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Abstract

Background: Event analysis is a promising approach to estimate the acceptance of medication alerts issued by computerized
physician order entry (CPOE) systems with an integrated clinical decision support system (CDSS), particularly when alerts
cannot be interactively confirmed in the CPOE-CDSS due to its system architecture. Medication documentation is then
reviewed for documented evidence of alert acceptance, which can be a time-consuming process, especially when performed
manually.

Objective: We present a new automated event analysis approach, which was applied to a large data set generated in a
CPOE-CDSS with passive, noninterruptive alerts.

Methods: Medication and alert data generated over 3.5 months within the CPOE-CDSS at Heidelberg University Hospital
were divided into 24-hour time intervals in which the alert display was correlated with associated prescription changes.
Alerts were considered “persistent” if they were displayed in every consecutive 24-hour time interval due to a respective
active prescription until patient discharge and were considered “absent” if they were no longer displayed during continuous
prescriptions in the subsequent interval.

Results: Overall, 1670 patient cases with 11,428 alerts were analyzed. Alerts were displayed for a median of 3 (IQR 1-7)
consecutive 24-hour time intervals, with the shortest alerts displayed for drug-allergy interactions and the longest alerts
displayed for potentially inappropriate medication for the elderly (PIM). Among the total 11,428 alerts, 56.1% (n=6413)
became absent, most commonly among alerts for drug-drug interactions (1915/2366, 80.9%) and least commonly among PIM
alerts (199/499, 39.9%).

Conclusions: This new approach to estimate alert acceptance based on event analysis can be flexibly adapted to the automated
evaluation of passive, noninterruptive alerts. This enables large data sets of longitudinal patient cases to be processed, allows
for the derivation of the ratios of persistent and absent alerts, and facilitates the comparison and prospective monitoring of
these alerts.

JMIR Med Inform 2024;12:e54428; doi: 10.2196/54428

Keywords: clinical decision support system; CDSS; medication alert system; alerting; alert acceptance; event analysis

https://medinform.jmir.org/2024/1/e54428 JMIR Med Inform 2024 | vol. 12 1e54428 | p. 1
(page number not for citation purposes)


https://doi.org/10.2196/54428
https://medinform.jmir.org/2024/1/e54428

JMIR MEDICAL INFORMATICS

Introduction
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Methods

Computerized physician order entry (CPOE) systems with
integrated clinical decision support systems (CDSS) can
reduce medication errors by highlighting critical medication
constellations [1]. To realize their full potential, medica-
tion alerts must be recognized and followed by users.
Hence, measuring “alert acceptance” is a key prerequisite for
evaluating the effectiveness of a CDSS.

In principle, two methods can estimate alert acceptance:
(1) in-dialog analysis where users interactively click to accept
or override displayed alerts; and (2) event analysis where the
medication chart and associated documentation are reviewed
for evidence of alert acceptance through further actions
(“events”) responsive to the alert (eg, discontinued medica-
tion orders), which often requires extensive manual screening
[2]. Most studies addressing alert acceptance used in-dialog
analyses because the display of alerts, especially in English-
speaking countries, is part of the technical architecture of
the CPOE-CDSS [3]. There is limited evidence on how to
perform event analyses because it is uncertain whether the
prescribing behavior is influenced by alerts or other clini-
cal therapeutic circumstances (eg, scheduled end of treat-
ment) [2]. Moreover, the manual screening of the medication
documentation is a time-consuming process [4], especially
when administrative processes such as changing wards and
the simultaneous transfer of physicians’ responsibility for the
medication are considered in the alert presentation.

As CDSS installations presenting passive, noninterruptive
alerts become increasingly popular in European countries
[5,6], the need for developing and validating techniques for
automatic event analyses is increasing. This is particularly
important when considering all alerts throughout the inpatient
stay.

We present a new approach to perform an automated event
analysis, which was applied to a large data set of medication
alerts.

Ethical Considerations

Study approval was granted by the responsible Ethics
Committee of the Medical Faculty of Heidelberg University
(5-467/2020) and by the local data protection officer for the
data protection concept. Human subjects were not directly
involved; all data were pseudonymized and could neither be
linked to individual patients nor to prescribers.

Setting

We analyzed the prescription and alert data issued over 3.5
months during routine care at Heidelberg University Hospital
(a 2500-bed tertiary care hospital) within the local CPOE
(i.s.h.med Smart Medication, Oracle Cerner, North Kansas
City, USA) with an integrated CDSS (AiDKlinik, Dosing
GmbH, Heidelberg, Germany). To view the presented passive
and noninterruptive alerts, users actively navigate from their
prescription screen to a separate window that opens upon
request. In this window, all alerts are displayed in a single
table sorted by severity and presented with a brief sum-
mary (Figure 1). Users are required to click on each alert
to access more detailed information. The system does not
recognize whether an alert has been viewed. Additionally,
users are not obliged to directly flag alerts as accepted or
overwritten. Therefore, these data are not available in our
CPOE-CDSS. Implemented alert types comprised check-
ing for drug-drug interactions (DDIs), drug-allergy interac-
tions (DAISs), duplicate prescriptions (DPs), advanced dosing
recommendations for potentially inappropriate medication for
the elderly (aged =65 years, PIM), or prescriptions exceeding
the maximum recommended daily dose (PE-MDDs).

Figure 1. Schematic display of an exemplary alert window listing all alerts for a patient in a table. Each alert is presented in a separate line, sorted by
severity, with the most severe alerts listed first. The first column displays the alert type in a color-coded scheme (black=contraindicated, red=severe,
orange=moderate), followed by an explanation for the severity, a brief description of the problem, and the name of the causative drug.
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Alert type Brief description Brief description of Name of the
of severity the problem causative
drug
Drug-drug interaction Severe Clinically sericusinteraction Ciclosporin—
Pravastatin
Drug-allergy interaction Patient is allergicto Direct allergy buprofen
substance
Duplicate prescription Multiple prescibed Duplicate prescription Onycodone
preparation
Moderate Potentially clinically relevant buprofen —
moderate interaction Ciclosporin
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Data Collection

The relevant parameters extracted from the CPOE-CDSS
were information on prescriptions, issued alerts, administra-
tive patient data, and setting data. Prescription schedules
with regimen changes were documented as separate entries
so that prescriptions potentially resulting from previous
prescriptions (eg, because of dose reduction or conversion
of fixed to as-needed prescriptions) could be linked retroac-
tively. Follow-up prescriptions were defined as prescriptions
of the same drug and administration route when the previous
prescription ended and the subsequent one started within 10
minutes.

Alert Management

In this CDSS, prescriber review of alerts may result in alerts
disappearing due to prescription changes and adaptations or in
alerts being continuously displayed for unchanged prescrip-
tions.

In this methodology, alerts are defined as “absent” when
they disappear during continuous prescriptions for which
underlying risk constellations no longer exist (eg, dose
reduction of an overdosed prescription but the prescription
itself remains continuous). In contrast, alerts consistently
displayed until patient transfer, discharge, or end of the
prescription are categorized as “persistent” (eg, the pre-
scription remains valid even though the prescribed active
ingredient is alerted by a DAI).

Data Analysis

To automatically identify absent alerts, the medication and
corresponding alert data were divided into 24-hour time
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intervals. Since reproducible time stamps were lacking in the
database, selection of this conservative interval allowed the
retroactive linkage of alert display and associated changes
in the corresponding prescription. Therefore, two consecutive
time intervals were compared according to whether or not
the alerts were continuously displayed. Alerts were excluded
if (1) they were first displayed on the discharge day (Fig-
ure 2, Alert 4); (2) required user interaction (eg, answering
questions to decide whether conditions for alerts are present);
or (3) were triggered by one-time prescriptions, in which case
the alert response cannot be assessed the next day (Supple-
mentary Methods section A and Figure S1 in Multimedia
Appendix 1). The display duration of alerts (DDoA) was
calculated from the time interval between the first and last
alert display (Figure 2). Further details on the development
of the 24-hour time intervals can be found in Supplementary
Methods section B in Multimedia Appendix 1; examples of
data analysis of different alert types are provided in Tables
S1-S3 and Figure S2 of Multimedia Appendix 1.

Based on the exploratory rates of absent alerts, basic
descriptive statistics were applied. The y? test was performed
to evaluate whether absent alerts differed stratified by alert
types considering a two-tailed P value <.05 as significant
(IBM SPSS Statistics version 25, Ehningen, Germany). The R
packages gpmodels [7], survival, and ggplot2 (version 4.1.2,
R Foundation for Statistical Computing, Vienna, Austria)
were used for data analysis and visualization.

Figure 2. Proposed methodology for identification of absent alerts, exemplified for a 5-day inpatient stay. Each midnight (dotted lines), all alerts
displayed within the last 24-hour time interval were identified. Alert 1 is displayed between day 1 (admission) and day 4; the display duration of
alerts (DDoA) is 4 days. Alert 2 is displayed from day 2 until discharge; the DDoA is 4 days. Alert 3 is displayed only on day 3; the DDoA is 1
day. Alert 4 is displayed for the first time on the day of discharge and remained until discharge; the DDoA is 1 day. Alert 4 was excluded from the
analysis because, due to the discharge, there is no subsequent (sixth) 24-hour time interval with which the fifth interval could have been compared to
evaluate the alert display. Each alert could be identified because of a unique alert ID code. Using this identification concept, alert IDs detected within
a 24-hour time interval could be compared to alerts detected in the previous 24-hour time interval. Therefore, it was possible to automatically classify
which alerts were (1) newly displayed (no matching ID in the previous interval: Alert 1, Day 1), (2) displayed for more than 24 hours (matching ID in
consecutive intervals; Alert 1, Days 2-4), or (3) absent (no matching ID in the current 24-hour time interval: Alert 1, Day 4).
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Results

Alert Display and Composition

We considered the data of 1670 patient cases (Figure S3
in Multimedia Appendix 1) with a median hospital stay of
7 days (IQR 4-13). During this time, 13,979 alerts were
displayed. Because 2284 alerts (16.3%) were triggered by
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one-time prescriptions and 267 alerts (1.9%) were first
displayed on the discharge day, the remaining 11,428 alerts
(81.8%) formed the basis for analysis. The alert types
triggering the alerts are shown in Table 1.

The median DDoA was 3 days (IQR 1-7) and varied by
alert type, with alerts for DAIs showing the shortest DDoA
(Table 1).

Table 1. Alert types triggering the alerts, corresponding rates of absence, and display duration of the alerts.

Display duration of alerts (days),

Absent alerts, n (%)b median (IQR; range)

Alert type Triggered alerts, n (%)*
Alerts for duplicate prescriptions 7643 (66.9)

Alerts for drug-drug interactions 2366 (20.7)

Alerts for drug-allergy interactions 517 (4.5)

Alerts for potentially inappropriate medication for the 499 (4.4)

elderly

Alerts for prescriptions exceeding the maximum 403 (3.5)
recommended daily dose

Total number of alerts 11,428

3674 (48.1) 3(1-8; 1-31)
1915 (80.9) 2(1-5; 1-31)
416 (80.5) 1(1-2; 1-24)
199 (39.9) 4(2-8; 1-31)
209 (51.9) 3 (1-6; 1-30)
6413 3(1-7; 131)

2percentages are based on the total number of analyzed alerts (N=11,428).

bPercentages are based on the number of analyzed alerts for each alert type.

Absent and Persistent Alerts

From all 11,428 analyzed alerts, 43.9% (n=5015) persisted
and 56.1% (n=6413) were absent, with alerts for DDIs
showing the highest rate of absence (80.9%) and PIMs the
lowest (39.9%) (Table 1).

The proportions of absent alerts differed significantly
between the individual alert types (P,2<.001), except for DDI
alerts compared to DAI alerts (P,2=.80) and for DP alerts
compared to alerts for PE-MDDs (P,2=.14). The proportion
of absent alerts in relation to the DDoA was the highest
for DAI alerts and the lowest for alerts for PIMs in the
first 24 hours after admission (Figures S4-S5 in Multimedia
Appendix 1).

Discussion

Principal Findings

A new methodological approach for routine care data was
applied performing an automated event analysis that is
transferable to other CPOE-CDSS with passive, noninter-
ruptive alerts. In previous studies using event analyses,
alert acceptance rates were identified at the drug adminis-
tration level [8], prescription level [9], or at both levels
[10]. There is general consensus that alert acceptance rates
vary widely depending on the measuring method and study
setting, resulting in different and incomparable rates [11].
Since in-dialog analysis is often not possible in a European
CPOE-CDSS, this new methodology adapted to the technical
structures of such a CPOE-CDSS is needed.

A key strength of the proposed method is that it vari-
ably adjusts the time intervals and consequently the look-
back windows underlying the method’s programming. Thus,
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temporary changes in prescriptions within the determined
time interval (here 24 hours) are considered persistent alerts;
however, this CPOE-CDSS interrupts the alert display in
certain cases, such as when patients change wards and
responsibility for medication is handed over to another
physician. This transfer results in automatic prescription
pauses that are actively suspended by physicians, technically
leading to the redisplay of alerts. Without the definition of
this time interval, these pauses would incorrectly increase the
overall number of alerts when reappearing and the rate of
absent alerts as they disappear for a few hours during valid
prescriptions. Hence, this method considers administrative
processes of the daily clinical routine and guarantees that
only alerts of real prescription changes are evaluated. For
retrospectively matching the time-dependent correlations of
the alerts over time and in the clinical routine, it is essential to
consider alerts throughout the inpatient stay and our proposed
method meets this need.

However, according to the technical architecture of this
CPOE-CDSS, there is no obvious link between reviewing
alerts and possible resulting changes in prescription data.
Therefore, various assumptions had to be made for this data
evaluation. Alerts were categorized as either persistent or
absent based on the assumptions that alerts were regularly
checked and that alerts disappeared because underlying risk
constellations no longer existed due to previously displayed
alerts. This general assumption may overestimate the rate
of actual alert acceptance, as a prescribed medication could
be switched based on patient conditions (eg, adverse events,
intolerance) or treatment schedules. As it remains unclear
whether the change in drug prescriptions was caused by the
alert display or due to other variables and because no control
group was available due to the retrospective design, caution is
required when interpreting absolute numbers and comparing
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the proportion of absent alerts to previously published
acceptance rates. In the future, this retrospective method
will need to be prospectively evaluated including validity
measurements by comparing the results of this automated
approach with those derived from manual screening. Another
limitation is that this study was conducted in a single center
with a CPOE-CDSS that is highly specific and strongly
adapted to workflows and care processes at our institution.
This analysis only considered alerts at the prescribing level
and did not measure whether the respective drugs were
indeed administered. For instance, many of the alerts for DPs
were triggered by drugs that were prescribed as as-needed
prescriptions. Hence, these DPs tended to indicate a vari-
ety of treatment options rather than actually being adminis-
tered together. This might have contributed to the reduced
occurrence of the absence of alerts for DPs on a prescrib-
ing level compared to other alerts. However, in our CPOE-
CDSS, it is unalterably stipulated that medication alerts are
implemented in a passive and noninterruptive way. While
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it may be challenging to transfer this complex method to
systems with differing data infrastructures, to our knowledge,
this is the first automated method for processing persistent
and absent medication alerts in a system with passive,
noninterruptive alerts. Additionally, since this method was
programmed in a modular way, it seems feasible to transfer
and adapt it to other settings.

Conclusions

A methodology was applied to an automatic event analysis in
a CPOE-CDSS with passive, noninterruptive alerting. This
enables the processing of large data sets of longitudinal
periods of inpatient stays and can be used to automatically
derive the percentage of absent alerts. Once implemented,
this analysis can be repeated at any time and one could even
imagine that real-time monitoring of persistent alerts in daily
clinical routines could be set up using these data for future
optimization of the CPOE-CDSS.
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Description of one-time prescription and illustration of its impact on the alert display (Figure S1). Description of the develop-
ment of 24-hour time intervals, with exemplary data sets for fixed variables (Table S1), time-dependent variables (Table
S2), and an exemplary time frame of processed longitudinal alert data (Table S3). Data analysis examples for different alert
types (Figure S2). CONSORT (Consolidated Standards of Reporting Trials) diagram for included patient cases (Figure S3).
Proportions of absent (Figure S4) and persistent (Figure S5) alerts stratified by the alert type.
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