deliver data for care, admin-
istrative, or billing purposes. In addition to these initial
uses, HISs also offer opportunities for data reuse, defined
as “non-direct care use of personal health information” [2],
such as research, quality of care, activity management, or
public health [3]. Hospitals have gradually adopted data
warehouses to facilitate data reuse [4,5]. Even if the data
warehouse is a popular concept, data reuse is not limited to

feeding and querying a data warehouse. In this viewpoint, our
objective is to outline the different components of the data
reuse pipeline and how they complement and interconnect
with each other. This definition is derived from our per-
sonal experiences and insights gained through collaboration
with colleagues at various institutions [5-8]. Additionally, we
draw on the collective experiences shared by professionals
in the field, contributing to a comprehensive understanding
of data reuse practices in diverse health care settings. The
pipeline is illustrated in Figure 1 and detailed below. Table 1
compares characteristics of each component. Last, Multime-
dia Appendix 1 provides examples of data, structures, and
architectures for each component of the data reuse pipeline.
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Figure 1. Components of the complete pipeline for data reuse. EHR: electronic health records; ETL: extract-transform-load.

Table 1. Characteristics of each component of the data reuse pipeline.
Characteristics Software Data lake Data warehouse Datamarts Feature store
Content Data and metadata Data and metadata Data Features Features and metadata about

feature
Architecture Distributed Centralized Centralized Centralized Centralized
Detail level Fine-grained Fine-grained Fine-grained Aggregated Aggregated
Data Raw Raw Cleaned Cleaned Cleaned
Nomenclature Heterogeneous Heterogeneous Standardized Standardized Standardized
Data model Normalized Normalized Normalized Normalized Denormalized
Data structure Row-oriented Row-oriented Row-oriented Row-oriented Column-oriented
Purpose Transactional software

purpose
Ad hoc exploratory
queries

All purposes Prespecified
purpose

Prespecified purpose

Ethical Considerations
This study does not include human participants research
(no human participants experimentation or intervention was
conducted) and so does not require institutional review board
approval.

Health Information System
The raw data stored in the HIS are distributed across multiple
software, making it impossible to cross-reference information
between sources due to variations in data formats, ranging
from tabular to hierarchical structures and free text [9].
Different technologies and distinct identification schemes for
patients, admissions, or any other records compound the
complexity. Additionally, direct write access to the soft-
ware databases is typically unavailable, as software editors
rarely grant such privileges to prevent any potential disrup-
tion to routine software operation. In transactional soft-
ware databases, data consist of meticulously organized and
highly accurate records presented in rows. These records are
collected with great precision to fulfill the specific functions
of the software. Alongside the data, a wealth of metadata is
also present, including information regarding data collection
(eg, information on the individuals inputting data, record
timestamps, and biomedical equipment identifiers), as well
as software configurations. Notably, a significant portion of
these metadata may not be directly relevant to our research
purposes, as they primarily support the routine functioning of
the software.

The Data Lake
An optional first component of a comprehensive data reuse
pipeline is the data lake [10-14]. A data lake is a centralized,
flexible, and scalable data storage system that ingests and
stores raw data from multiple heterogeneous sources in its
original format [12,15]. Data are stored in a fine-grained,
row-oriented, and raw format, in a secure and cost-effective
environment. These raw data still encompass diverse formats,
from structured data to unstructured text documents, images,
songs, videos, and sensor data, ensuring that a wide spectrum
of information is readily available for various data analytics
endeavors [12].

The technologies implemented for the data lake can
include the usual relational databases, such as PostgreSQL or
Oracle, but also NoSQL databases and big data technologies,
such as the Hadoop Distributed File System or Apache Hudi
for the storage and Apache Spark, Hadoop MapReduce, or
Apache Kudu for the data processing.

Unlike structured data typically integrated into data
warehouses, the data lake refrains from immediate structuring
or transformation, allowing for a more agile and adapta-
ble approach. This flexibility enables exploration, manipula-
tion, and, if necessary, transformation of the data to fulfill
specific research or analytical requirements. By delaying the
application of predefined data models, the data lake cultivates
an environment where information can be uncovered without
predetermined hypotheses. This includes insights that may not
have been evident during the initial phases of data collection
and storage. The system further facilitates on-the-fly query
processing and data analysis [12,15].
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In a data pipeline without a data lake, it is essential
to finalize the extract-transform-load (ETL) process before
leveraging the data. This introduces a time delay, as it
necessitates identifying relevant data in the HIS, updating
the data warehouse data model for their accommodation, and
subsequently designing and implementing the ETL.

In addition, when interpreting the results, if it becomes
apparent that relevant data are missing for the analysis, it
requires updating both the ETL process and the data model to
incorporate the missing data. This iterative cycle of identify-
ing, modifying, and reimplementing can lead to prolonged
timelines and may hinder the agility of the data analysis
process. Therefore, a data lake approach proves advantageous
in providing a more flexible and dynamic environment for
data exploration and analysis, potentially avoiding some of
these challenges encountered in a traditional pipeline.

The Data Warehouse
The data warehouse stands as the most prevalent compo-
nent of the pipeline and acts as a centralized repository of
integrated data from 1 or more disparate sources [5,8,16-19].
It stores historical and current fine-grained data in a format
optimized for further use. This involves a single storage
technology, a consistent naming convention for tables and
fields, and coherent identifiers across data sources. This is a
departure from the data lake where all these elements varied
between sources.

The data warehouse is supplied through an ETL process
[9,18]. The primary objective of this process is to select and
extract relevant data from the HIS or other external resour-
ces [19]. During this initial phase, the majority of metadata
linked to software operations (such as usage logs or interface
settings), monitors, and individuals inputting data are usually
excluded. Indeed, these types of metadata do not relate to
patient care information and would introduce an unnecessary
volume of data. Subsequently, the ETL process enhances
the raw data by identifying and correcting any abnormal or
erroneous information. Following this refinement, data are
integrated into a unified data model independent of the source
software [9,19]. Notably, there is a strong focus on harmo-
nizing identifiers from diverse data sources to ensure data
integrity and streamline queries involving information from
multiple origins. The ETL process is also responsible for
regularly updating the data warehouse with new information
recorded in the original data sources.

The data warehouse, as a relational database, is typically
implemented using systems like PostgreSQL, Oracle, SQL
Server, Apache Impala, or Netezza. However, for a data
warehouse, exploring NoSQL technologies such as Mon-
goDB, Cassandra, or Couchbase can also be interesting,
offering advantages in handling unstructured or semistruc-
tured data, and providing scalability for large-scale data
storage and retrieval [20]. The ETL process can be developed
using 2 types of technologies. The first one, with program-
ming languages such as R (R Core Team), Python (Python
Software Foundation), or Java (Oracle Corporation), can be

used, coupled with a scheduler like Apache Airflow (Apache
Software Foundation), to organize the execution of scripts
and retrieval of logs and error messages. The second kind
of application is graphical user interface software, such as
Talend (Talend) or Pentaho (Hitachi Vantara). They do not
require programming capacities, because graphical compo-
nents, corresponding to data management operations, are
organized through a drag-and-drop interface.

To foster collaboration among institutions and facilitate
the sharing of tools, methods, and results, several initia-
tives have emerged to offer common data models (CDM).
As a result, table and field names are standardized follow-
ing a common nomenclature, and local vocabularies and
terminologies are mapped to a shared vocabulary. Among
these CDMs, the Observational Medical Outcomes Partner-
ship CDM was developed by the Observational Health Data
Sciences and Informatics community, which brings together
multiple countries and thousands of users [21] and led to
methodological and practical advancements [22,23].

As a result, the data warehouse functions as a unified,
centralized, and normalized repository, for both fined-grained
historical data and metadata, and continues to present
information in a row-oriented format. The modeling approach
presented by Inmon [24] and described as a “subject-orien-
ted, nonvolatile, integrated, time-variant collection of data”
implies that data are stored persistently without any assump-
tions as to their future use, thus remaining open-ended in their
usage.

The Datamarts
While the data warehouse serves as a unique standardized
repository, primarily dedicated to data storage, querying these
data can be time-consuming due to the volume and distribu-
tion of data in the relational model. Furthermore, raw data
integrated into the data warehouse may not be readily aligned
with specific research or analytical questions, as these data
lack the necessary aggregated features. For instance, the data
warehouse retains all biological measurements (eg, potassium
and sodium), while what will be stored in the datamart are the
features related to the biology values, such as the occurrence
of hypokalemia, hyperkalemia, hyponatremia, or hypernatre-
mia. Thus, the datamart acts as a dedicated resource for
transforming the data into usable and meaningful informa-
tion [19,25,26]. This transformation process involves feature
extraction, achieved through the application of algorithms and
domain-specific rules [6,7]. The outcome is data that are
tailored to address specific research questions or analytical
needs. For instance, within a clinical setting, the datamart
can convert raw mean arterial pressure values into a format
suitable for detecting perioperative hypotension [5].

Moreover, datamarts can be organized in the form
of online analytical processing (OLAP) cubes, offering a
multidimensional view of the data [27]. This cubical structure
allows for in-depth analysis, enabling users to efficiently
explore and navigate across various dimensions such as
time, geography, or specific categories, gaining profound and
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contextualized insights. These datamarts are often modeled in
either a snowflake or star schema, optimizing their structure
for the creation of OLAP cubes. The star schema, with its
central fact table surrounded by dimension tables, or the
snowflake schema, which further normalizes dimension tables
to minimize data redundancy, both serve to facilitate the
creation of these OLAP cubes. Such schemas play a pivotal
role in enhancing the efficiency of multidimensional data
analysis within the OLAP environment, providing a struc-
tured framework for faster and more comprehensive insights.

In the context of health care, an example of an OLAP
cube could encompass dimensions such as patient (eg, age
and gender); time (eg, admission and discharge dates);
medical conditions (eg, primary and secondary diagnoses
and medical procedures); hospital unit (eg, information on
services, departments, and bed types); health care provider
(eg, physicians); and outcome (eg, length of stay, treatment
outcomes, and medical costs). The cube would include
various facts, such as the number of patients, average length
of stay, and average treatment costs. This multidimensional
structure allows health care professionals to conduct in-depth
analyses, explore trends over time, compare costs across
different hospital units, and assess the impact of medical
interventions on patient outcomes [19,28].

Datamarts, owing to the structured nature of their data,
are typically stored on relational databases (eg, PostgreSQL,
Oracle, and SQL Server) [25]. In the case of OLAP cubes,
this may include Apache Kylin or other proprietary OLAP
tools built on relational databases [28,29].

In contrast to Inmon’s [24] approach, the Kimball [9]
bottom-up approach places datamarts at the core, with their
design driven primarily by business requirements. However,
by directly developing datamarts, the Kimball approach may
overlook some crucial data that were not initially identified as
relevant during the business requirements phase.

As a result, the datamart stands as a centralized component
for cleaned and aggregated features for dedicated purposes,
still stored in row-oriented structure.

The Feature Store
The feature store addresses the limitations of the traditional
row-oriented, relational database structure typically used in
datamarts. This architecture, which relies on multiple tables,
may not fully meet various analytical requirements. For
instance, effective statistical analysis often necessitates a
single, flat file with column-oriented variables, mandating the
transformation of data from a row-based to a column-based
format within the feature store. This process streamlines
data access, simplifying complex queries into straightforward
selections from a single table. Consequently, the feature store
emerges as a centralized repository housing well-documen-
ted, curated, and access-controlled features. In addition to
features extracted from datamarts, which are often calcula-
ted by algorithms derived from business rules, the feature
store can also receive features generated by machine learning
algorithms [30].

The design of the feature store aims to provide data
scientists with direct access to these features, eliminating the
need for additional data cleaning, aggregation, or pivoting
[31]. This specialized role enhances efficiency and promotes
the use of high-quality, analysis-ready data, significantly
contributing to the effectiveness of data-driven research in
the health care organization. Notably, the feature store not
only stores the features themselves but also their associated
metadata, documenting how they were calculated and used
[31]. It ensures the preservation of all feature versions,
guaranteeing the reproducibility of analyses.

When derived from business rules, features are stored
in relational databases (eg, PostgreSQL, Oracle, and SQL
Server) or in a NoSQL data store such as MongoDB to
also store metadata. When features originate from machine
learning models, they are stored and shared from big data
platforms such as Databricks or Hopsworks [30,32].

As the final component of the data reuse pipeline, the
feature store plays a pivotal role in various analytical
applications within the health care organization. It signifi-
cantly contributes to the creation of insightful dashboards
and automated reports, delivering real-time and historical
information. In research, its most crucial contribution lies in
generating denormalized flat tables, similar to questionnaire
data tailored for statistical analyses.

Conclusions
In this opinion paper, we propose standardized nomenclature
and definitions for the components of a data reuse pipeline.
Table 2 summarizes the advantages and limitations of each
component in this pipeline.

While the data warehouse serves as a necessary initial
stage, the integration of datamarts and a feature store
enhances its effectiveness. Datamarts compute pertinent
information from raw data, while the feature store organizes
it into columns, streamlining data set construction. Addi-
tionally, the data lake emerges as a valuable resource for
storing raw data in a single location, allowing for exploitation
without having to wait for the entire pipeline to be developed.

Notably, in a data pipeline without a data lake, the
requirement to complete the ETL process before analysis
introduces delays. This involves identifying relevant data
in the HIS, adapting the data warehouse data model, and
implementing the ETL. Additionally, discovering missing
data during result interpretation prompts iterative updates
to both the ETL process and the data model, potentially
prolonging timelines and hindering data analysis agility.

It is important to emphasize that the specific components
and their characteristics described here are not rigidly fixed
and can vary based on the unique organizational needs and
configurations. For instance, the inclusion of a data lake and
feature store is often discretionary, influenced by factors such
as the scale and intricacy of source data, the quantity of
features, the scope of research projects, the team’s size, and
the imperative for study reproducibility over time.
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Table 2. Advantages and disadvantages of the components of the data reuse pipeline.
Component Advantages Disadvantages
Data lake • All data sources on the same server

• Independence from source software
• On-the-fly query processing and data

analysis without the need for the
complete development of an extract-
transform-load (ETL) process

• Inconsistencies in data formats and
structures

• Lack of standard schema can make
querying complex

• Analyses reproducibility

Data warehouse • Querying data from both administrative
and biology systems is facilitated by
the unified data model (ie, data from
both systems are linked, and the model
conventions are consistent)

• Relevant data are retained at the finest
level of detail (eg, dates, diagnoses,
and all biology values), enabling the
answering of numerous questions without
necessarily identifying them beforehand

• ETL process must be implemented to
standardize the data

• Multidimensional data model with several
statistical units

• Fine-grained data is not directly usable and
adapted for statistical analysis or decision-
making

Datamarts • Features are ready to be used directly • Features are still organized with a
row-format (ie, 1 feature per row) in several
datamarts

Feature store • Using features directly, without the
need for data management tasks such
as joining datamarts or pivoting to
reorganize features into columns

• Having developed the entire pipeline
beforehand
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