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Abstract

Background: Predicting the bed occupancy rate (BOR) is essential for efficient hospital resource management, long-term budget
planning, and patient care planning. Although macro-level BOR prediction for the entire hospital is crucial, predicting occupancy
at a detailed level, such as specific wards and rooms, is more practical and useful for hospital scheduling.

Objective: The aim of this study was to develop a web-based support tool that allows hospital administrators to grasp the BOR
for each ward and room according to different time periods.

Methods: We trained time-series models based on long short-term memory (LSTM) using individual bed data aggregated hourly
each day to predict the BOR for each ward and room in the hospital. Ward training involved 2 models with 7- and 30-day time
windows, and room training involved models with 3- and 7-day time windows for shorter-term planning. To further improve
prediction performance, we added 2 models trained by concatenating dynamic data with static data representing room-specific
details.

Results: We confirmed the results of a total of 12 models using bidirectional long short-term memory (Bi-LSTM) and LSTM,
and the model based on Bi-LSTM showed better performance. The ward-level prediction model had a mean absolute error (MAE)

of 0.067, mean square error (MSE) of 0.009, root mean square error (RMSE) of 0.094, and R2 score of 0.544. Among the room-level
prediction models, the model that combined static data exhibited superior performance, with a MAE of 0.129, MSE of 0.050,

RMSE of 0.227, and R2 score of 0.600. Model results can be displayed on an electronic dashboard for easy access via the web.

Conclusions: We have proposed predictive BOR models for individual wards and rooms that demonstrate high performance.
The results can be visualized through a web-based dashboard, aiding hospital administrators in bed operation planning. This
contributes to resource optimization and the reduction of hospital resource use.
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Introduction

Background
The global health care market continues to grow, but the burden
of health care costs on governments and individuals is reaching
its limits. Consequently, there is increasing interest in the
efficient use of limited resources in health care systems, and
hospitals must develop approaches to maximize medical
effectiveness within budgetary constraints [1,2]. One approach
to this is optimizing the use of medical resources. Medical
resources can be broadly categorized into 3 categories: human
resources, physical capital, and consumables. The appropriate
and optimized use of these resources is critical for improving
health care quality and providing care to a larger number of
patients [3,4].

Among the 3 medical resources, hospital beds are considered
one of the physical capitals provided by hospitals to patients.
These beds are allocated for various purposes, such as rest,
hospitalization, postsurgical recovery, etc. They constitute one
of the factors that can directly influence the patient’s internal
satisfaction within the hospital. However, owing to limited
space, hospitals often have a restricted number of beds.
Moreover, the number and functionality of beds are often fixed
owing to budgetary or environmental constraints, making it
difficult to make changes. Nonetheless, if hospital administrators
can evaluate bed occupancy rates (BORs) according to different
time periods, they can predict the need for health care
professionals and resources. On the basis of this information,
hospitals can plan resources efficiently, reduce operational costs,
and achieve economic objectives [5]. In addition, excessive
BORs can exert a negative effect on the health of staff members
and increase the possibility of exposure to infection risks. Hence,
emphasizing only maintaining a high BOR may not necessarily
lead to favorable outcomes for the hospital [6,7]. Considering
these reasons, BOR prediction plays a vital role in hospitals and
is recognized as a broadly understood necessity for resource
optimization in the competitive medical field.

In the medical field, optimizing resources is crucial in the face
of limited bed capacity and intense competition. Therefore, bed
planning is a vital consideration aimed at minimizing hospital
costs [8]. To achieve this, hospitals need to plan staffing and
vacations weeks or months in advance [9]. The use of machine
learning (ML) technology for BOR prediction is necessary to
address fluctuations in patient numbers due to seasonal
variations or infectious diseases, ensuring continuous hospital
operations. In the Netherlands, hospitals have already
implemented ML-based BOR prediction [10], and Johns
Hopkins Hospital uses various metrics to effectively manage
bed capacity for optimization. Predicting BORs based on
quantitative data contributes to validating the clinical quality
and cost-effectiveness of treatments. This, in turn, enhances

overall accountability throughout the wards and contributes to
improving hospital efficiency [11].

Prior Work
Hospital BOR prediction has been investigated using various
approaches recently. From studies predicting bed demand using
mathematical statistics or regression equation models based on
given data [12-15], the focus has shifted toward modeling
approaches using time-series analysis. This approach observes
recorded data over time to predict future values.

A previous study has taken an innovative approach using
time-series analysis alongside the commonly used regression
analysis for bed demand prediction, and the study demonstrated
that using time-series prediction for bed occupancy yielded
higher performance results than using a simple trend fitting
approach [16]. Another study used the autoregressive integrated
moving average (ARIMA) model for univariate data and a
time-series model for multivariate data to predict BORs [17].
With the advancement of deep learning (DL) models that possess
strong long-term memory capabilities, such as recurrent neural
network (RNN) and long short-term memory (LSTM), there
has been an increase in studies applying these models to
time-series data for prediction purposes. For instance, in the
study by Kutafina et al [9], hospital BORs were predicted based
on dates and public holiday data from government agencies and
schools, without involving the personal information of patients.
The study used a nonlinear autoregressive exogenous model to
predict a short-term period of 60 days, with an aim to contribute
to the planning of hospital staff. The model demonstrated good
performance, with an average mean absolute percentage error
of 6.24%. In emergency situations, such as the recent global
COVID-19 pandemic, the sudden influx of infected patients
can disrupt the hospitalization plans for patients with
pre-existing conditions [18]. Studies have been conducted using
DL architectures to design models for predicting the BOR of
patients with COVID-19 on a country-by-country basis. Some
studies incorporated additional inputs, such as vaccination rate
and median age, to train the models [19]. Studies have also been
conducted to focus on the short-term prediction of BORs during
the COVID-19 period [20,21]. Prior studies are summarized in
Table 1.

Although previous research has contributed to BOR prediction
and operational planning at the hospital level, more detailed
and systematic predictions are necessary for practical application
in real-world operations. To address this issue, studies have
developed their own computer simulation hospital systems to
not only predict bed occupancy but also execute scheduling for
admissions and surgeries to enhance resource utilization [22-24].
Nevertheless, existing studies have the limitation of focusing
solely on the overall BOR of the hospital. As an advancement
to these studies, we aim to propose a strategy for predicting the
BOR at the level of each ward and room using various variables
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in a time-series manner. Interestingly, to our knowledge, this
is the first study to apply DL to predict ward- and room-specific

occupancy rates using time-series analysis.
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Table 1. Summary of prior studies.

Prediction targetMethodData setYearStudy

Entire hospital bed occupancy
(annual average)

Comparison of 2 compartment models
through cross-validation

Deidentified data, the date and time
of patient admission and discharge
between 1998 and 2000

2007Mackay and Lee
[12]

Entire hospital short-term occu-
pancy (24 h or 72 h) based on

LOSc

Computerized model of MLRa and

LRb

Historical and real-time data ware-
house and hospital information sys-
tems (emergency department, finan-
cial, surgical scheduling, and inpatient
tracking systems)

2007Littig and Isken [13]

The 3 prediction targets are: (1)
Estimation of bed occupancy and
optimal bed requirements in each
class; (2) Bed occupancy levels
for every class for the following
week; and (3) Weekly average
number of occupied beds

The 3 methods are: (1) Poisson bed
occupancy model; (2) Simulation
model; and (3) Regression model

Bed management between June 1,
2006, and June 1, 2007; Information:
(1) In each class based on length of
stay and admission data; (2) Histori-
cal previous year’s same week admis-
sion data; (3) Relationship between
identified variables to aid bed man-
agers

2010Kumar and Mo [14]

The 3 targets are: (1) Number of
hospital stays; (2) Hospital inpa-
tient days; and (3) Beds for
medical stay

Three models of hypothesis-based
statistical forecasting of future trends

Inpatient stay data in 2010 (acute so-
matic care inpatients and outpatients)

2015Seematter-Bagnoud
et al [15]

Entire hospital short-term daily
bed requirements

The 2 methods are: (1) Forecasting
from a structural model and (2) The
time-series or Box-Jenkins method

Inpatient stay data for general surgery
in the age group of 15-44 years be-
tween 1969 and 1982

1990Farmer and Emami
[16]

Entire hospital bed occupancy (1
day and 1 week)

The 2 methods are: (1) The ARIMAd

model for univariate data and (2) The
time-series model for multivariate
data

Data warehouse between January
2009 and June 2012

2014Kim et al [17]

Entire hospital mid-term bed oc-
cupancy (60 days, bed pool in
units of 30 beds)

NARXe model, a type of RNNfInpatient stay data between October
14, 2002, and December 31, 2015
(patient identifier, time of admission,
discharge, and name of the clinic the
patient was admitted to; no personal
information on the patients or staff
was provided)

2019Kutafina et al [9]

Entire hospital bed occupancyThe 3 models are: LSTMg, GRUh,

and SRNNi. Incorporate vaccination
percentage and median age of the
population to improve performance

COVID-19 hospital occupancy data
in 15 countries between December
2021 and early January 2022

2022Bouhamed et al [19]

The 2 targets are: (1) Patient ad-
mission and (2) Entire hospital
short-term bed occupancy

The 2 methods are: (1) Using linear
programming to predict admissions
and (2) Fitting the remaining LOS
and using results from the queuing
theory to predict occupancy

Historical data publicly available until
mid-October 2020

2021Bekker et al [20]

Entire hospital short-term inten-
sive care bed occupancy

The 2 methods are: (1) Generalized
linear mixed regression model and (2)
Area-specific nonstationary integer
autoregressive methodology

Patients admitted to the intensive care
unit between January and June 2020

2021Farcomeni et al [21]

aMLR: multinomial logistic regression.
bLR: linear regression.
cLOS: length of stay.
dARIMA: autoregressive integrated moving average.
eNARX: nonlinear autoregressive exogenous.
fRNN: recurrent neural network.
gLSTM: long short-term memory.
hGRU: grid recurrent unit.
iSRNN: simple recurrent neural network.
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Goal of This Study
The aim of this study was to predict the BORs of hospital wards
and rooms using time-series data from individual beds. Although
overall bed occupancy prediction is useful for macro-level
resource management in hospitals, resource allocation based
on the prediction of occupancy rates for each ward and room is
required for specific hospital scheduling and practicality.
Through this approach, we aim to contribute to the efficient
operational cost optimization of the hospital and ensure the
availability of resources required for patient care.

We have developed time-series prediction models based on
deep neural network (DNN), among which 1 model combines
data representing room-specific features (static data) with
dynamic data to enhance the prediction performance for room
bed occupancy rates (RBORs). Based on bidirectional long
short-term memory (Bi-LSTM), the RBOR prediction model
demonstrates a lower mean absolute error (MAE) of 0.049, a
mean square error (MSE) of 0.042, a root mean square error

(RMSE) of 0.007, and a higher R2 score of 0.291, indicating
the highest performance among all RBOR models.

We developed 6 types of BOR prediction models, of which 2
types were used for predicting ward bed occupancy rates
(WBORs), and the other 4 types focused on predicting RBORs.
These models use LSTM and Bi-LSTM architectures with strong
long-term memory capabilities as their basic structure. We

created 6 models for each architecture, resulting in a total of 12
models. The WBOR models were used for predicting weekly
and monthly occupancy rates, serving long-term hospital
administrative planning purposes. Conversely, the RBOR
models were designed for immediate and rapid occupancy
planning and were trained with 3- and 7-day intervals. Each
RBOR model was enhanced by combining static data, which
represent room-specific features, to generate more sophisticated
prediction models.

Figure 1 shows the potential application of our model as a form
of web software in a hospital setting. Through an online
dashboard, it can provide timely information regarding bed
availability, enabling intelligent management of patient
movements related to admission and discharge. It facilitates
shared responsibilities within the hospital and simplifies future
resource planning [25].

In the Introduction section, we explored the importance of this
research and investigated relevant previous studies, providing
a general overview of the direction of our research. In the
Methods section, we provide descriptions of the data set used
and the structure of the DNN algorithm used, and explain the
model architecture and performance. In the Results section, we
present the performance and outcomes of this study. Finally, in
the Discussion section, we discuss the contributions, limitations,
and potential avenues for improvement of the research.

JMIR Med Inform 2024 | vol. 12 | e53400 | p. 5https://medinform.jmir.org/2024/1/e53400
(page number not for citation purposes)

Seo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Virtual dashboard of the status and forecast of the ward bed occupancy rate (WBOR) and room bed occupancy rate (RBOR). The first screen
presents the overall bed occupancy rate of the hospital, along with the number of beds in use and available. Moreover, a predictive graph displays the
anticipated WBOR for selected dates. The second screen presents the WBOR for individual beds, indicating their statuses, such as “in use,” “reserved,”
“empty,” and “cleaning.” Detailed information about each room is also displayed.

Methods

Overview
We intended to predict the BORs of individual hospital wards
and rooms based on the information accumulated in individual
bed–level data on an hourly basis, aggregated on a daily basis.
For this purpose, we developed 12 time-series models. As the
base models, we applied LSTM and Bi-LSTM, which are
suitable for sequence data. These models address the limitation
of long-term memory loss in traditional RNNs and were chosen
because of their suitability for training bed data represented as
sequence data.

Based on the model architecture, there were 2 WBOR prediction
model types, which were trained at 7- and 30-day intervals to
predict the occupancy rate for the next day. Moreover, there
were 2 RBOR prediction model types, similar to the ward
models, which were trained at 3- and 7-day intervals.
Furthermore, as another approach, each RBOR prediction model
was augmented with static data, and 2 DL algorithms were
proposed for the final comparison of their performances in
predicting RBORs.
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Ethical Considerations
The study was approved by the Asan Medical Center (AMC)
Institutional Review Board (IRB 2021-0321) and was conducted
in accordance with the 2008 Declaration of Helsinki.

Materials

Study Setting
This was a retrospective single-center cohort study. Data were
collected from AMC, with information on the occupancy status
of each bed recorded at hourly intervals between May 27, 2020,
and November 21, 2022. The data set comprised a total of
54,632,684 records. This study used ethically preapproved data.
Deidentified data used in the study were extracted from ABLE,
the AMC clinical research data warehouse.

A total of 57 wards, encompassing specialized wards; 1411
rooms, including private and shared rooms; and 4990 beds were
included in this study. Wards and rooms with specific
characteristics, such as intensive care unit, newborn room, and
nuclear medicine treatment room, were excluded from the
analysis as their occupancy prediction using simple and general
variables did not align with the direction of this study.

Supporting Data
Supporting data for public holidays were added in our data set.
We considered that holidays have both a recurring pattern with
specific dates each year and a distinctive characteristic of being
nonworking days, which could affect occupancy rates. Based
on Korean public holidays, which include Chuseok, Hangeul
Proclamation Day, Children’s Day, National Liberation Day,
Memorial Day, Buddha’s Birthday, Independence Movement
Day, and Constitution Day, there were 27 days that corresponded
to public holidays during the period covered by the data set.
We denoted these dates with a value of “1” if they were public
holidays and “0” if they were not, based on the reference date.

Preprocessing and Description of Variables
Among the variables representing individual beds, the reference
date, ward and room information, patient occupancy status, bed
cleanliness status, and detailed room information were available.

Based on the recorded date of bed status, we derived additional
variables, such as the reference year, reference month, reference
week (week of the year), reference day, and reference day of
the week.

Room data were derived from the input information representing
the cleanliness status of beds. This variable had 2 possible states,
namely, “admittable” and “discharge.” If neither of these states
was indicated, it implied that a patient was currently hospitalized
in the bed. As the status of hospitalized patients was indicated
by missing values, we replaced them with the number “1” to
indicate the presence of a patient in the bed and “0” otherwise.
The sum of all “1” values represented the current number of
hospitalized patients. The count of beds in each room indicated
the capacity of each room. The target variable BOR was
calculated by dividing the number of patients in the room by
the room capacity, resulting in a room-specific patient
occupancy rate variable. The ward data were subjected to a
similar process as that of the room data, with the difference
being that we generated ward-specific variables, such as ward
capacity and WBOR, using the same approach. The static room
data consisted of 14 variables, including the title of the room
and the detailed information specific to each room.

For the variables in the ward and room data, we disregarded the
units of the features and converted them into numerical values
for easy comparison, after which we performed normalization.
Regarding the variables representing detailed room information,
we converted them to numerical values where “yes” was
represented as “1” and “no” was represented as “0.”

The final set of variables used in this study was categorized into
date, ward, room, and detailed room information. Table 2
provides the detailed descriptions of the variables used in our
training, including all the administrative data related to beds
that are readily available in the hospital.

The explanation of the classification for generating the data sets
for training each model is provided in Table 3. The static
features of the detailed room information were combined with
the room data set, which has sequence characteristics, to
generate a separate data set termed Room+Static.
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Table 2. Description of variables by category.

DescriptionTypeVariable

Date

Reference year for bed status3 categoriesYear

Reference month for bed status12 categoriesMonth

Reference week for bed status53 categoriesWeek

Reference day for bed status31 categoriesDay

Reference day of the week for bed status7 categoriesWeekday

Holiday status2 categoriesHoliday

Ward

Abbreviations for entire ward names57 categoriesWard abbreviation

Number of available ward bedsNumericWard capacity

Number of patients currently admitted to the wardNumericWard bed capacity

Ward bed capacity divided by ward capacityNumericWard occupancy rate

Room

Abbreviations for entire room names1411 categoriesRoom abbreviation

Number of available room bedsNumericRoom capacity

Number of patients currently admitted to the roomNumericRoom bed capacity

Room bed capacity divided by room capacityNumericRoom occupancy rate

Room static feature

Room grade code34 categoriesRoom code

Nuclear medicine room availability2 categories (Na/Yb)Nuclear

Sterile room availability2 categories (N/Y)Sterile

Isolation room availability2 categories (N/Y)Isolation

EEG testing room availability2 categories (N/Y)EEGc testing

Observation room availability2 categories (N/Y)Observation

Kidney transplant room availability2 categories (N/Y)Kidney

Liver transplant room availability2 categories (N/Y)Liver

Sub-ICU room availability2 categories (N/Y)Sub-ICUd

Special room availability2 categories (N/Y)Special

Small single room availability2 categories (N/Y)Small single

Short-term room availability2 categories (N/Y)Short-term

Psychiatry department double room availability2 categories (N/Y)Psy-double

Psychiatry department open room availability2 categories (N/Y)Psy-open

aN: No.
bY: Yes.
cEEG: electroencephalogram.
dICU: intensive care unit.
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Table 3. Data set classification and included variables.

VariablesData set

Ward abbreviation, year, month, week, day, weekday, holiday, ward capacity, ward bed capacity, and ward occupancy
rate

Ward data set

Room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity, and room occupancy
rate

Room data set

14 static variables related to detailed room informationStatic data set

Room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity, 14 static variables
related to detailed room information, and room occupancy rate

Room+Static

data set

Separation
Each data set was split into training, validation, and test sets for
training and evaluation of the model. The training set consisted
of 32,153 rows (67.8%), with data from May 27, 2020, to
December 2021. The validation set, used for parameter tuning,
included 7085 rows (15.0%), with data from January to June
2022. Finally, the test set comprised 8208 rows (17.2%), with
data from July 2022 to November 21, 2022.

DL Algorithms
We used various DL algorithms for in-depth learning. In the
following subsections, we will provide explanations for each
model algorithm used in our research.

LSTM Network
RNN [26] is a simple algorithm that passes information from
previous steps to the current step, allowing it to iterate and
process sequential data. However, it encounters difficulties in
handling long-term dependencies, such as those found in
time-series data, owing to the vanishing gradient problem. To
address this issue, LSTM [27] was developed. LSTM excels in
handling sequence data and is commonly used in natural
language processing, machine translation, and time-series data
analysis. LSTM consists of an input gate, output gate, and forget
gate. The “cell state,” is carefully controlled by each gate to
determine whether the memory should be retained or forgotten
for the next time step.

Bi-LSTM Network
Although RNN and LSTM possess the ability to remember
previous data, they have a limitation in that their results are
primarily based on immediate past patterns because the input
is processed in a sequential order. This limitation can be
overcome through a network architecture known as Bi-LSTM
[28]. Bi-LSTM allows end-to-end learning, minimizing the loss
on the output and simultaneously training all parameters. It also
has the advantage of performing well even with long data
sequences. Because of its suitability for models that require
knowledge of dependencies from both the past and future, such
as LSTM-based time-series prediction, we additionally selected
Bi-LSTM as the base model.

Attention Mechanism
Attention mechanism [29,30] refers to the process of
incorporating the encoder’s outputs into the decoder at each
time step of predicting the output sequence. Rather than
considering the entire input sequence, it focuses more on the
relevant components that are related to the predicted output,

allowing the model to focus on important areas. This mechanism
helps minimize information loss in data sets with long
sequences, enabling better learning and improving the model’s
performance. It has been widely used in areas such as text
translation and speech recognition. Nevertheless, as it is still
based on RNN models, it has the drawbacks of slower speed
and not being completely free from information loss issues.

Combining Static and Dynamic Features
Data can exhibit different characteristics even at the same time.
For instance, in data collected at 1-hour intervals for each
hospital bed, we can distinguish between “dynamic data,” which
include features that change over time, such as the bed condition,
date, and patient occupancy, and “static data,” which consist of
information that remains constant, such as the ward and room
number.

DL allows us to use all the available information for prediction.
Therefore, for predicting the RBOR, we investigated an
approach that combines dynamic and static data using an
LSTM-based method [31]. This approach demonstrated better
performance than LSTM alone [32]. Our approach involves
adding a layer that incorporates static data as an input to the
existing room occupancy prediction model.

Model Architecture

Base Model
Our objective was to predict the intermediate-term occupancy
rates of wards and rooms within the hospital to contribute to
hospital operation planning. Bi-LSTM was chosen as the base
model owing to its improved predictive performance compared
with the traditional LSTM model. However, to quantitatively
compare these models, we conducted a comparison of the results
for each model (6 for each, with a total of 12 models).

A typical LSTM model processes data sequentially, considering
only the information from the past up to the current time step.
However, Bi-LSTM, by simultaneously processing data in both
forward and backward directions, has a unique feature that
allows it to leverage both current and future information for
predictions. This bidirectionality helps the model effectively
learn temporal dependencies and intricate patterns. However,
despite these advantages, Bi-LSTM comes with the trade-off
of doubling the number of model parameters, resulting in
increased computational costs for training and prediction. While
a more complex model can better adapt to the training data,
there is an increased risk of overfitting, especially with small
data sets. Nevertheless, the reason for choosing Bi-LSTM for
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tasks like predicting BORs in hospitals, involving time-series
data, lies in its ability to harness the power of bidirectional
information. Bi-LSTM processes input data from both past and
future directions simultaneously, enabling it to effectively
incorporate future information into current predictions. This
proves beneficial for handling complex patterns in long
time-series data [28].

Moreover, we have enhanced the performance of our models
by adding an attention layer to Bi-LSTM. The attention layer
assigns higher weights to features that exert a significant impact
on the prediction, allowing the model to focus on relevant
information and gather necessary input features. This helps
improve the accuracy of the prediction. Furthermore, the
attention layer reduces the amount of information processed,
resulting in improved computational efficiency. Ultimately, this
contributes toward enhancing the overall performance of the
model.

The window length of the input sequence was divided into 3
different intervals, namely, 3, 7, and 30 days. The WBOR model

was trained on sequences with a window length of 7 and 30
days, whereas the RBOR model was trained on sequences with
a window length of 3 and 7 days. The first layer of our model
consisted of Bi-LSTM, which was followed by the leaky
rectified linear unit (LeakyReLU) activation function.
LeakyReLU is a linear function that has a small gradient for
negative input values, similar to ReLU. It helps the model
converge faster. After applying this process once again, the
AttentionWithContext layer was applied, which focuses on
important components of input sequence data and transforms
outputs obtained from the previous layer. After applying the
activation function again, a dense layer with 1 neuron was added
for generating the final output. The sigmoid function was used
to limit the output values between 0 and 1. Finally, our model
was compiled using the MSE loss function, Adam optimizer,
and MAE metric. The parameters for each layer were selected
based on accumulated experience through research. Figure 2
visually represents the above-described structure.

Figure 2. Base bidirectional long short-term memory (Bi-LSTM) model architecture. LeakyReLU: leaky rectified linear unit; LSTM: long short-term
memory.

Combining Dynamic and Static Data Using the DL
Model
The accumulated bed data, which were collected on a time basis,
were divided into dynamic and static data of the rooms, which
were then inputted separately. To improve the performance of
the BOR prediction model, we designed different DL
architectures for the characteristics of these 2 types of data.

We first used a base model based on LSTM and Bi-LSTM to
learn the time-series data and then focused the model’s attention

using the dense layer to process fixed-size inputs. To prevent
overfitting, we applied the dropout function to randomly
deactivate neurons in 2 dense layers. The hidden states of the
2 networks were combined, and the resulting output was passed
to a single layer, combining the time dynamic and static data.

Finally, the hidden states of the 2 networks were combined, and
the combined result was passed to a single layer to effectively
integrate the dynamic and static data. This allowed us to use
the information from both the dynamic and static data for BOR
prediction. This architecture is illustrated in Figure 3.
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Figure 3. Bidirectional long short-term memory (Bi-LSTM) model architecture combining static and dynamic variables. LeakyReLU: leaky rectified
linear unit; LSTM: long short-term memory.

Hyperparameter Tuning
One of the fundamental methods to enhance the performance
of artificial intelligence (AI) learning models is the use of
hyperparameter tuning. Hyperparameters are parameters passed
to the model to modify or adjust the learning process. While
hyperparameter tuning may rely on the experience of
researchers, there are also functionalities that automatically
search for hyperparameters, taking into account the diversity
of model structures.

Various methods for search optimization have been proposed
[33,34], but we implemented our models using the Keras library.
By leveraging Keras Tuner, we automatically searched for the
optimal combinations of units and learning rates for each model,
contributing to the improvement of their performance.

Time Series Cross-Validation
Time-series data exhibit temporal dependencies between data
points, making it crucial to consider these characteristics when
validating a model. Commonly used K-fold cross-validation is
effective for evaluating models on general data sets [35],
providing effectiveness in preventing overfitting and enhancing
generalizability by dividing the data into multiple subsets
[36,37]. However, for time-series data, shuffling the data
randomly is not appropriate owing to the inherent sequential
dependency of the observations.

Time series cross-validation is a method that preserves this
temporal dependence while dividing the data [38]. It involves
splitting the entire hospital bed data set into 5 periods,
conducting training and validation for each period, and repeating
this process as the periods shift. This approach is particularly
effective when observations in the dynamic data set, such as
hospital bed data recorded at 1-hour intervals, play a crucial
role in predicting future values based on past observations.

Shuffling data randomly using K-fold may disrupt the temporal
continuity, leading to inadequate reflection of past and future
observations. Therefore, time series cross-validation sequentially
partitions the data, ensuring the temporal flow is maintained,

and proves to be more effective in evaluating the model’s
performance. This method enables the model to make more
accurate predictions of future occupancy based on past trends.

Evaluation
We selected various metrics to evaluate the performance of
time-series data predictions. Among them, MAE represents the
absolute difference between the model’s predicted values and
the actual BOR. We also considered MSE, which is sensitive
to outliers. Moreover, to address the limitations of MSE and
provide a penalty for large errors, we opted for RMSE. We also

used the R2 score to measure the correlation between the
predicted and actual values.

MAE is a commonly used metric to evaluate the performance
of time-series prediction models. MAE is intuitive and easy to
calculate, making it widely used in practice. Because MAE uses
absolute values, it is less sensitive to outliers in the occupancy
rate values for specific dates. MAE is calculated using the
following formula:

MSE is a metric that evaluates the magnitude of errors by
squaring the differences between the predicted and actual values
and then taking the average. It is calculated using the following
formula:

RMSE is used to address the limitations of MSE where the error
scales as a square, providing a more intuitive understanding of
the error magnitude between the predicted and actual values. It
penalizes large errors, making it less sensitive to outliers. RMSE
is calculated using the following formula:
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The R2 score is used to measure the explanatory potential of
the prediction model, and it is calculated using the following
formula: Here, SSR represents the sum of squared differences between

the predicted and actual values, and SST represents the sum of
squared differences between the actual values and the mean
value of actual values. Figure 4 shows the prediction method
and overall flow in this study.

Figure 4. Overall flow in this study. Bi-LSTM: bidirectional long short-term memory; LSTM: long short-term memory; MAE: mean absolute error;
MSE: mean square error; RMSE: root mean square error.

Results

We used 2 DL models, LSTM and Bi-LSTM, and compared
the performance of 12 different prediction models. These models
have been denoted as ward 7 days (W7D), ward 30 days
(W30D), room 3 days (R3D), room 7 days (R7D), room static
3 days (RS3D), and room static 7 days (RS7D). Using Keras
Tuner, we adjusted the hyperparameters of the models and
subsequently validated the models through a 5-fold time series
cross-validation.

The prediction performances of the models for WBOR and
RBOR were compared, which showed that they were more
accurate at predicting WBOR, with MAE values of 0.06 to 0.07.
The W7D model based on Bi-LSTM, which used 7 days of ward
data to predict the next day’s ward occupancy, had a MAE value
of 0.067, MSE value of 0.009, and RMSE value of 0.094,

showing high accuracy. The R2 score was also 0.544, which
was approximately 0.240 higher than that of the W30D model
(0.304), indicating that the variables in that model explained
occupancy reasonably well.

We next compared the performances of the 8 models for RBOR
prediction, and among them, the RS7D model based on
Bi-LSTM, which was trained on a 7-day time step by integrating
static and dynamic data, showed the best performance. It
achieved a MAE value of 0.129, MSE value of 0.050, RMSE

value of 0.227, and R2 score of 0.260. In particular, the R2 score
outperformed that of the R3D model by 0.014. These data are
summarized in Table 4. Regarding the WBOR prediction model,
the model with a shorter training unit, W7D, demonstrated better
performance. However, regarding the RBOR prediction model,
the model with a longer training unit of 7 days, which
incorporated detailed room-specific information, exhibited
slightly higher performance than the model with a shorter
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training unit of 3 days. The model with the added room-specific
information still demonstrated superior performance overall.

We visualized the predicted and actual occupancy for Bi-LSTM
models and investigated the occupancy trends since July 2022
on our test data set. First, we selected a specific ward in W7D
to demonstrate the change in the WBOR over 2 months. The
right panel of Figure 5 shows the WBOR change over 5 months
from July 2022 in W30D. The blue line represents the actual
occupancy value, and the red line represents the predicted
occupancy value by the model. This provides an at-a-glance
view of the overall predicted occupancy level for each month

and allows hospital staff to observe trends to obtain a rough
understanding of the WBOR.

Figure 6 shows graphs of occupancy rate values for a
randomized specific room, displaying the predicted and actual
values for the 4 RBOR prediction models, with 2 graphs for
each model. The left graph shows the occupancy rate change
over 5 months from July to November 2022, and the right graph
shows the occupancy rate for the months of July and August,
providing a detailed view of the RBOR. By examining the trends
of the predicted and actual values for the 4 models in this period
for a specific room, we can observe that the models maintain a
similar trend to the actual occupancy rate.
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Table 4. Performances of the occupancy prediction models.

R2 scoreRMSEcMSEbMAEaModel and fold

Bi-LSTMLSTMBi-LSTMLSTMBi-LSTMLSTMBi-LSTMeLSTMd

Ward

W30Df

−0.0810.0400.1210.1170.0150.0140.0970.0811

0.4300.1060.0850.1070.0070.0110.0640.0742

0.086−0.1300.1610.1750.0250.0310.1090.1183

0.399−0.5720.1130.1820.0130.0330.0870.1504

0.6780.2120.0890.1390.0080.0190.0610.0875

0.304−0.0680.1140.1440.0140.0210.0840.102Mean

W7Dg

0.4790.2630.0860.1030.0070.0110.0630.0711

0.6060.3020.0710.0940.0050.0090.0540.0672

0.408−0.2410.1260.1830.0160.0330.0910.1193

0.537−0.0090.0980.1450.0090.0210.0680.1164

0.6900.3800.0870.1230.0070.0150.0600.0835

0.5440.1390.0940.1300.0090.0180.0670.091Mean

Room

R7Dh

0.2260.0260.2120.2380.0450.0570.1110.1201

0.2220.0540.2160.2380.0470.0570.1080.1272

0.3360.0180.2690.3270.0720.1670.1480.1903

0.125−0.0890.2340.2610.0550.0680.1620.2094

0.3700.1020.2200.2630.0480.0690.1240.1585

0.2560.0220.2300.2650.0530.0710.1310.161Mean

R3Di

0.2290.0010.2120.2420.0450.0580.1150.1341

0.1950.0060.2200.2450.0480.0600.0970.1302

0.266−0.0840.2830.3440.0800.1180.1470.1783

−0.201−0.2470.2750.2800.0750.0780.2040.2104

0.3770.1680.2200.2540.0480.0640.1200.1615

0.173−0.0310.2420.2730.0590.0760.1670.163Mean

RS7Dj

0.2280.0270.2120.2380.0450.0570.1140.1471

0.2270.0420.2150.2400.0460.0570.0990.1512

0.2600.0480.2670.3220.0630.1040.1600.2163

0.198−0.0160.2240.2520.0500.0640.1520.1944

0.3850.1120.2170.2610.0470.0680.1200.1815

0.2600.0430.2270.2620.0500.0700.1290.178Mean

RS3Dk

0.2130.0390.2150.2370.0460.0560.1160.1091
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R2 scoreRMSEcMSEbMAEaModel and fold

Bi-LSTMLSTMBi-LSTMLSTMBi-LSTMLSTMBi-LSTMeLSTMd

0.203−0.0090.2190.2460.0480.0610.0920.1182

0.172−0.0620.3000.3400.0900.1160.1600.1823

−0.039−1.4100.2550.3890.0650.1520.1910.2784

0.3870.0430.2180.2720.0470.0740.1160.1595

0.187−0.0280.2410.2970.0590.0920.1350.169Mean

aMAE: mean absolute error.
bMSE: mean square error.
cRMSE: root mean square error.
dLSTM: long short-term memory.
eBi-LSTM: bidirectional long short-term memory.
fW30D: ward 30 days.
gW7D: ward 7 days.
hR7D: room 7 days.
iR3D: room 3 days.
jRS7D: room static 7 days.
kRS3D: room static 3 days.

Figure 5. Examples of the predicted and actual bed occupancy rates for the 2-month period from July to August 2022 for ward 7 days and the 5-month
period from July to November 2022 for ward 30 days.
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Figure 6. Examples of the predicted and actual bed occupancy rates for the 2-month period from July to August 2022 and the 5-month period from
July to November 2022.

Discussion

Principal Findings
The entire data set of this study consisted of administrative data
collected at AMC at an hourly interval for each ward from May
27, 2020, to November 21, 2022. To improve the hospital’s
challenges, we developed a model to predict the occupancy rate
of wards and rooms. Our aim was to contribute toward

administrative and financial planning for bed management
within the hospital.

During the specified period, we compared the results of using
DL models to predict the overall BOR for each ward and
individual rooms. In the case of WBOR prediction, the MAE
of the 7-day window model based on Bi-LSTM was
approximately 0.067, demonstrating a remarkably close
prediction to the occupancy compared with that of the 30-day
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window model based on LSTM, with a difference of
approximately 0.035. Furthermore, the MSE and RMSE were
0.009 and 0.094, respectively, indicating high accuracy in the

predictions. Moreover, the R2 score of 0.544 indicated that the
model had better explanatory potential than the average. For
the individual RBOR prediction, among the 8 models, the RS7D
model based on Bi-LSTM performed the best, exhibiting a MAE
of approximately 0.129, which was remarkably lower than that
of the other models. Moreover, the MSE and RMSE were
significantly lower than those of the RBOR models, with

differences of 0.042 and 0.07, respectively. The R2 score of
0.260 indicated that it had higher explanatory potential than the
RS3D models based on LSTM, with the value being higher by
0.291.

Finally, we visualized the predicted and actual values on a graph
for a specific period and observed that each model captured the
trend of the actual BOR quite well. Although the models were
less accurate in predicting low occupancy periods, they followed
the general trend closely. Overall, these findings demonstrate
that our DL models effectively predicted BORs for both wards
and individual rooms, with certain models demonstrating
superior performance in different scenarios.

Strengths and Limitations
Although the models in this study demonstrated good
performance in following the trends of BORs and achieved
good results, there were several limitations in this research.
First, there were limitations in the data. Although we used
administrative data and detailed room information available
from the hospital to enable the models to capture occupancy
trends, the relationship between the variables and the model’s
explanatory potential showed room for improvement, as

indicated by the R2 score. To achieve higher prediction accuracy,
it would be beneficial to incorporate diverse data sources and
real-time updated information.

Second, there was variability in external factors. Hospital BORs
are heavily influenced by external environmental factors. Sudden
events, such as environmental factors and outbreaks of infectious
diseases like COVID-19, can render accurate prediction of bed

occupancy challenging [18,32]. Furthermore, seasonal effects
and accidents can increase the number of patients. Sufficient
collection of long-term data on these external factors would be
necessary, but such uncertainties can reduce the accuracy of
predictions.

Despite these limitations, our study demonstrated a significant
level of adherence to trends in the prediction of individual ward
and room occupancy. More detailed variables and a longer
period of data accumulation would be required to predict the
specific number of beds.

Conclusion
We presented models that can predict the occupancy rates of
wards and individual hospital rooms using artificial neural
networks based on time-series data. The predicted results of
these models demonstrated a high level of accuracy in capturing
the future trends of the BOR. In particular, we presented 8
RBOR models with structure and window changes to compare
their performance and found that the RS7D model showed the
best performance. Our results can be implemented as a web
application on hospital online dashboards, as depicted in Figure
1 [25]. In fact, Johns Hopkins University has been applying
these methods in their command center to monitor hospital
capacity and achieve effectiveness in patient management
planning [39].

Furthermore, predicting BORs supports patient admission and
discharge planning, helping to alleviate overcrowding in
emergency departments and reduce patient waiting times. Staff
members can effectively schedule patient admission and
discharge, and minimize waiting times by understanding the
BOR, providing urgent treatment to emergency patients.
Moreover, providing appropriate information to patients waiting
in the emergency department can increase patient satisfaction
and facilitate efficient transition to hospital admission [40,41].
By applying AI models that combine BOR prediction, which
contributes toward reducing emergency department waiting
times with individual patient admission and discharge prediction,
hospitals can achieve resource optimization and cost savings,
resulting in improved patient satisfaction.
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