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Abstract

Background: Proper analysis and interpretation of health care data can significantly improve patient outcomes by enhancing
services and revealing the impacts of new technologies and treatments. Understanding the substantial impact of temporal shifts
in these data is crucial. For example, COVID-19 vaccination initially lowered the mean age of at-risk patients and later changed
the characteristics of those who died. This highlights the importance of understanding these shifts for assessing factors that affect
patient outcomes.

Objective: This study aims to propose detection, initial characterization, and semantic characterization (DIS), a new methodology
for analyzing changes in health outcomes and variables over time while discovering contextual changes for outcomes in large
volumes of data.

Methods: The DIS methodology involves 3 steps: detection, initial characterization, and semantic characterization. Detection
uses metrics such as Jensen-Shannon divergence to identify significant data drifts. Initial characterization offers a global analysis
of changes in data distribution and predictive feature significance over time. Semantic characterization uses natural language
processing–inspired techniques to understand the local context of these changes, helping identify factors driving changes in patient
outcomes. By integrating the outcomes from these 3 steps, our results can identify specific factors (eg, interventions and
modifications in health care practices) that drive changes in patient outcomes. DIS was applied to the Brazilian COVID-19
Registry and the Medical Information Mart for Intensive Care, version IV (MIMIC-IV) data sets.

Results: Our approach allowed us to (1) identify drifts effectively, especially using metrics such as the Jensen-Shannon
divergence, and (2) uncover reasons for the decline in overall mortality in both the COVID-19 and MIMIC-IV data sets, as well
as changes in the cooccurrence between different diseases and this particular outcome. Factors such as vaccination during the
COVID-19 pandemic and reduced iatrogenic events and cancer-related deaths in MIMIC-IV were highlighted. The methodology
also pinpointed shifts in patient demographics and disease patterns, providing insights into the evolving health care landscape
during the study period.

Conclusions: We developed a novel methodology combining machine learning and natural language processing techniques to
detect, characterize, and understand temporal shifts in health care data. This understanding can enhance predictive algorithms,
improve patient outcomes, and optimize health care resource allocation, ultimately improving the effectiveness of machine
learning predictive algorithms applied to health care data. Our methodology can be applied to a variety of scenarios beyond those
discussed in this paper.

(JMIR Med Inform 2024;12:e54246) doi: 10.2196/54246
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Introduction

Overview
Health care data are a critical resource that can be used to
improve patient outcomes and the financial performance of
health care institutions [1,2]. By analyzing patient data, health
care providers can gain insights into patients’ health status,
identify trends, and make informed decisions about treatment
plans. Properly collected, managed, treated, and interpreted
health care data can help providers improve operational
efficiency and reduce costs, thereby improving financial results
[3].

One of the primary ways health care data can be used to enhance
medical decisions and potentially improve patient outcomes is

through predictive analysis. This technique uses historical data
to identify patterns and predict future outcomes, thereby
enabling the recognition of high-risk patients, the simulation
of different therapeutic approaches, and the personalization of
patient care. However, relying on historical data has its caveats,
as the predictive capacity of different variables is not fixed over
time. Ignoring these aspects of temporal data may lead to
prediction errors and learning instabilities. These variations in
performance are part of what is known as temporal data shifts
[4-7].

A temporal data shift refers to a change in the statistical
properties of a data set over time, which can degrade model
accuracy. In health care, this may occur due to various reasons,
including changes in data collection practices, software updates
or replacements, changes in patient behavior or lifestyle habits,
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and the introduction of new therapeutic technologies. These
temporal events may lead to inconsistencies and discrepancies
in the data, which may affect both the accuracy and reliability
of the data and models trained on them. The impacts can be
significant [4,7], as they can lead to incorrect diagnoses,
inappropriate treatment plans, and poor patient outcome
predictions. This highlights the importance of managing,
characterizing, and mitigating these temporal effects [8].

We are particularly interested in how temporal data drifts can
be used to analyze the effectiveness of new patient treatment
options. Changes in predictive capacity can provide insights
into the impact of new treatments on patient outcomes. For
instance, by comparing data collected before and after
introducing a new treatment, we can identify any shifts that may
indicate improved patient outcomes. If the data drift analysis
indicates a positive impact of the new treatment, health care
providers may choose to continue to monitor the data to ensure
that the positive effects are sustained while maintaining the use
of the new therapeutic option [9].

A notable example of a condition that experienced an important
data drift over time is the HIV infection. In the 1980s, HIV
infection was a strong predictor of early death. However, it has
now become more of a chronic condition, such as diabetes
mellitus or systemic hypertension. In the same manner,
advancements in breast cancer treatment have significantly
increased survivorship over the years [10].

Similarly, several infectious diseases, such as poliomyelitis or
measles, have been nearly eradicated in most parts of the world,
making them unlikely hypotheses for new diagnoses [11,12].
In the case of COVID-19, vaccination has dramatically changed
the profile of hospitalizations and deaths [4,13], initially
decreasing the mean age of patients at risk and creating a clear
distinction between the periods before and after vaccination.

Our Main Contribution: The Detection, Initial
Characterization, and Semantic Characterization
Methodology
Building upon the idea of analyzing data drifts to obtain insights
into how and whether new technologies or treatments have
impacted patient outcomes, this paper proposes a novel, 3-step
health care temporal analysis methodology, called detection,
initial characterization, and semantic characterization (DIS).
The proposed DIS methodology is summarized in Figure 1. It
consists of three main steps, (1) detection, (2) initial
characterization, and (3) semantic characterization, which are
described in the following sections.

In summary, we exploited various drift detection metrics in the
detection step to identify any significant instances of data drift.
Some of the metrics we explored in this step include
Jensen-Shannon divergence [14], autoencoder reconstruction
error [15], and centroid distances [16]. If changes were detected,
we proceeded to the initial characterization step, where we
obtained a global (data set–level) descriptive analysis of what
changed and how the discriminative and predictive power of
each feature and the distribution of labels evolved over time.

Additionally, we introduced the concept of temporal granularity
in the data drift domain, which holds particular significance in
health care data drifts and influences the instantiation of our
third and final step. High temporal granularity is observed when
a data set allows the visualization of numerous events over time
for individual patients, with a clear understanding of the
chronological order among these events. Conversely, low
temporal granularity is observed when each patient is considered
a singular event in time, lacking clarity regarding the precedence
or sequence of different attributes.

Finally, guided by these principles, we proceeded to the third,
semantic characterization step, which exploits concepts
popularized in the natural language processing (NLP) domain
to provide a localized (instance-level) perspective of why certain
shifts occurred. To achieve this, we exploited vector embeddings
derived from health care events, such as sequences of the
International Classification of Diseases (ICD) codes, vital data
measurements, and consumption items. Each of these semantic
units (ICD codes, measurements, consumed items, etc) was
treated as an “event” or, in NLP terminology, a “token.” By
using NLP-inspired techniques to create semantic embeddings
for these entities, we aimed to uncover insights into the changing
context and its impact on the outcomes of interest over time.

Before delving into the details of each step in our methodology,
it is crucial to emphasize that our DIS approach differs
significantly from common practices. While conventional
methods usually involve an ad hoc combination of techniques
for data collection, qualitative data processing and extraction,
and data analysis, our DIS methodology offers a planned and
structured procedure, as illustrated in Figure 1. This procedure
delineates the required steps to understand data drift in health
care data. As we will demonstrate and discuss, these steps can
be tailored to various case studies by applying different
techniques depending on specific data characteristics. We also
offer guidance for selecting one particular approach for a given
scenario. Furthermore, we discuss how the results of each step
can inform the execution of the following ones and how the
combined results of all steps can support our understanding of
the drift.

More broadly, to the best of our knowledge, this is the first
study to examine data drifts in health care from a technology
incorporation standpoint. Rather than solely focusing on
enhancing the robustness of machine learning (ML) models,
we delved into the underlying factors driving temporal shifts
in patient outcomes. Our aim was to study the impact of
emerging technologies such as new drugs, patient care policies,
or vaccines. In the following sections, we detail the steps of our
DIS methodology and illustrate its application in 2 case studies
with distinct characteristics in terms of temporal data shifts: the
Brazilian COVID-19 Registry data set [17] and the Medical
Information Mart for Intensive Care, version IV (MIMIC-IV)
data set [18]. By doing so, we illustrate how DIS can obtain
insights into the reasons behind some real-life data drifts, as
well as their potential impacts, both positive and negative, from
a health care perspective.

The main contributions of this paper are summarized in Textbox
1.
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Figure 1. Overview of the detection, initial characterization, and semantic characterization (DIS) methodology.

Textbox 1. Main contributions of our study.

Contributions

1. The proposal of a new data drift characterization and analysis methodology, detection, initial characterization, and semantic characterization
(DIS), that is flexible enough to work on different scenarios. DIS encapsulates and cohesively organizes a sequence of necessary steps for data
drift analysis.

2. A new semantic analysis step based on natural language processing embeddings for temporal understanding, which focuses on comprehending
the context of relevant outcomes by examining changes in their embedding vectors over time. By incorporating such semantic techniques, DIS
provides deeper insights into the reasons behind temporal changes, especially when combined with domain-specific knowledge. This approach
allows for a more nuanced analysis of data evolution over time, capturing complex patterns and relationships that may not be apparent with
traditional methods such as cluster analysis.

3. The application of the DIS methodology to 2 different case studies with very different temporal granularity profiles illustrates the possibility of
conducting insightful analyses using the methodology. We also offer guidelines to aid practitioners in making informed decisions about which
methods to use in each step of our methodology, based on particular characteristics of the data. This demonstrates the generalizability and
applicability of DIS across different scenarios.

Methods

A Detailed Description of the DIS Methodology

Detection Step
In step 1 (detection), the main focus is on assessing whether the
data have relevant temporal variations. Monitoring and detecting
such data drifts are crucial for upholding the accuracy and
reliability of ML models and for identifying beneficial and
detrimental changes in health care caused by interventions, such
as the introduction of new treatments or drugs. From the
perspective of a health care service or company, this step
identifies whether changes are occurring, potentially prompting
further investigations that could enhance service efficiency over
time.

For the detection step, we recommend splitting the data into
temporal chunks and then comparing the data distributions in
consecutive chunks. A drift is detected whenever the
distributions of distinct chunks exhibit significant differences.
Various metrics to compare empirical distributions are available
in the literature. These metrics have different characteristics
and underlying principles, which may lead to relevant
differences in their effectiveness in detecting temporal data
drifts. In this work, we considered the following metrics:
centroid cosine distance [16], Jensen-Shannon divergence [14],
autoencoder reconstruction error [15], classifier error (in

separating 2-time chunks) [19], and principal component
analysis (PCA) reconstruction error [20] metrics.

The centroid cosine distance metric assesses changes in the
central points of data clusters over time and is sensitive to
numeric outliers, particularly in heavy-tailed distributions
where extremes can be multiple orders of magnitude larger than
typical values. The PCA reconstruction error captures variations
in data structure by quantifying the difference between original
and reconstructed data. Similarly, autoencoder reconstruction
error focuses on reconstruction accuracy. Both metrics measure
the “novelty” of a data point and are sensitive to numerical
outliers. By contrast, the classifier error evaluates a model’s
ability to distinguish past from future data, providing insights
into how drift affects predictive capabilities. Finally, the
Jensen-Shannon divergence quantifies distributional changes,
offering a broader perspective on underlying data distribution
shifts over time. While reconstruction errors and centroids excel
at detecting local outliers and structural changes, the
Jensen-Shannon divergence and classifier error provide a more
comprehensive view of distributional shifts, making them
valuable for modeling the impact of temporal drifts on data
distributions.

As an example, our prior analysis of the Brazilian COVID-19
Registry [17] revealed a data drift that significantly impacted
the death prediction task, suggesting that vaccination had a
pivotal role in the profiles of hospitalized and deceased patients
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during the COVID-19 pandemic [4]. Although this is an
interesting finding, the previous study did not present a proper
structure to detect, monitor, and interpret such drifts generically,
nor did it propose mechanisms to detect semantic information
associated with specific outcomes.

The drift caused by vaccination can be initially hypothesized
by comparing the data distributions of consecutive chunks (eg,
near future vs recent past) using a classification approach. This

involves monitoring the prediction model’s performance over
time using metrics such as accuracy, precision, and recall.
Alternatively, the distribution of different features over time
can be tracked using metrics such as Jensen-Shannon divergence
or autoencoder reconstruction errors. If the model’s performance
drops (or changes) significantly over time or if the differences
between the metrics exceed a certain threshold, it may indicate
a data drift. A summary of this monitoring loop is illustrated in
Figure 2.

Figure 2. The temporal drift monitoring loop. We usually observe temporal shifts as important variations in model effectiveness over time.

Initial Characterization Step
Once a drift has been detected, we proceed to step 2 (initial
characterization), where we begin to understand, from a global
perspective (all data), how the data have changed (Table 1 [21]).
This stage focuses on developing a general (global)
comprehension of the whats and hows contributing to the
changes observed in the data collection. Specifically, we are
interested in characterizing variations in both dependent P(y)
and independent P(x) variables, as well as the conditional
probability of the dependent variables given the independent
variables P(y|x). To reach these goals, we examine how P(y)
has changed by plotting its frequency over time; the same is
valid for P(x). For P(y|x), we can explore different
complementary techniques that can help understand the drifts
globally. We can analyze how the different correlation metrics
between the top independent variables and the dependent
variable change over time, for instance, with Pearson [22] or
Spearman [23] correlations, or analyze the feature importance
of tree-based learners or entropy-based measures such as
information gain or chi-square over time [24]. Another
possibility is to exploit explainability metrics based on game
theory, such as Shapley additive explanations values [25].

“Sudden drift” describes a situation where changes are abrupt
and usually caused by a single event, such as a change in data

collection practices, where an attribute stops being collected.
“Incremental drift” describes gradual and directional changes
in a data distribution, such as the observed increase in the
populations with overweight and obesity over the past years.
“Gradual drift” is similar but does not imply directional changes.
Instead, it encompasses other gradual changes, such as the slow
change in the hospital admission profile over many years.
Finally, “reoccurring drift” refers to a drift pattern that repeats
over time, such as the seasonal increase in emergency services
admitting patients with influenza during predictable seasons of
the year.

This type of analysis facilitates understanding how the
relationship between predictive variables and the outcome of
interest has evolved from a global perspective. Additionally, it
is helpful to check the rate of change for each selected outcome
by using similarity metrics and comparing the different groups
of patients over time. At this stage, it is feasible to answer
valuable research and business questions. For instance, we may
observe a decreased likelihood of the “death” outcome in a
given population, such as patients with COVID-19 or patients
with breast cancer. We may also spot changes in the profiles of
the patients who had adverse outcomes. Following these initial
insights, the subsequent task is to understand why such changes
happened, the goal of step 3.

JMIR Med Inform 2024 | vol. 12 | e54246 | p. 5https://medinform.jmir.org/2024/1/e54246
(page number not for citation purposes)

Paiva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Drift types concerning the passing of time, according to Moreno-Torres et al [21]a.

DescriptionData drift type

Abrupt and unexpected changes in the dataSudden drift

Gradual and continuous changes over timeIncremental drift

Slow and steady changes in the data distributionGradual drift

Periodic or repetitive shifts in the dataReoccurring drift

Semantic Characterization Step
In step 3, the main focus is to learn why the changes we observed
in step 2 happened. This step integrates fundamental research
and business value into our methodology and is heavily
dependent on the temporal granularity of the data under
evaluation. To the best of our knowledge, this is the first study
to examine data drifts in health care from a technology
incorporation standpoint. For instance, as mentioned earlier,
we may have already learned, as a result of step 1, that a given
disease or condition, such as COVID-19, had a decreased
lethality over a specific time period. Given this information,
what will add value to health care services is the discovery of
which repeatable interventions within this time frame can be
consistently beneficial.

We begin step 3 by proposing a novel NLP-inspired technique
based on token embedding techniques, such as Word2Vec [26],
to detect local or individual changes in outcome contexts over
time. We opt for NLP-inspired techniques because they
effectively model and comprehend “semantics” and “contexts.”
In this context, we treat each patient as a “document” and any
temporally discrete health care event or information, such as
disease codes or items used during a hospital stay, as a “token”
(ie, the equivalent of a “word” or a “subword” in NLP). For
instance, the underlying premise is that a patient’s semantics
can be understood by examining their diseases and consumption
history. On the basis of on this representation, we characterize
which entities or outcome groups have undergone the most
significant changes regarding their defining characteristics in
comparison to a baseline or initial time chunk. This assessment
assumes a setting where we have an outcome y and the task of
predicting this outcome using independent variables X. This
characterization can be achieved by comparing the distance of
each class’s centroid to a reference centroid, where a “centroid”
represents the arithmetic mean of each patient’s features.

The procedure to compute each of these centroids is explained
in Multimedia Appendix 1. In this figure, we show a simplified
view of 2 groups of patients in 2D and how the centroids are
calculated to be at the spatial “center” of the groups by averaging
their attributes. We can compare different centroids using either
a cosine distance or a cosine similarity (equation 1). This type
of analysis can guide our research toward a specific hypothesis,
filtering down to the pattern changes in specific outcomes, such
as death or the need for mechanical ventilation during a hospital
stay.

(1)

In equation 1, the cosine distance is simply 1 –cosine similarity.

The centroid of each class in the first (time) chunk will be
analyzed over time, providing insights into which outcomes
(eg, death vs nondeath or hospitalization vs nonhospitalization)
underwent the most significant changes. From this observation,
we can focus our analysis on the interest group. This approach,
which will be further illustrated in our experiments, allows us
to compute semantic distances among patients, between patients
and outcomes, and among different outcomes.

To apply step 3 to a data set, we need to remember that health
care data come in different temporal and semantic granularities.
For instance, data sets such as the Brazilian COVID-19 Registry
(details presented in the DIS Instantiation for the Brazilian
COVID-19 Registry Data Set section) treat each patient as a
single data point, characterized by atomic temporal granularity,
where temporal effects are observed only at a populational level.
In data sets with such low temporal granularity, it is as if all
events happened simultaneously at the patient level, and we
know only the relationship between those events and the
patients. In these cases, modeling the relationships between
entities and their resulting semantic vectors may require
techniques such as graph vectorization.

On the other extreme, data sets with high temporal granularity,
such as MIMIC-IV (details presented in the DIS Instantiation
for the MIMIC-IV Data Set section), present patients existing
within their own timelines, as well as at the populational level.
Furthermore, MIMIC-IV has different levels of semantic detail,
such as sequential disease codes that could be aggregated into
broader groups based on their chapters (eg, both “prostate
cancer” and “breast cancer” could be grouped under the
“neoplasms” disease code chapter).

In both cases, we would first refer to step 2 to identify suitable
candidates for the NLP-inspired modeling. In the case of
MIMIC-IV, as demonstrated later, the data show a gradual and
trending shift over time, with in-hospital mortality consistently
decreasing over the years. Given this pattern and the granularity
available in these data, we create sequences of discrete
information tokens to elucidate the observed variations for each
patient, such as ordinal disease codes or chapters, if a more
compact set of possible semantic units is desired.

JMIR Med Inform 2024 | vol. 12 | e54246 | p. 6https://medinform.jmir.org/2024/1/e54246
(page number not for citation purposes)

Paiva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Finally, we can append “artificial tokens” at the appropriate
positions on each patient’s sequence, such as a “death” token
at the end of the sequences of deceased patients or an “ICU”
token when the patient is transferred to the intensive care unit
(ICU), if applicable. With these sequences, we can obtain
semantic vectors representing diseases, patients, or outcomes.
Following this process on discrete temporal chunks, such as
years or months, we obtain distinct outcome tokens for each
temporal chunk (eg, “death 2020” and “death 2021,” effectively
separating the same outcome over 2 years). With this, it is
possible to compare the tokens, examining their relative distance
and semantic similarity to each other and other tokens. This
allows the identification of what has become more or less similar
to the analyzed outcome over time.

Next, we will illustrate the application of our methodology to
the 2 aforementioned case studies, with different temporal
granularities. The 2 cases are very different in terms of their
temporal granularity, volume, and nature of data, demonstrating
the generalization capability of DIS.

DIS Instantiation
We illustrate the application of DIS to analyze temporal shifts
by using the MIMIC-IV [18] and the Brazilian COVID-19
Registry data sets [17].

The MIMIC-IV data set is a comprehensive, open-access, and
deidentified in-hospital patient record containing sequential
diagnosis data; consumption items; vital data records;
unstructured eHealth data (text data); and clinical notes for
approximately 40,000 ICU patients from 2008 to 2019, designed
for research in health care and medical science [18]. In this data
set, age is reported in age groups, which is a requirement for
deidentification.

The Brazilian COVID-19 Registry is a multicenter retrospective
cohort of 10,897 patients with a confirmed diagnosis of
COVID-19 admitted between March 2020 and December 2021
from 41 different Brazilian hospitals. For the purpose of the
present analysis, variables collected at hospital presentation and
at patient discharge were used. The data set consists of >200
features, including known comorbidities, patient’s age and sex,
laboratory tests (such as complete blood count, C-reactive
protein, and arterial blood gas analysis), vital signs at hospital

presentation (ie, arterial blood pressure, respiratory rate, and
heart rate), and clinical outcomes [17].

As mentioned earlier, we chose these 2 case studies, as they
illustrate scenarios where the available data have very different
temporal granularity characteristics, meaning the patient’s
timeline can be reconstructed from the data at either a local
(individual) or a populational level.

Ethical Considerations
This study was approved by the Ethics and Research Committee
of the Federal University of Minas Gerais (CAAE
70801523.7.1001.5149).

Results

Overview
The MIMIC-IV data set comprised 299,712 patients (median
age 48, IQR 29-65 years), while the Brazilian COVID-19
Registry data set comprised 10,898 patients (median age 60,
IQR 48-71 years).

Figure 3 illustrates how the DIS methodology is instantiated
concerning the data’s temporal granularity for each scenario.
As explained, DIS consists of 3 steps (detection, initial
characterization, and semantic characterization). The temporal
granularity of the available data affects specifically the last step
(semantic characterization). The figure also shows that several
methods can be applied for the detection step. In our
experiments, we tested and compared 5 different methods
regarding their capability of accurately identifying temporal
drifts in the detection step. In the second step, different
exploratory techniques that measure the relationship between
the dependent P(y) and independent P(x) variables over time
can be used. We exploited multiple alternative techniques, such
as feature importance and Pearson correlation. Finally, in the
last step, our aim was to generate semantic embeddings for
outcomes and other health care events over time and to derive
insights from comparing these embeddings. We tested two
different alternatives for producing such insights: (1) using our
semantic embedding modeling and (2) using traditional
clustering techniques over the untreated (original) data without
the semantic treatment. The goal of using these 2 techniques
was to illustrate insights that can be obtained with the semantic
layer, which would be difficult to obtain otherwise.
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Figure 3. Overview of the instantiation of the detection, initial characterization, and semantic characterization (DIS) methodology to 2 scenarios with
different temporal granularities. (A) Medical Information Mart for Intensive Care, version IV (MIMIC-IV) DIS instantiation and (B) Brazilian COVID-19
Registry DIS instantiation. ICD: International Classification of Diseases; PCA: principal component analysis.

DIS Instantiation for the MIMIC-IV Data Set
A notable characteristic of this data set is its high temporal
granularity, enabling the tracking of time progression within
each individual’s hospital stay. High temporal granularity means
we know the sequence of health care events at the individual
level. This facilitates obtaining invaluable insights into the
relationships between such events, much like it helps us learn
about the semantics of words in NLP. It has been consistently
shown that the order of precedence between words and how
often they appear with other words are representative of those
words’ semantics [26]. We claim that the order of precedence
and cooccurrence between health care events can also contain
the “semantics” of those events. A distributed representation
built from these relationships could cluster similar health care
events, such as the representation of different types of diabetes
or hypertension and their associated complications, in close
proximity in the space. Although all dates in the data set are
anonymized for privacy reasons, we can track each individual’s
sequence of events using the provided masking of dates. This
date masking is consistent in a manner that allows for time
tracking during each patient’s hospital stay, and it contains a
special attribute that allows for the association of patients with
the yearly interval during which they were hospitalized. These
yearly interval data allow us to compare how patients in each
year group behaved as a group, meaning we can also measure
temporal effects at the populational level. The period covered
by these data set ranges from 2008 to 2019.

In other words, the data set offers temporal granularity at both
the population and individual levels. However, breaking this
data set into arbitrary temporal chunks is challenging because
the dates are masked. Despite this, the data set contains a
nonmasked anchor year group that assigns each patient to an

actual year interval during which they were hospitalized.
Multimedia Appendix 2 explains how this variable works.
Essentially, a random time delta is fixed for each patient and
added to all relevant dates, effectively masking them while
preserving the relative time intervals for that patient.
Consequently, direct comparison of dates between 2 different
patients is not feasible, except for their “anchor_year_group”
variables. For instance, a patient hospitalized in 2015 may have
(through the added random time delta) dates that appear later
than those of a patient hospitalized in 2020. We can only directly
compare dates within the context of each patient. The real year
interval during which each patient was hospitalized is preserved
in their ”anchor_year_group“ variable, which we use in all
chunking for this data set henceforth.

DIS: Detection Step (MIMIC-IV)
As described, the temporal chunks in MIMIC-IV were given
by the “anchor_year_group” variable. We used this variable to
separate patients into the 4 groups provided within the data set.
We then used alternative drift detection approaches, namely
Jensen-Shannon divergence, autoencoder reconstruction error,
PCA reconstruction error, centroid distances, and classifier
prediction error in separating time chunks plot for this data set
considering in-hospital ICD diagnosis. The Jensen-Shannon
divergence formula is shown in equation 2, where KL is the
Kullback-Leibler (KL) divergence [27], and P and Q are the 2
variables being compared.

We started step 1 of DIS with the drift detection substep. As
previously described, the temporal chunks in MIMIC-IV were
identified through the “anchor_year_group” variable. We used
this variable to separate patients into the 4 groups provided
within the data set. Figure 4 shows the Jensen-Shannon
divergence plot for this data set considering in-hospital ICD
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diagnosis. The Jensen-Shannon divergence is shown in equation
(2), in which KL is the KL divergence, P and Q are the 2
variable distributions being compared, and we compute na
average of each possible KL divergence combination between
the two distributions. Since the KL divergence is asymmetric,
the calculation described can be interpreted as a symmetric
divergence between the two distributions. This metric was
tracked to evaluate whether the data distributions changed over
time, how fast they changed, and whether the data shift was
temporary.

JSD(P||Q) = 1/2 KL(P||M) + 1/2 KL(Q||M) (2)

In equation 2, KL is the KL divergence, M is 1/(P + Q), and P
and Q are the distributions of the variables we compared.

Figure 4 presents the results of our drift detection metrics,
applied to the various “anchor_year_groups” in the MIMIC-IV
data set. The figure depicts the normalized magnitude of the
drift signal calculated per “anchor_year_group.” The drift
signals were normalized in the 0 range for visualization, as
shown in equation 2. The results for the Jensen-Shannon
divergence, PCA reconstruction error, and centroid cosine
distances revealed a trend toward increasing distance between
the variable distributions over time, which did not revert to prior
levels, suggesting a gradual temporal shift. As seen in
Multimedia Appendix 2, this drift occurred gradually over
several years, with a more pronounced change between the first
2 temporal chunks.

By contrast, when examining the autoencoder reconstruction
error and classifier error metrics, a peak divergence was
observed in the second time chunk (2011-2013), which gradually
trended toward the baseline. As models with more parameters,
these 2 drift metrics were sensitive to a combination of the data
distribution, novel data points (ie, rare diseases or diseases not
present in the reference time slice), and numerical outliers in
the case of the autoencoder reconstruction error. For example,
the disease codes appearing in the second chunk had the smallest
intersection with the reference chunk, meaning they had the
fewest diseases occurring concurrently in both chunks. This
likely explains why the autoencoder reconstruction error and
classifier error metrics exhibited their highest peaks in this slice.

In summary, the Jensen-Shannon divergence metric yielded
more robust drift signals in our tests. It is important to note that
the best metric depends on the most relevant type of drift for
the data collection being analyzed. The Jensen-Shannon
divergence is robust at detecting distribution changes, just as
robust as the classifier error metric. If we are interested in
detecting the occurrence of outliers or novel samples not seen
before, the reconstruction errors might result in better detection.
The choice of metric must be informed by the characteristics
of the metrics themselves as well as the characteristics of the
data stream being monitored.

NormalizedSignal = (X – min[X])/(max[X] – min[X]) (3)

As show in equation 3, normalization is used to calculate the
normalized magnitude of the drift signal.

Figure 4. Different drift detection metrics over time on the Medical Information Mart for Intensive Care, version IV (MIMIC-IV) data set, considering
in-hospital International Classification of Diseases (ICD) diagnosis. PCA: principal component analysis.

DIS: Initial Characterization Step (MIMIC-IV)
After establishing that a drift has indeed occurred, especially
based on the results of the most accurate method, the
Jensen-Shannon divergence, we proceeded to step 2. In this
step, we strived to understand how the independent variables
(P(X)) affect the outcome, which is our dependent variable
(P(y|X)), and how the relationship between dependent and
independent variables changes over time. This analysis can be
accomplished by examining changes in correlations and feature

importance over time, as well as by characterizing the
distribution of different features over time. For instance, in
Multimedia Appendix 3, we show how the relative distribution
of the “death” outcome has changed over time in this data set.
This means that our data exhibit a consistent trend toward
in-hospital mortality reduction over time, which indicates a
change in the relative distribution of the 2 possible categories
(deceased × not deceased) for this outcome.

In Figure 5, we show the correlations and feature importance
variations of the top 5 most correlated and the top 5 most
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predictive ICD chapters (according to ICD-10) and the “death”
outcome (according to feature importance). For instance, Figure
5A shows some expressive variations, such as how circulatory
system diseases seem to grow more correlated with death over
time, Figure 5B shows how neoplasms seem to become less
predictive of death over time.

In Multimedia Appendix 4, we show how the different outcome
groups behave over time from given baseline, in particular the
patterns of independent variables given the outcome categories
P(y|X) observed in the first temporal chunk. To obtain this result,
we computed the arithmetic mean of each class’s features in
each “anchor_year_group” and calculated the cosine distance
between these means over time, taking the first chunk as a

reference to compare all other chunks against it. In this particular
figure, we represent each patient as a “corpus” containing all
their health care events (such as diseases and medications used
during the hospital stay), then encode each feature as a 1-hot
sparse matrix (each event can have the value “0,” if it did not
happen for a particular patient, or “1,” if it did), and
subsequently average these features. Notably, this representation
treats each patient as a “bag of health care events,” disregarding
the order of precedence between those events, unlike what we
did in our semantic characterization step. In the specific case,
we show how the “death” outcome exhibits greater temporal
drifts over the available time chunks in both data sets compared
to the overall hospitalized patient population.

Figure 5. (A) Pearson correlations between the top 5 International Classification of Diseases (ICD) chapters (according to ICD-10) most correlated
with the death outcome over time. (B) Feature importance among the top 5 ICD chapters most predictive of the death outcome over time.

DIS: Semantic Characterization (MIMIC-IV)
In Table 2, we show the top 5 ICD-10 chapters that have become
more and less similar to the “death” outcome over time. Notably,
certain diseases, such as neoplasms, have become less similar,
while others, such as malformations and circulatory system
diseases, have become more similar. That is consistent with the
findings in step 2, and over the next few paragraphs, we describe
the procedure to obtain this similarity score. We explain the
token-level vectorization process for both dependent and
independent variables in Figure 6. First, we compiled a
temporally ordered list of patient data, consisting of discrete
data points such as items consumed during hospital stay
(antibiotics, anti-inflammatories, etc), disease codes (using
ICD), and procedures. At the end of each patient’s sequence,
we appended the outcome category for that patient. To classify
the outcome, we divided binary outcomes into distinct tokens,
such as “deceased” and “not deceased,” and used the
corresponding token to generate our training corpus. Continuous
outcomes and dependent variables could be binarized using a
simple histogram binarization scheme, as demonstrated in the
next analysis. Following the corpus generation, we used it to

train token embeddings with Word2Vec [26]. This method
produced embedding vectors for both dependent and
independent variables, allowing semantic comparisons between
different entities, such as the ”death“ outcome and different
disease codes. We created 1 outcome token for each outcome
category and temporal chunk in our data set. This allowed us
to evaluate how an outcome such as “death” may have drifted
closer to or farther from certain diseases or procedures over
time.

In Multimedia Appendix 5, we show the top 5 conditions that
became more similar to the “death” token and the top 5
conditions that became less similar when comparing the first
and last time chunks. Since every entity is a “token,” we could
evaluate similarities between diseases and disease chapters,
between patients and diseases they have not yet been diagnosed
with, and between outcomes and diseases (Multimedia Appendix
5). In particular, in Multimedia Appendix 6, we demonstrate
changes in similarity for the “dysphagia following stroke” ICD
code within the MIMIC-IV data set [18]. Our analysis revealed
a rise in the simultaneous appearance of ICD codes related to
obesity between the periods of 2011 to 2013 and 2017 to 2019.
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This trend aligns with broader observations indicating an uptick
in obesity rates across the United States. Importantly, it is
essential to recognize that this method does not permit the
establishment of causal relationships; rather, it emphasizes
changes in correlation and cooccurrence.

The step 3 analysis can also be conducted at different levels of
granularity to gain a deeper understanding of the observed
changes. From step 2, it can be inferred that mortality has been
decreasing and has some relationship with particular disease
groups. If step 3 is performed at the disease code level, as shown
in Multimedia Appendix 6, chapters that had considerable shifts
in their similarity to the “death” outcome, either increasing or
decreasing similarity, can be identified. For instance, the
findings confirm what is illustrated in Figure 6, where “cancer”
shows a decreasing similarity to the outcome, while the
variable “circulatory diseases” exhibits an increasing similarity
to the outcome. This observation is further supported by the
results shown in Multimedia Appendix 7, where an absolute
increase in the number of patients with cancer over time is
shown, associated with a relative decrease in in-hospital
cancer-related deaths between 2008 and 2019.

To further illustrate how the proposed DIS semantic analysis
based on embedding distances among entities of interest can
help in better comprehending the reasons for the drifts, we
contrasted the previous analyses of our third step with a
traditional clustering analysis for the MIMIC-IV data set. This
analysis used a syntactically oriented term frequency–inverse
document frequency (TF-IDF) [28] representation for the
entities, built from the same corpus of clinical entities. In a
TF-IDF representation, each dimension corresponds to a unique

term (word) in the document corpus. The value in each
dimension reflects the importance of that term in a specific
document, calculated by multiplying the term’s frequency in
the document (term frequency) by the inverse frequency of the
term across all documents (inverse document frequency). In our
case, each “document” was a patient, and each “word” was a
health care event, such as the identification of a novel disease.
We applied a spectral clustering [29] procedure to the TF-IDF
representation of the entities to create the clusters. The results
are shown in Figure S8. To obtain the 4 clusters displayed in
Multimedia Appendix 8, we used a silhouette analysis using 2
to 15 clusters.

Multimedia Appendix 8 shows the top 5 most frequent diseases
for each of the 4 clusters (y-axis). On the x-axis, we present the
index of each cluster. Multimedia Appendix 8 shows how the
relative frequency of each cluster changed over each
“anchor_year_group.” A few points stood out from the clustering
analysis illustrated in Multimedia Appendix 8. As it can be
observed, the cluster analysis using syntactically oriented vectors
made it harder to interpret the drivers of a data drift when
compared to DIS. For instance, some semantically similar
diseases, such as “other and unspecified hyperlipidemia” and
“hyperlipidemia, unspecified,” may have very distinct profiles
in different clusters, such as in clusters 0 and 2, each having a
high concentration of patients with either one of these diseases.
The main problem of this particular cluster analysis based on
syntactically oriented representation is the separation of
semantically similar entities into distinct clusters. In DIS, similar
entities will be represented similarly and thus analyzed in
conjunction.

Table 2. Change in similarity by ICDa chapter.

DirectionChange in similarityICD chapter

Less similar–0.14Diseases of the nervous system

Less similar–0.12Diseases of the musculoskeletal system

Less similar–0.10External causes of morbidity and mortality

Less similar–0.08Diseases of the digestive system

Less similar–0.02Neoplasms

More similar+0.40Congenital malformations

More similar+0.35Diseases of the circulatory system

More similar+0.30Diseases of the genitourinary system

More similar+0.25Endocrine, nutritional, and metabolic diseases

More similar+0.20Diseases of the skin and subcutaneous tissue

aICD: International Classification of Diseases.
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Figure 6. How to generate semantic vectors? We start by generating a corpus of temporally ordered patient discrete data points. Then, we vectorize
the tokens of this corpus using Word2Vec to obtain semantic vectors for dependent and independent variables. ICD: International Classification of
Diseases.

DIS Instantiation for the Brazilian COVID-19 Registry
Data Set
The median age was 60 (IQR 48-71) years, and 21.72%
(2367/10,898) were women (5012 patients). In this data set,
21% of registered patients died, yielding an unbalanced
classification problem when predicting future deaths. The data
set has low temporal granularity, with only 1 data point per
patient, which precludes time tracking during hospital stays.
Consequently, we could measure time only at the populational
level. In other words, unlike the previous case study, there was
a single “snapshot” for each patient, with no temporal evolution
at the individual level.

DIS: Detection Step (Brazilian COVID-19 Registry
Data Set)
As in the previous case study scenario, we evaluated the same
5 alternative techniques, namely the PCA reconstruction error,
autoencoder reconstruction error, classifier error (in separating
past vs future), and Jensen-Shannon divergence. All these
metrics measure the drift compared to a reference temporal slice
and do not require setting a specific outcome or using labeled
data.

The outcomes of this procedure are illustrated in Figure 7, where
the divergence sharply increases starting from the final quarter
of 2020, based on the Jensen-Shannon divergence metric.
Numerically, a drift is indicated in this interval as the divergence
levels surpass a user-defined threshold, such as a fixed threshold
of 2 SDs or a threshold informed by domain expertise. As
depicted in the figure, the PCA reconstruction error, autoencoder
reconstruction error, and centroid cosine distances indicate
positive drift signals in the quarter starting from April 2020.
During this semester, the Brazilian COVID-19 Registry data
set exhibited a small number of numeric outliers, which were
identified by these methods. Conversely, the Jensen-Shannon
method signaled a data drift in the quarter starting from October
2020, which aligns with the “official” start of the second wave
in Brazil in November 2020. Meanwhile, the classifier error
method indicated a drift in July 2020, which falls between the
identification of numeric outliers and the actual distribution
change from the first wave to the second wave. Both the
Jensen-Shannon method and the classifier error method signaled
drift closer to known actual changes, while the other, more
reconstruction-based methods were more sensitive to numeric
shifts, which were not necessarily associated with changes in
the underlying distributions.

JMIR Med Inform 2024 | vol. 12 | e54246 | p. 12https://medinform.jmir.org/2024/1/e54246
(page number not for citation purposes)

Paiva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. Different drift detection metrics over time in the Brazilian COVID-19 Registry data set. PCA: principal component analysis.

DIS: Initial Characterization Step (COVID-19)
Once a drift was detected, we proceeded with the second DIS
step, initial characterization. This step aims to understand the
main drivers (“what”) of changes during the considered period
and “how” they affect the underlying outcomes. At a high level,
this begins with the characterization of the changes in the
outcome (the independent variable) over time. In Figure 7, we
illustrate this upon evaluating the variation in COVID-19–related
mortality in our data set. This example displays a trend toward
a reduction in the death outcome over time. At the initial
characterization step, it is expedient to examine the distribution
of the outcome of interest (death, ICU admissions, etc) as well
as those of the most predictive independent variables (eg, those
with the highest correlation with the desired outcomes or higher
feature importance in a tree-based classifier).

To guide the next steps, it is helpful to check how much each
outcome category’s properties (such as the mean age of the
deceased patient population or the prevalence of hypertension)
have changed over time. In particular, focusing on which
outcomes have changed the most helps target specific subsets
of the data that could better explain the observed phenomena.
We show an example in Multimedia Appendix 9, where we
analyzed such variations in the Brazilian COVID-19 Registry
data set. To build the graphs in this figure, we split our data set
into time chunks. For each chunk, we separated all patients into
classes according to their outcome (eg, dividing the population
into deceased and nondeceased and then representing the chunk
by averaging all of the patient’s features in each category). For
each subgroup of patients within the same time chunk and
sharing the same outcome, we computed the centroid of that

class (the arithmetic mean of all attributes). We then took the
first chunk as a reference and compared each class’s chunk
arithmetic mean to the reference using a cosine distance.
Multimedia Appendix 9 shows how much the deceased patients’
characteristics changed more than those of the overall
population during the same period.

A better comprehension of the drift drivers during the
COVID-19 pandemic emerges from Figure 8. As shown in
Figure 8A, we observed how the overall best predictors of death
changed over time through Pearson correlation analysis
conducted each trimester on the data set. At the beginning of
the pandemic, age was the single best predictor of death, in
trimesters 0 and 2. As the vaccination campaign started, older
adults were prioritized and received immunization first. This
led to a progressive deterioration of the predictive value of age,
as well as an overall decrease in mortality (Multimedia
Appendix 10), culminating in the latest trimester, where age
was the worst predictor among the top 5 variables. In Figure
8B, it can be seen that the median age of the deceased patient
population over time.

In summary, the second step revealed that the COVID-19 data
showed a progressive decrease in patient mortality (Multimedia
Appendix 10), with a more pronounced change in the group of
deceased patients (Multimedia Appendix 9). It was also possible
to notice that the overall characteristics of the patients who were
dying changed abruptly (Figure 8). From the remaining
characterization steps in Figure 8, we can see that age lost its
predictive capacity (Figure 8A) over time, while clinical features
such as the patients’ fraction of inspired oxygen (FiO2) became
better predictors of death. Concurrently, there was a reduction
in the median age of patients who were dying (Figure 8B).
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Figure 8. (A) Pearson correlations over time for the overall top 6 most predictive variables in the Brazilian COVID-19 Registry data set. (B) Median
age of hospitalized patients dying from COVID-19.

DIS: Semantic Characterization (COVID-19)
Following the conclusions from the previous step, we moved
further into the semantic characterization step. As the Brazilian
COVID-19 Registry data have low temporal granularity and
most of their features are continuous, what requires data
categorization to enable the use of NLP techniques to treat words
and other semantic units.

Subsequently, due to low granularity at the individual level,
we needed to model relationships between these now-discrete
entities. In more detail, we assumed that the temporal precedence
between events imposes a relationship between them and that
this relationship can be learned and embedded into a
distributional representation. The issue with low temporal
granularity data is that the order of precedence is not known;
hence, it is not possible to model it directly. Therefore, we
modeled all health events (from the perspective of a single
individual) as if they happened simultaneously. Therefore, in
this setting, we modeled the passing of time only from the
perspective of the population and not from the perspective of
the individual. This means that we only knew, for instance, that
a given patient had events (such as new diseases or use of
medications) 1, 2, and 3, but we did not know the order of
precedence between these attributes, something that was explicit
in the MIMIC-IV data due to high temporal granularity. We
began by discretizing the continuous features with a histogram
discretizer, which essentially breaks the data intervals into
“equal width segments” and then assigns a “token” (ie, a string
or integer value) that is unique to patients having that attribute
in that specific range of values.

After that, we created a graph with patients, discretized
continuous attributes, discrete attributes, and outcomes, such
as the one in Figure 9. To build this graph, we connected each
patient to their attribute tokens and outcomes while creating
one outcome token for each time chunk under analysis. Finally,
we embedded the graph using a node embedding algorithm such
as Node2Vec [30]. We contrasted this procedure with the one

adopted to characterize the MIMIC-IV data set (Figure 10). As
discussed before, in MIMIC-IV, the temporal order is defined
at the individual level, with entity relationships determined by
the timeline. By contrast, the Brazilian COVID-19 Registry
data set presents events as occurring “simultaneously” at the
patient level, limiting the understanding of relationships between
events and patients. In this case, to derive semantic vectors
representing entity relationships, we approached it as a graph
vectorization problem.

To analyze the resulting model, we compared the outcome
embedding vectors to evaluate their similarity to each other and
to other patient attributes. We show the results of this procedure
in Multimedia Appendix 11. From that, it is evident that the
2021 death outcome token increased in similarity to lower age
groups, such as age groups 18 to 39 years and 40 to 61 years,
while decreasing in similarity to older age groups, such as age
groups 62 to 83 years and 84 to 105 years. This observation
further validates the previous findings and introduces new
elements not captured in earlier steps. We could also see an
increase in similarity to lower admission heart rates and lower
admission serum sodium values, as well as lower FiO2 at
admission, showing a shift in disease severity markers over this
time frame.

As mentioned earlier, for comparative purposes, to emphasize
the semantic capabilities of the proposed DIS procedures, we
compared our semantic-step results with those obtained through
traditional clustering analysis for the Brazilian COVID-19
Registry data set (Multimedia Appendix 12). In this analysis,
entities were represented by a syntactically oriented TF-IDF
representation. In Multimedia Appendix 12, we show the top 5
highest-value features for each of the 6 clusters selected using
the silhouette analysis, as was done for the MIMIC-IV case. In
Multimedia Appendix 12, we show how the relative frequency
of each cluster changed over time in each trimester.

Similar to the MIMIC-IV case, the clustering analysis of the
COVID-19 data was not as straightforward to interpret as the
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DIS analysis when searching for the drivers of data drift. For
example, we identified a cluster of patients who underwent a
“transplant” and another cluster of patients with diabetes
mellitus type 2, but the reasons why these particular clusters

were selected and the reasons for the drifts could not be easily
derived through a straightforward analysis of these syntactically
oriented clusters.

Figure 9. Example of how to create a patient graph with tokenized dependent variables and temporal outcome tokens.

Discussion

Comparison With Prior Work
Multiple studies have analyzed variations observed over time
in class distributions and model effectiveness and their overall
impacts. Studies such as Salles et al [31] and Mouro et al [32],
for instance, performed a detailed characterization of such
effects in textual data sets of documents organized into topics.
Health care data, however, are quite different from simple text
data [31,32]. To begin with, this type of data is multimodal,
including tabular and sequential information in the form of vital
measurements, disease code diagnosis, and items consumed
during a hospital stay, as well as common text, images, wave
forms, and sometimes even sound waves. Furthermore, the data
may experience sudden and specific drifts driven by new
medications, vaccines, surgeries, and public policies [9]. For
example, an effective vaccine may cause the eradication of a
disease, resulting in a subsequent data drift [33]. While most
studies on health care data focus on either drift detection or drift
adaptation [33,34], our work is unique in that it focused on drift
detection, monitoring, and characterization. We advanced the
existing literature by leveraging these 3 steps to pursue
explanations for health care data drifts.

Concerning terminologies and problem-setting definitions,
Gama et al [35] defined data changes as being related to the
distribution of the independent variables P(X) and dependent
variables P(y) or the conditional probability of dependent
variables for given independent variables P(y|X). Works unified
and consolidated some of the underlying terminologies [21,36].
As defined by Lu et al [36], data and concept drifts can be
categorized based on how they behave over time, being (1)
sudden (ie, 1 event permanently changes the “meaning” of a

concept), (2) incremental (ie, 1 event incrementally generates
gradual changes to the ”meaning” of a concept), (3) gradual (ie,
the concepts interchange gradually until the complete shift
occurs), or (4) reoccurring (ie, a transient concept drift).

Approaches to detect and learn in the presence of concept drifts
do exist. However, in most contexts, naively monitoring data
drifts may be expensive, as it often requires data labeling. As
an alternative approach, Haque et al [37] used an ensemble of
classifiers to report their prediction confidences and monitor
changes in their confidence distribution to detect when a concept
drift occurred. In the data sets used in this paper, however,
deaths are readily available labeled data, which means that our
main issue was related to learning in the presence of a data drift.

A common approach to drift detection is monitoring model
outputs, as in the study by Sahiner et al [38]. These “model
monitoring” approaches are not always possible or desirable;
for instance, Tiwari and Agarwal [39] argued that labels are a
resource that is not always available and suggested exploring
other options, such as detecting drifts by monitoring changes
in the underlying data distributions. Following this idea, we
propose a drift monitoring procedure that is independent of
labels and focuses on distribution changes over time.
Additionally, Tiwari and Agarwal [39] provide a comprehensive
review of useful health care data type classification and data
drift management strategies in data streaming scenarios. Textbox
2 details the categorization of health care data proposed by these
authors.

In addition to the categorization mentioned in Textbox 2, Tiwari
and Agarwal [39] discussed the use of sampling in diverse forms
to handle data streams and drifts. In health care data, it is
common to encounter massive data sets encompassing multiple
years and thousands of patients. For such cases, sampling may
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be a viable option. Given the size and nature of our data sources,
we opted to work with the complete data set available instead
of using sampling. The decision to use sampling should be
evaluated depending on the type of ML algorithm used, the
available computing capabilities, and the data set size.

Drift detection has multiple beneficial impacts on health care.
Once detected and treated, a drift can be used to help maintain
and enhance model effectiveness. Additionally, it can be useful
to detect whether a new treatment is changing the outcomes of
a disease in a meaningful manner or even understand
populational trends to derive health policies. A recent example
is the COVID-19 pandemic. This topic was explored in the
studies by Jung et al [41] and Jassat et al [42], which showed
differences in hospitalized patient profiles as new COVID-19
waves spread. Another study has explored how the death
prediction task evolved throughout the pandemic, showing that
factors such as vaccination changed the profile of patients who
were severely ill [4]. These characterizations can help in the
detection of important pandemic events, such as the impacts of
vaccination, the emergence of new COVID-19 strains, and the
emergence of new viral strains resistant to current therapies. In
this context, we focused our characterization efforts on
technology evaluation through the lens of data drifts in a health
care setting.

Some solutions have been reported in the literature to address
the challenge of learning in the presence of data drifts, and most
of these solutions focused on sample selection or sample
weighting, with variations on how they derive the final
weighting or sampling. Klinkenberg [43], for instance, tackled
the problem by using support vector machines for both sample
selection and sample weighting, using an iterative process that
sequentially trains support vector machines to find the training
instances that constitute the model’s support vectors [43]. Kolter
and Maloof [44] used a special weighted ensemble to learn in
the presence of such drifts. Salles et al [6,31,45] used a temporal
weighting function that can be automatically learned to select
relevant samples for each training window. Finally, Rocha et
al [7] tackled the problem using temporal contexts. The authors

analyzed document collections that evolved over time and
defined a temporal context as portions of documents that
minimize the temporal effects of class distribution, term
distribution, and class similarity over time. This method is used
to devise a greedy strategy to optimize the trade-off between
undersampling and temporal effects. We were inspired by this
latter work in our methodology. Most of these approaches,
however, are not applied to the health care setting, focusing
mostly on common text data.

Another relevant setting is detecting drifts in data streams. This
is potentially relevant to some health care data, especially sensor
data, which are most commonly obtained from hospitalized
patients but also streamed from personal health devices such as
smartwatches and heart rate sensors. Zliobaite et al [46], for
instance, proposed a continuous loop of labeling new samples
under a labeling budget and used active learning to detect data
drifts.

Class imbalance is another important aspect of detecting data
drifts in health care data. Disease occurrence is naturally
unbalanced, with common diseases such as diabetes or
hypertension affecting between 5% and 30% of the population
[47,48]. Rare diseases, by contrast, have a prevalence in the
order of <10 patients per 100,000 or 1,000,000 inhabitants, with
combined prevalence among all rare diseases being estimated
to be between 3.5% and 5% [49]. Most approaches to handling
such class imbalances in the data drift literature focus on
oversampling, undersampling, or a combination of both. Gao
et al [50], for instance, proposed oversampling the minority
class over multiple time slices while undersampling the majority
class using only the most recent slice. Ditzler and Polikar [51],
by contrast, focused on using incremental learning combined
with the synthetic minority oversampling technique [52] to learn
a classification ensemble that can deal with both the class
imbalance and concept drifts in streamed data. In particular, the
combination of models and data sets used in our work was robust
to such class imbalance issues and did not require using these
types of techniques, as discussed in the following sections.

Textbox 2. Categorization of health care data.

Categories

1. Clinical data, such as the records in Medical Information Mart for Intensive Care, version IV (MIMIC-IV) [18] and the Brazilian COVID-19
Registry [17], are desirable if the goal is to describe data drifts related to the impact of specific interventions, such as the introduction of a new
drug or therapy.

2. Self-administered data, obtained from questionnaires, usually investigate lifestyle variables, such as smoking or alcohol consumption habits.

3. Biological data, usually obtained by measuring parameters in biological samples such as blood and urine, are often the result of a laboratory
study.

4. Molecular data are the kind of data encoded in protein databases such as UniProt [40], genome databases, or even drug-to-molecule interaction
databases.

5. Exposure data encode patients’ exposure to given events, drugs, or interventions.

6. Modeling data are data generated from models, including estimated risks given the patient’s exposure.
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Summary of the Main Results of Applying DIS to the
MIMIC-IV Data Set
The instantiation of the drift detection step using several
distribution comparison metrics showed the flexibility of the
methodology. It also demonstrated that, for the purpose of
separating the temporal chunks in this particular scenario,
metrics such as the Jensen-Shannon divergence or the classifier
errors capture the underlying distributions better than particular
outliers or novel samples. Higher values in these metrics imply
more significant “populational” changes, such as a gradual shift
in the composition of the in-hospital population’s disease
burden.

As seen in the drift detection step (Table 2), there is a gradual
but persistent pattern in MIMIC-IV, happening over several
years. This gradual change may be caused by various factors,
such as an increased tendency for patients who are terminally
ill to receive end-of-life care at home or advancements in
therapeutic techniques for certain diseases. The nature of the
expected data change can be hypothesized based on
characteristics such as the suddenness or gradualness of the
drift, its persistence, and its duration, along with the results from
the next analytical steps in DIS. This difference becomes evident
when comparing the MIMIC-IV and the Brazilian COVID-19
Registry data sets.

The initial characterization step (Figure 5) revealed a trend
toward a decrease in overall mortality over time, and this is the
“context” in which we interpreted subsequent findings.
Additionally, Figure 6 indicates that the overall characteristics
of the deceased patients changed more than those of the overall
in-hospital population over the observed time frame. This means
that the reduction in overall mortality is due to changes in the
characteristics of the patients who died. The findings in Figure
5 show how different diseases impacted mortality
predictions over time. Figure 5 shows that 2 ICD-10 chapters,
“diseases of the circulatory system” and “cancer,” had important
changes during this period. By associating the findings of step
1 with those of step 2, we can begin to understand the factors
contributing to decreased mortality over time, but it does not
provide the “full picture.”

The DIS semantic characterization step, which measures how
the contexts of the independent variables relate to those of the
dependent variables over time at a more semantic level, yields
interesting results that complement the previous ones.
Multimedia Appendix 6 shows an example of such a result, that
is, changes in similarity for the “dysphagia following stroke”
ICD-10 code within the MIMIC-IV data set [18]. There has
been an increase in the cooccurrence of many obesity-related
ICD codes between the 2011 and 2013 and 2017 and 2019 time
slices. This is aligned with general observations of the increase
in obesity prevalence in the overall US population. It is worth
noting that this technique does not allow us to draw causal
conclusions but instead focuses on the correlation and
cooccurrence changes. The cooccurrence of death and “cancer,”
as well as the presence of “external causes,” has decreased over
the period, possibly indicating a reduction in iatrogenic events,
improved cancer treatment leading to lower lethality, or that
patients with cancer are receiving more end-of-life care at home.

This may be an explanation as to why overall in-hospital
mortality has decreased in this data set.

As overall mortality decreases, patterns affecting the decrease
of similarities between entities, such as the lethality of
circulatory diseases, unchanged. This means that increases in
similarity with the outcome may be simply due to the decrease
in the lethality of other groups. To investigate this, we filtered
the data only for cancer disease codes, as in Multimedia
Appendix 5. The figure reveals important decreases in mortality
in mostly severe and hard-to-treat cancers, such as brain, colon,
lung, and secondary (metastatic) tumors.

It is also possible that the observed patterns may be attributed
to multiple factors at the same time. For instance, recent policy
changes favoring home care for patients who are terminally ill
may influence who dies in the hospital. If these patients are
more likely to die at home, we might have a “survivorship bias,”
where mostly the ones who did not die received hospital care
and the patients who were terminally ill were sent back home.
Over this time frame, there were important advances in
immunobiological therapies for tumors, such as lung cancer, as
well as early diagnostic techniques that have made it possible
to cure some early cases when the tumor is still resectable.
Combining these factors yields a lower lethality, which has
decreased over time despite an increase in the total number of
patients with neoplasm, as shown in Figure 6.

In summary, the application of the DIS methodology to the
MIMIC-IV data set allowed us to determine important trends
that help understand certain phenomena observed in the data.
Moreover, it facilitates the formulation of interesting hypotheses,
which are harder to validate based only on the data
themselves. Nevertheless, in a real-world scenario, such
hypotheses could be the subject of further investigation using
other data sources, such as official policy implementation
records, country-wide demographic records, or even published
literature.

Summary of the Main Results of Applying DIS to the
Brazilian COVID-19 Registry Data Set
The drift detection step, especially using the Jensen-Shannon
divergence, revealed important data drifts in the Brazilian
COVID-19 Registry data set, which commenced approximately
at the same time interval as the vaccination rollout in Brazil,
between late 2020 and early 2021 [14]. The initial
characterization revealed a trend toward decreasing mortality
over time, with the steepest decrease closely matching our drift
detection. This means that thus far, there has been an important
variable distribution shift as well as a change in the distribution
of the outcome itself.

We analyzed how the top 5 highest Pearson correlation variables
behaved over time (Figure 8). Figure 8A shows how the relative
ranking and correlation of the best predictors of death changed
over the course of the pandemic, with features such as “age”
being the strongest predictors at the early stages and gradually
becoming less predictive over time. Figure 8A also shows how
patient severity markers, such as “FiO2” and “altered level of
consciousness,” gradually became more important predictors
over time, hinting at the change from “older patients dying from
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COVID-19” to “patients who were severely ill at admission
dying from COVID-19.” From our analysis, the patient’s age
is shown to be a consistently robust predictor of
COVID-19–related hospitalization and death. In Figure 8B, we
show the median age of the patients who died from COVID-19.
This shows how one of the most predictive features in this data
set has changed over time, with the median dying age decreasing
from approximately 63 years at the peak of the pandemic to
approximately55 years in a time frame coinciding with the start
of the vaccination campaign in Brazil [5]. However, the median
age starts to rise again, possibly relating to another drift, such
as the emergence of new viral strains that can disproportionately
affect the older adult population. This fluctuation in the median
age of deceased patients leads to the aforementioned
deterioration of the correlation scores. Furthermore, this pattern
with the age variable decreasing over time is consistent with
how the vaccines were rolled out to the public, with older age
groups being prioritized for vaccination [46]. If these groups
received vaccines earlier and consequently reduced their
probability of death, this would likely reduce the median and
mean deceased patients’ ages.

The main results of the semantic characterization step
(Multimedia Appendices 10-12 and Figures 8-10), where we
compared the semantic vectors for the “death” outcome in 2020
and 2021, validate several findings from the initial
characterization step and introduce new findings. For instance,
the results show a decrease in similarity between the outcome
and older groups (eg, the age groups “84-105” years vs “62-83”
years) with an increase in similarity between the outcome and
younger groups. This validates the findings in Figure 8A, where
median age declines steadily up until roughly September 2021.
Figure 8A also shows how the “death” outcome had an increase

in similarity to several disease severity markers, such as lower
admission serum sodium, lower admission arterial blood
pressure, fewer comorbidities, and lower FiO2. This potentially
indicates that, when compared to 2020, patients who died in
2021 were more severely ill at admission, had fewer
comorbidities, and were younger (presumably unvaccinated).
This is a significant pattern change, especially compared to the
bulk of deceased patients in the initial chunk, who were mostly
older adults with lower severity at admission. This change in
pattern implies that, at the analyzed time frame, patients who
were young and severely ill at admission were more common
among patients who were dying. However, this should be
analyzed in conjunction with the previous findings from the
other steps. For instance, we know that the overall mortality
has decreased, and this patient profile (young and severely ill
at admission) could also be present in the first temporal chunk.
What possibly happened was the removal of a significant portion
of older patients who were dying from the population through
events such as vaccination, as evidenced by the reduced
mortality and diminished predictive power of age.

To conclude, the DIS analysis hints at the central role of
vaccination in the COVID-19 pandemic, which reduced the
odds of older patients dying from the disease following the
rollout of the vaccines. This hypothesis was raised by the
alignment between the detected data drift and mortality
reduction during the vaccination period. Additionally, the
observed decrease in the median age of the patients who were
dying corresponded to the age-stratified vaccination strategy.
Furthermore, the shift of mortality burden to patients who were
young and severely ill upon admission, who were likely
unvaccinated, demonstrates how they possibly kept dying while
this process unfolded.

Figure 10. (A) Modeling of the Medical Information Mart for Intensive Care, version IV (MIMIC-IV) data set as an ordered sequence of patient tokens.
(B) Modeling of the Brazilian COVID-19 Registry data set as a graph connecting multiple patients through their common token. ICD: International
Classification of Diseases.
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Limitations
We have proposed a methodology to discover and interpret
temporal shifts in health care data. While our approach provides
valuable insights by uncovering many correlations and semantic
connections, DIS still cannot establish causal
relationships outcomes and semantic units. The causal part is
only hypothesized and inferred, but the methodology does not
go so far as to return causal links for arbitrary outcomes.
Furthermore, we have not applied the methodology to certain
relevant health care domains, such as images (eg, x-rays,
computed tomography, or ultrasound) and wavelets (eg,
electrocardiograms or electroencephalograms).

That said, here, we offer some insights into how we could apply
DIS to handle temporal shifts in nonquantitative data or raw
magnetic resonance imaging data. For this, we would first need
to obtain a distributed representation of the data in such a
manner that samples from similar patients have similar
embedding vectors. For instance, we could use DINOv2
embeddings or contrastive language-image pretraining
embeddings in images. This type of pretrained neural network
exists for multiple data types, which facilitates its application
to multiple domains. From the embeddings, we can apply the
first step of our methodology as applied to tabular data,
computing Jensen-Shannon divergence (or autoencoder errors,
classifier errors, etc) to detect whether a drift exists in the data.
Exploring these data in the second step presents some
challenges, as it might involve exploring both the embedding
and raw data spaces. For instance, we can use clustering and
centroid analysis (applied to the embeddings) to find samples
where the drift is particularly pronounced. Then, we can go
back to the raw data and analyze the samples to check for
patterns. In essence, the third step remains similar in nature.
The idea is to train a neural network model such that the
embeddings of the samples closely resemble the embeddings
of the outcomes experienced by those patients over time. One
such way to obtain these embeddings, starting from pretrained
ones, is to use losses such as the triplet loss to approximate
patient sample embeddings from outcome embeddings. The
interpretation of the triplet loss, as presented in our paper, will
change according to the temporal granularity of the samples. If
the data have high temporal granularity, the positive pairs (which
the loss will learn to represent more closely in space) will obey
an ordered sequence of events. For instance, 2 magnetic
resonance imaging tests will be proximate if they belong to the
same patient and happen close to each other in time and if they
are visually and semantically similar. Conversely, if the data
have low temporal granularity, the embeddings should be
learned to align patient samples to their outcome embeddings.
Then, for the analysis of such embeddings, we would have to
analyze the raw data samples closer to the outcome embeddings.

If one splits the time, say, in 2 years and is working with the
“death” outcome, one would be expected to have 1 such outcome
for each year. Then, analyzing the samples closer to each of the
outcome embeddings should help build an understanding of the
relevant changes in a more generalized setting, and this might
require some domain expertise. We intend to explore these ideas
in future work.

Finally, we cannot claim that our 3 steps (encompassing the
“if,” “what,” and “why” of a data drift) are a comprehensive
list of all possible steps to analyze a temporal shift. Instead, we
believe our steps to be a minimum required subset. While it is
possible that these steps might not cover all possible situations,
they allowed us to obtain interesting insights from the 2 data
sets presented in our work, as discussed earlier. We and other
researchers plan to continue to study, extend, and adapt this
methodology in future work to test the limits of our approach
and whether new steps or a refinement of the ones proposed at
the fiber granularity level is necessary.

We intend to explore methods for enhancing models’ resilience
to data drifts, as well as examine different health care–relevant
data types, such as images, wavelets, and multimodal data.

Conclusions
We have proposed DIS, a temporal data drift methodology for
analyzing the changes in health outcomes and variables over
time while discovering contextual changes for outcomes in large
volumes of data. We applied DIS to 2 very different case studies
and demonstrated how it can provide valuable insights into
changing patterns in the data and the underlying reasons driving
such changes.

The DIS methodology goes beyond simple detection; it
comprehensively characterizes temporal data drifts. By
analyzing the underlying causes, patterns, and magnitudes of
drifts, health care stakeholders can gain a deeper understanding
of the factors influencing data changes over time. This deeper
understanding has practical implications for health care
organizations, allowing them to improve patient care, optimize
resource allocation, and enhance operational efficiency by
leveraging the insights gained from monitoring and
characterizing temporal data drifts.

The practical implications of our methodology are far-reaching.
Early detection of data drifts can trigger timely interventions,
enabling proactive adjustments to treatment plans, health care
policies, and quality improvement initiatives. Our methodology
empowers health care practitioners and data analysts to
effectively monitor and manage temporal data drifts, ultimately
leading to better health care outcomes and informed
decision-making processes.
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Multimedia Appendix 1
Modeling of the centroids as the arithmetic mean of the features in each outcome group. Co is the centroid of cluster O, XCO is
the matrix of attributes including all patients in the outcome O, and |CO| is the number of patients in the outcome group O.
[PNG File , 55 KB-Multimedia Appendix 1]

Multimedia Appendix 2
The “anchor_year_group” variable on the Medical Information Mart for Intensive Care, version IV (MIMIC-IV) data set. Within
each “anchor_year_group,” the actual dates are masked, making it possible to have only a rough estimate of when the patient
was at the hospital.
[PNG File , 81 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Lethality over time in the Medical Information Mart for Intensive Care, version IV data set.
[PNG File , 63 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Drift of the arithmetic mean of each outcome class over time, as measured by cosine distances between each class’s means when
compared to the mean of the first “anchor_year_group” in the Medical Information Mart for Intensive Care, version IV data set.
[PNG File , 214 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Evaluation of the drivers of lethality data drift in the Medical Information Mart for Intensive Care, version IV data set.
[PNG File , 319 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Changes in co-occurrence for the “dysphagia following stroke” International Classification of Diseases in the Medical Information
Mart for Intensive Care, version IV data set.
[PNG File , 242 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Validation of the data drift in cancer patients. On the left, we show the increase in the absolute number of cancer patients, while
on the right, we show the overall lethality reduction for this disease group.
[PNG File , 65 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Cluster analysis of the Medical Information Mart for Intensive Care, version IV data set. (A) Top 5 highest-valued features per
cluster. (B) Relative frequency of each cluster over time.

JMIR Med Inform 2024 | vol. 12 | e54246 | p. 20https://medinform.jmir.org/2024/1/e54246
(page number not for citation purposes)

Paiva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app1.png&filename=c4d774056335c6159b6c4e4e0a5d8e92.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app1.png&filename=c4d774056335c6159b6c4e4e0a5d8e92.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app2.png&filename=77150420506f32759423d7d279d0e138.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app2.png&filename=77150420506f32759423d7d279d0e138.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app3.png&filename=18c182a5abe5cd625adf65a648ebdde8.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app3.png&filename=18c182a5abe5cd625adf65a648ebdde8.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app4.png&filename=6587840ffb4ac30e100f877446e20a6a.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app4.png&filename=6587840ffb4ac30e100f877446e20a6a.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app5.png&filename=ad48e84047de7de62da9ad646d770456.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app5.png&filename=ad48e84047de7de62da9ad646d770456.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app6.png&filename=4da5de94c8f1f256a59b6d099ac25949.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app6.png&filename=4da5de94c8f1f256a59b6d099ac25949.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app7.png&filename=fd13c0dc55c4f33e65d0b1671efdf5b4.png
https://jmir.org/api/download?alt_name=medinform_v12i1e54246_app7.png&filename=fd13c0dc55c4f33e65d0b1671efdf5b4.png
http://www.w3.org/Style/XSL
http://www.renderx.com/


[PNG File , 138 KB-Multimedia Appendix 8]

Multimedia Appendix 9
Drift of the arithmetic means of the dying patients versus the overall population over time, as measured by cosine distances
between each class’s means on each time chunk over time, in the Brazilian COVID-19 Registry data set.
[PNG File , 227 KB-Multimedia Appendix 9]

Multimedia Appendix 10
Lethality over time in the Brazilian COVID-19 Registry data set.
[PNG File , 80 KB-Multimedia Appendix 10]

Multimedia Appendix 11
Top 15 largest increases and decreases in similarity between the “death” tokens for 2021 and 2020 in the Brazilian COVID-19
Registry data set.
[PNG File , 373 KB-Multimedia Appendix 11]

Multimedia Appendix 12
Cluster analysis of the Brazilian COVID-19 Registry data set. (A) Top 5 highest-valued features per cluster. (B) Relative frequency
of each cluster over time.
[PNG File , 106 KB-Multimedia Appendix 12]
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