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Abstract

Background: Predicting the bed occupancy rate (BOR) isessentia for efficient hospital resource management, long-term budget
planning, and patient care planning. Although macro-level BOR prediction for the entire hospital is crucial, predicting occupancy
at adetailed level, such as specific wards and rooms, is more practical and useful for hospital scheduling.

Objective: Theaim of this study was to develop aweb-based support tool that allows hospital administratorsto grasp the BOR
for each ward and room according to different time periods.

Methods: We trained time-series models based on long short-term memory (LSTM) using individual bed data aggregated hourly
each day to predict the BOR for each ward and room in the hospital. Ward training involved 2 models with 7- and 30-day time
windows, and room training involved models with 3- and 7-day time windows for shorter-term planning. To further improve
prediction performance, we added 2 models trained by concatenating dynamic data with static data representing room-specific
details.

Results: We confirmed the results of atotal of 12 models using bidirectional long short-term memory (Bi-LSTM) and LSTM,
and the model based on Bi-L STM showed better performance. The ward-level prediction model had amean absolute error (MAE)
of 0.067, mean square error (M SE) of 0.009, root mean square error (RMSE) of 0.094, and R? score of 0.544. Among the room-level
prediction models, the model that combined static data exhibited superior performance, with a MAE of 0.129, MSE of 0.050,
RMSE of 0.227, and R? score of 0.600. Model results can be displayed on an electronic dashboard for easy access via the web.
Conclusions: We have proposed predictive BOR models for individual wards and rooms that demonstrate high performance.
The results can be visualized through a web-based dashboard, aiding hospital administrators in bed operation planning. This
contributes to resource optimization and the reduction of hospital resource use.
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Introduction

Background

The global health care market continuesto grow, but the burden
of health care costs on governments and individualsis reaching
its limits. Consequently, there is increasing interest in the
efficient use of limited resources in heath care systems, and
hospitals must develop approaches to maximize medical
effectiveness within budgetary constraints [1,2]. One approach
to this is optimizing the use of medica resources. Medical
resources can be broadly categorized into 3 categories: human
resources, physical capital, and consumables. The appropriate
and optimized use of these resources is critical for improving
health care quality and providing care to a larger number of
patients[3,4].

Among the 3 medical resources, hospital beds are considered
one of the physical capitals provided by hospitals to patients.
These beds are allocated for various purposes, such as rest,
hospitalization, postsurgical recovery, etc. They constitute one
of the factors that can directly influence the patient’s internal
satisfaction within the hospital. However, owing to limited
space, hospitals often have a restricted number of beds.
Moreover, the number and functionality of beds are often fixed
owing to budgetary or environmental constraints, making it
difficult to make changes. Nonethel ess, if hospital administrators
can eva uate bed occupancy rates (BORs) according to different
time periods, they can predict the need for health care
professionals and resources. On the basis of this information,
hospitals can plan resources efficiently, reduce operational costs,
and achieve economic objectives [5]. In addition, excessive
BORs can exert anegative effect on the health of staff members
and increase the possibility of exposuretoinfection risks. Hence,
emphasizing only maintaining ahigh BOR may not necessarily
lead to favorable outcomes for the hospital [6,7]. Considering
these reasons, BOR prediction playsavital rolein hospitalsand
is recognized as a broadly understood necessity for resource
optimization in the competitive medical field.

In the medical field, optimizing resourcesis crucia in the face
of limited bed capacity and intense competition. Therefore, bed
planning is avital consideration aimed at minimizing hospital
costs [8]. To achieve this, hospitals need to plan staffing and
vacations weeks or monthsin advance[9]. The use of machine
learning (ML) technology for BOR prediction is necessary to
address fluctuations in patient numbers due to seasonal
variations or infectious diseases, ensuring continuous hospital
operations. In the Netherlands, hospitals have aready
implemented ML-based BOR prediction [10], and Johns
Hopkins Hospital uses various metrics to effectively manage
bed capacity for optimization. Predicting BORs based on
guantitative data contributes to validating the clinical quality
and cost-effectiveness of treatments. This, in turn, enhances

https://medinform.jmir.org/2024/1/€53400

overall accountability throughout the wards and contributes to
improving hospital efficiency [11].

Prior Work

Hospital BOR prediction has been investigated using various
approaches recently. From studies predicting bed demand using
mathematical statistics or regression equation models based on
given data [12-15], the focus has shifted toward modeling
approaches using time-series analysis. This approach observes
recorded data over time to predict future values.

A previous study has taken an innovative approach using
time-series analysis alongside the commonly used regression
analysisfor bed demand prediction, and the study demonstrated
that using time-series prediction for bed occupancy yielded
higher performance results than using a simple trend fitting
approach [16]. Another study used the autoregressive integrated
moving average (ARIMA) model for univariate data and a
time-series model for multivariate data to predict BORs [17].
With the advancement of deep learning (DL) model sthat possess
strong long-term memory capabilities, such as recurrent neural
network (RNN) and long short-term memory (LSTM), there
has been an increase in studies applying these models to
time-series data for prediction purposes. For instance, in the
study by Kutafinaet al [9], hospital BORswere predicted based
on dates and public holiday datafrom government agenciesand
schools, without involving the personal information of patients.
The study used a nonlinear autoregressive exogenous model to
predict ashort-term period of 60 days, with an aim to contribute
to the planning of hospital staff. The model demonstrated good
performance, with an average mean absolute percentage error
of 6.24%. In emergency situations, such as the recent global
COVID-19 pandemic, the sudden influx of infected patients
can disrupt the hospitalization plans for patients with
pre-existing conditions[18]. Studies have been conducted using
DL architectures to design models for predicting the BOR of
patients with COVID-19 on a country-by-country basis. Some
studies incorporated additional inputs, such as vaccination rate
and median age, to train the models[19]. Studies have al so been
conducted to focus on the short-term prediction of BORsduring
the COVID-19 period [20,21]. Prior studies are summarized in
Table 1.

Although previous research has contributed to BOR prediction
and operational planning at the hospital level, more detailed
and systematic predictionsare necessary for practical application
in real-world operations. To address this issue, studies have
developed their own computer simulation hospital systems to
not only predict bed occupancy but also execute scheduling for
admissions and surgeriesto enhance resource utilization [22-24].
Nevertheless, existing studies have the limitation of focusing
solely on the overall BOR of the hospital. As an advancement
to these studies, we aim to propose a strategy for predicting the
BOR at thelevel of each ward and room using various variables
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in a time-series manner. Interestingly, to our knowledge, this occupancy rates using time-series analysis.
isthefirst study to apply DL to predict ward- and room-specific
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Table 1. Summary of prior studies.

Seo et a

Study Year Data set Method Prediction target
Mackay and Lee 2007 Deidentified data, the date and time ~ Comparison of 2 compartment models  Entire hospital bed occupancy
[12] of patient admission and discharge  through cross-validation (annual average)
between 1998 and 2000
Littigand Isken[13] 2007 Historical and real-time data ware- Computerized model of MLR®and Entire hospital short-term occu-
house and hospital information sys- LR pancy (24 h or 72 h) based on
tems (emergency department, finan- LOSS
cid, surgica scheduling, and inpatient
tracking systems)
Kumar and Mo [14] 2010 Bed management between June 1, The 3 methods are: (1) Poissonbed  The 3 prediction targets are: (1)
2006, and June 1, 2007; Information:  occupancy model; (2) Simulation Estimation of bed occupancy and
(1) In each class based on length of ~ model; and (3) Regression model optimal bed requirementsin each
stay and admission data; (2) Histori- class; (2) Bed occupancy levels
cal previousyear's sameweek admis- for every class for the following
sion data; (3) Relationship between week; and (3) Weekly average
identified variables to aid bed man- number of occupied beds
agers
Seematter-Bagnoud 2015 Inpatient stay datain 2010 (acute so- Three models of hypothesis-based The 3 targets are: (1) Number of
et d [15] matic careinpatientsand outpatients)  statistical forecasting of futuretrends hospital stays; (2) Hospital inpa-
tient days; and (3) Beds for
medical stay
Farmer and Emami 1990 Inpatient stay datafor general surgery The 2 methods are: (1) Forecasting  Entire hospital short-term daily
[16] in the age group of 15-44 yearsbe-  from astructural model and (2) The  bed requirements
tween 1969 and 1982 time-series or Box-Jenkins method
Kimetal [17] 2014 Data warehouse between January The2 methodsare: (1) The ARIMAY  Entirehospital bed occupancy (1
2009 and June 2012 model for univariate dataand (2) The ddy and 1 week)
time-series model for multivariate
data
Kutafinaet al [9] 2019 Inpatient stay data between October  NARX® model, atype of RN Nf Entire hospital mid-term bed oc-
14, 2002, and December 31, 2015 cupancy (60 days, bed pool in
(patient identifier, time of admission, units of 30 beds)
discharge, and name of the clinic the
patient was admitted to; no personal
information on the patients or staff
was provided)
Bouhamedetal [19] 2022 COVID-19 hospital occupancy data  The 3 models are: LSTMY, GRUP,  Entire hospital bed occupancy
In 15 countries between December and SRNN' Incorporate vaccination
2021 and early January 2022 percentage and median age of the
population to improve performance
Bekker et a [20] 2021 Historical datapublicly availableuntil  The 2 methods are: (1) Using linear  The 2 targets are: (1) Patient ad-
mid-October 2020 programming to predict admissions  mission and (2) Entire hospital
and (2) Fitting the remaining LOS short-term bed occupancy
and using results from the queuing
theory to predict occupancy
Farcomeni et al [21] 2021 Patientsadmitted to theintensivecare  The 2 methods are: (1) Generalized  Entire hospital short-term inten-

unit between January and June 2020

linear mixed regression model and (2)
Area-specific nonstationary integer
autoregressive methodol ogy

sive care bed occupancy

M LR: multinomial logistic regression.

BLR: linear regression.

€LOS: length of stay.

dARIMA: autoregressive integrated moving average.
ENARX: nonlinear autoregressive exogenous.

RNN: recurrent neural network.

9 STM: long short-term memory.

hGRU: grid recurrent unit.

ISRNIN: simple recurrent neural network.
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Goal of This Study

Theaim of thisstudy wasto predict the BORs of hospital wards
and rooms using time-seriesdatafromindividual beds. Although
overall bed occupancy prediction is useful for macro-level
resource management in hospitals, resource alocation based
on the prediction of occupancy ratesfor each ward and roomis
required for specific hospital scheduling and practicality.
Through this approach, we aim to contribute to the efficient
operationa cost optimization of the hospital and ensure the
availability of resources required for patient care.

We have developed time-series prediction models based on
deep neural network (DNN), among which 1 model combines
data representing room-specific features (static data) with
dynamic data to enhance the prediction performance for room
bed occupancy rates (RBORS). Based on bidirectional long
short-term memory (Bi-LSTM), the RBOR prediction model
demonstrates a lower mean absolute error (MAE) of 0.049, a
mean square error (MSE) of 0.042, a root mean square error

(RMSE) of 0.007, and a higher R? score of 0.291, indicating
the highest performance among all RBOR models.

We developed 6 types of BOR prediction models, of which 2
types were used for predicting ward bed occupancy rates
(WBORs), and the other 4 typesfocused on predicting RBORSs.
These modelsuse LSTM and Bi-L STM architectureswith strong
long-term memory capabilities as their basic structure. We

https://medinform.jmir.org/2024/1/€53400
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created 6 modelsfor each architecture, resulting in atotal of 12
models. The WBOR models were used for predicting weekly
and monthly occupancy rates, serving long-term hospital
administrative planning purposes. Conversely, the RBOR
models were designed for immediate and rapid occupancy
planning and were trained with 3- and 7-day intervals. Each
RBOR model was enhanced by combining static data, which
represent room-specific features, to generate more sophisticated
prediction models.

Figure 1 showsthe potential application of our model asaform
of web software in a hospital setting. Through an online
dashboard, it can provide timely information regarding bed
availability, enabling intelligent management of patient
movements related to admission and discharge. It facilitates
shared responsibilities within the hospital and simplifiesfuture
resource planning [25].

In the Introduction section, we explored the importance of this
research and investigated relevant previous studies, providing
a general overview of the direction of our research. In the
Methods section, we provide descriptions of the data set used
and the structure of the DNN algorithm used, and explain the
model architecture and performance. In the Results section, we
present the performance and outcomes of this study. Finally, in
the Discussion section, we discussthe contributions, limitations,
and potential avenues for improvement of the research.
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Figurel. Virtual dashboard of the status and forecast of the ward bed occupancy rate (WBOR) and room bed occupancy rate (RBOR). The first screen
presents the overall bed occupancy rate of the hospital, along with the number of beds in use and available. Moreover, a predictive graph displays the

anticipated WBOR for selected dates. The second screen presents the WBOR for individual beds, indicating their statuses, such as“in use,”

“reserved,’

“empty,” and “cleaning.” Detailed information about each room is also displayed.
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Methods

Overview

We intended to predict the BORs of individual hospital wards
and rooms based on the information accumulated in individual
bed-evel dataon an hourly basis, aggregated on adaily basis.
For this purpose, we developed 12 time-series models. As the
base models, we applied LSTM and Bi-LSTM, which are
suitable for sequence data. These models address the limitation
of long-term memory lossin traditional RNNsand were chosen
because of their suitability for training bed data represented as
sequence data.

https://medinform.jmir.org/2024/1/€53400
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Based on the model architecture, therewere2 WBOR prediction
model types, which were trained at 7- and 30-day intervals to
predict the occupancy rate for the next day. Moreover, there
were 2 RBOR prediction model types, similar to the ward
models, which were trained at 3- and 7-day intervals.
Furthermore, as another approach, each RBOR prediction model
was augmented with static data, and 2 DL algorithms were
proposed for the final comparison of their performances in
predicting RBORs.
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Ethical Consider ations

The study was approved by the Asan Medical Center (AMC)
Institutional Review Board (IRB 2021-0321) and was conducted
in accordance with the 2008 Declaration of Helsinki.

Materials

Study Setting

This was a retrospective single-center cohort study. Data were
collected from AMC, with information on the occupancy status
of each bed recorded at hourly interval s between May 27, 2020,
and November 21, 2022. The data set comprised a total of
54,632,684 records. This study used ethically preapproved data.
Deidentified data used in the study were extracted from ABLE,
the AMC clinical research data warehouse.

A total of 57 wards, encompassing specialized wards; 1411
rooms, including private and shared rooms; and 4990 bedswere
included in this study. Wards and rooms with specific
characteristics, such asintensive care unit, newborn room, and
nuclear medicine treatment room, were excluded from the
analysisastheir occupancy prediction using simple and general
variables did not align with the direction of this study.

Supporting Data

Supporting datafor public holidayswere added in our data set.
We considered that holidays have both arecurring pattern with
specific dates each year and adistinctive characteristic of being
nonworking days, which could affect occupancy rates. Based
on Korean public holidays, which include Chuseok, Hangeul
Proclamation Day, Children’s Day, National Liberation Day,
Memorial Day, Buddha's Birthday, Independence Movement
Day, and Constitution Day, there were 27 daysthat corresponded
to public holidays during the period covered by the data set.
We denoted these dates with avalue of “1” if they were public
holidays and “0" if they were not, based on the reference date.

Preprocessing and Description of Variables

Among the variablesrepresenting individual beds, thereference
date, ward and room information, patient occupancy status, bed
cleanliness status, and detailed room information were available.

https://medinform.jmir.org/2024/1/€53400
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Based on the recorded date of bed status, we derived additional
variables, such asthe reference year, reference month, reference
week (week of the year), reference day, and reference day of
the week.

Room datawere derived from theinput information representing
the cleanliness status of beds. Thisvariable had 2 possible states,
namely, “admittable” and “discharge.” If neither of these states
wasindicated, it implied that a patient was currently hospitalized
in the bed. As the status of hospitalized patients was indicated
by missing values, we replaced them with the number “1” to
indicate the presence of apatient in the bed and “0” otherwise.
The sum of all “1” values represented the current number of
hospitalized patients. The count of bedsin each room indicated
the capacity of each room. The target variable BOR was
calculated by dividing the number of patients in the room by
the room capacity, resulting in a room-specific patient
occupancy rate variable. The ward data were subjected to a
similar process as that of the room data, with the difference
being that we generated ward-specific variables, such as ward
capacity and WBOR, using the same approach. The static room
data consisted of 14 variables, including the title of the room
and the detailed information specific to each room.

For the variablesin the ward and room data, we disregarded the
units of the features and converted them into numerical values
for easy comparison, after which we performed normalization.
Regarding the variables representing detailed room information,
we converted them to numerical values where “yes’ was
represented as“1” and “no” was represented as“0.”

Thefinal set of variables used in this study was categorized into
date, ward, room, and detailed room information. Table 2
provides the detailed descriptions of the variables used in our
training, including all the administrative data related to beds
that are readily available in the hospital.

The explanation of the classification for generating the data sets
for training each model is provided in Table 3. The static
features of the detailed room information were combined with
the room data set, which has sequence characteristics, to
generate a separate data set termed Room+Static.
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Table 2. Description of variables by category.

Room abbreviation

1411 categories

Variable Type Description
Date
Year 3 categories Reference year for bed status
Month 12 categories Reference month for bed status
Week 53 categories Reference week for bed status
Day 31 categories Reference day for bed status
Weekday 7 categories Reference day of the week for bed status
Holiday 2 categories Holiday status
Ward
Ward abbreviation 57 categories Abbreviations for entire ward names
Ward capacity Numeric Number of available ward beds
Ward bed capacity Numeric Number of patients currently admitted to the ward
Ward occupancy rate Numeric Ward bed capacity divided by ward capacity
Room

Abbreviations for entire room names

Room capacity Numeric Number of available room beds

Room bed capacity Numeric Number of patients currently admitted to the room

Room occupancy rate Numeric Room bed capacity divided by room capacity

Room static feature

Room code 34 categories Room grade code

Nuclear 2 categories (N¥YP) Nuclear medicine room availability

Sterile 2 categories (N/Y) Sterile room availability

Isolation 2 categories (N/Y) Isolation room availability

EEGS testing 2 categories (N/Y) EEG testing room availability

Observation 2 categories (N/Y) Observation room availability

Kidney 2 categories (N/Y) Kidney transplant room availability

Liver 2 categories (N/Y) Liver transplant room availability

Sub-Icud 2 categories (N/Y) Sub-ICU room availability

Specia 2 categories (N/Y) Special room availability

Small single 2 categories (N/Y) Small single room availability

Short-term 2 categories (N/Y) Short-term room availability

Psy-double 2 categories (N/Y) Psychiatry department double room availability

Psy-open 2 categories (N/Y) Psychiatry department open room availability
a\: No.
BY: Yes,

CEEG: electroencephalogram.
d1CU: intensive care unit.
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Table 3. Dataset classification and included variables.

Seo et a

Data set Variables

Ward data set Ward abbreviation, year, month, week, day, weekday, holiday, ward capacity, ward bed capacity, and ward occupancy
rate

Room data set Room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity, and room occupancy
rate

Static data set 14 static variables related to detailed room information

Room+Static Room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity, 14 static variables

data set related to detailed room information, and room occupancy rate

. allowing the model to focus onimportant areas. Thismechanism
Separation

Each data set was split into training, validation, and test setsfor
training and evaluation of the model. The training set consisted
of 32,153 rows (67.8%), with data from May 27, 2020, to
December 2021. The validation set, used for parameter tuning,
included 7085 rows (15.0%), with data from January to June
2022. Finaly, the test set comprised 8208 rows (17.2%), with
data from July 2022 to November 21, 2022.

DL Algorithms

We used various DL algorithms for in-depth learning. In the
following subsections, we will provide explanations for each
model algorithm used in our research.

LSTM Network

RNN [26] is a simple algorithm that passes information from
previous steps to the current step, allowing it to iterate and
process sequential data. However, it encounters difficulties in
handling long-term dependencies, such as those found in
time-series data, owing to the vanishing gradient problem. To
addressthisissue, LSTM [27] was developed. LSTM excelsin
handling sequence data and is commonly used in natura
language processing, machine translation, and time-series data
analysis. LSTM consistsof aninput gate, output gate, and forget
gate. The “cell state” is carefully controlled by each gate to
determine whether the memory should be retained or forgotten
for the next time step.

Bi-LSTM Network

Although RNN and LSTM possess the ability to remember
previous data, they have a limitation in that their results are
primarily based on immediate past patterns because the input
is processed in a sequential order. This limitation can be
overcome through a network architecture known as Bi-LSTM
[28]. Bi-LSTM allows end-to-end learning, minimizing theloss
on the output and simultaneously training all parameters. It also
has the advantage of performing well even with long data
sequences. Because of its suitability for models that require
knowledge of dependenciesfrom both the past and future, such
as L STM-based time-series prediction, we additionally selected
Bi-LSTM as the base model.

Attention Mechanism

Attention mechanism [29,30] refers to the process of
incorporating the encoder’s outputs into the decoder at each
time step of predicting the output sequence. Rather than
considering the entire input sequence, it focuses more on the
relevant components that are related to the predicted output,

https://medinform.jmir.org/2024/1/€53400

helps minimize information loss in data sets with long
sequences, enabling better learning and improving the model’s
performance. It has been widely used in areas such as text
translation and speech recognition. Nevertheless, as it is till
based on RNN models, it has the drawbacks of slower speed
and not being completely free from information |oss issues.

Combining Static and Dynamic Features

Data can exhibit different characteristics even at the sametime.
For instance, in data collected at 1-hour intervals for each
hospital bed, we can distinguish between “ dynamic data,” which
include featuresthat change over time, such asthe bed condition,
date, and patient occupancy, and “ static data,” which consist of
information that remains constant, such as the ward and room
number.

DL allowsusto useall the availableinformation for prediction.
Therefore, for predicting the RBOR, we investigated an
approach that combines dynamic and static data using an
L STM-based method [31]. This approach demonstrated better
performance than LSTM aone [32]. Our approach involves
adding a layer that incorporates static data as an input to the
existing room occupancy prediction model.

M odel Architecture

Base Model

Our objective was to predict the intermediate-term occupancy
rates of wards and rooms within the hospital to contribute to
hospital operation planning. Bi-LSTM was chosen as the base
model owing to itsimproved predictive performance compared
with the traditional LSTM model. However, to quantitatively
compare these models, we conducted acomparison of theresults
for each model (6 for each, with atotal of 12 models).

A typical LSTM model processes data sequentially, considering
only the information from the past up to the current time step.
However, Bi-LSTM, by simultaneously processing datain both
forward and backward directions, has a unique feature that
allows it to leverage both current and future information for
predictions. This bidirectionality helps the model effectively
learn temporal dependencies and intricate patterns. However,
despite these advantages, Bi-LSTM comes with the trade-off
of doubling the number of model parameters, resulting in
increased computational costsfor training and prediction. While
a more complex model can better adapt to the training data,
there is an increased risk of overfitting, especially with small
data sets. Nevertheless, the reason for choosing Bi-LSTM for
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tasks like predicting BORs in hospitals, involving time-series
data, lies in its ability to harness the power of bidirectional
information. Bi-LSTM processes input datafrom both past and
future directions simultaneously, enabling it to effectively
incorporate future information into current predictions. This
proves beneficial for handling complex patterns in long
time-series data [28].

Moreover, we have enhanced the performance of our models
by adding an attention layer to Bi-LSTM. The attention layer
assigns higher weightsto featuresthat exert asignificant impact
on the prediction, allowing the model to focus on relevant
information and gather necessary input features. This helps
improve the accuracy of the prediction. Furthermore, the
attention layer reduces the amount of information processed,
resulting inimproved computationa efficiency. Ultimately, this
contributes toward enhancing the overall performance of the
model.

The window length of the input sequence was divided into 3
different intervals, namely, 3, 7, and 30 days. The WBOR model

Seo et a

was trained on seguences with a window length of 7 and 30
days, whereas the RBOR model was trained on sequenceswith
awindow length of 3 and 7 days. The first layer of our model
consisted of Bi-LSTM, which was followed by the leaky
rectified linear unit (LeakyRelLU) activation function.
LeakyRelL U is a linear function that has a small gradient for
negative input values, similar to ReLU. It helps the model
converge faster. After applying this process once again, the
AttentionWithContext layer was applied, which focuses on
important components of input sequence data and transforms
outputs obtained from the previous layer. After applying the
activation function again, adense layer with 1 neuron was added
for generating the final output. The sigmoid function was used
to limit the output values between 0 and 1. Finally, our model
was compiled using the M SE loss function, Adam optimizer,
and MAE metric. The parameters for each layer were selected
based on accumulated experience through research. Figure 2
visually represents the above-described structure.

Figure 2. Base bidirectional long short-term memory (Bi-LSTM) model architecture. LeakyRel U: leaky rectified linear unit; LSTM: long short-term

memory.

Dynamic valuables |

Bidirectional LSTM1 Bidirectional LSTM2 AttentionWithContext
LeakyReLU LeakyReLU LeakyReLU
| Dense layer (1)
Predicted

Combining Dynamic and Static Data Using the DL
Model

The accumulated bed data, which were collected on atimebasis,
were divided into dynamic and static data of the rooms, which
were then inputted separately. To improve the performance of
the BOR prediction model, we designed different DL
architectures for the characteristics of these 2 types of data.

We first used a base model based on LSTM and Bi-LSTM to
learn the time-series dataand then focused the model’ s attention
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using the dense layer to process fixed-size inputs. To prevent
overfitting, we applied the dropout function to randomly
deactivate neurons in 2 dense layers. The hidden states of the
2 networkswere combined, and the resulting output was passed
to asingle layer, combining the time dynamic and static data.

Finally, the hidden states of the 2 networkswere combined, and
the combined result was passed to a single layer to effectively
integrate the dynamic and static data. This allowed us to use
the information from both the dynamic and static datafor BOR
prediction. This architecture isillustrated in Figure 3.
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Figure 3. Bidirectiona long short-term memory (Bi-LSTM) model archit
linear unit; LSTM: long short-term memory.

’ Dynamic valuables |
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Hyperparameter Tuning

One of the fundamental methods to enhance the performance
of artificial intelligence (Al) learning models is the use of
hyperparameter tuning. Hyperparameters are parameters passed
to the model to modify or adjust the learning process. While
hyperparameter tuning may rely on the experience of
researchers, there are also functionalities that automatically
search for hyperparameters, taking into account the diversity
of model structures.

|

Static valuables

Various methods for search optimization have been proposed
[33,34], but weimplemented our modelsusing the Keraslibrary.
By leveraging Keras Tuner, we automatically searched for the
optimal combinations of unitsand learning ratesfor each model,
contributing to the improvement of their performance.

Time Series Cross-Validation

Time-series data exhibit temporal dependencies between data
points, making it crucial to consider these characteristics when
validating amodel. Commonly used K-fold cross-validation is
effective for evaluating models on general data sets [35],
providing effectivenessin preventing overfitting and enhancing
generalizability by dividing the data into multiple subsets
[36,37]. However, for time-series data, shuffling the data
randomly is not appropriate owing to the inherent sequential
dependency of the observations.

Time series cross-validation is a method that preserves this
temporal dependence while dividing the data [38]. It involves
splitting the entire hospital bed data set into 5 periods,
conducting training and validation for each period, and repeating
this process as the periods shift. This approach is particularly
effective when observations in the dynamic data set, such as
hospital bed data recorded at 1-hour intervals, play a crucial
rolein predicting future values based on past observations.

Shuffling datarandomly using K-fold may disrupt the temporal
continuity, leading to inadequate reflection of past and future
observations. Therefore, time series cross-vaidation sequentially
partitions the data, ensuring the temporal flow is maintained,
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and proves to be more effective in evaluating the model’'s
performance. This method enables the model to make more
accurate predictions of future occupancy based on past trends.

Evaluation

We selected various metrics to evaluate the performance of
time-series data predictions. Among them, MAE representsthe
absolute difference between the model’s predicted values and
the actual BOR. We aso considered MSE, which is sensitive
to outliers. Moreover, to address the limitations of MSE and
provide apenalty for large errors, we opted for RMSE. We also

used the R? score to measure the correlation between the
predicted and actual values.

MAE is a commonly used metric to evaluate the performance
of time-series prediction models. MAE isintuitive and easy to
calculate, making it widely used in practice. Because MAE uses
absolute values, it isless sensitive to outliers in the occupancy
rate values for specific dates. MAE is calculated using the
following formula:

y; — ypred; (1)

e;

MAE =~ 37, le;| (2)

MSE is a metric that evaluates the magnitude of errors by
squaring the differences between the predicted and actual values
and then taking the average. It is cal culated using the following
formula

MSE = = 31 (le; )? (3)

RM SE isused to addressthe limitations of M SE where the error
scales as a square, providing a more intuitive understanding of
the error magnitude between the predicted and actual values. It
penalizeslarge errors, making it less sensitive to outliers. RM SE
is calculated using the following formula:

RMSE= |2 3 (le;])? (4)
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The R? score is used to measure the explanatory potential of
the prediction model, and it is calculated using the following
formula:

SSR

2 _1_ SsR
R%score =1 e (&)

SST = Xi_1(vi — )% (6)

Seo et a

SSR= Y (vi — 9% (D

Here, SSR represents the sum of squared differences between
the predicted and actual values, and SST represents the sum of
squared differences between the actual values and the mean
value of actual values. Figure 4 shows the prediction method
and overall flow in this study.

Figure 4. Overal flow in this study. Bi-LSTM: bidirectional long short-term memory; LSTM: long short-term memory; MAE: mean absolute error;

MSE: mean square error; RM SE: root mean square error.
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Results

We used 2 DL models, LSTM and Bi-LSTM, and compared
the performance of 12 different prediction models. These models
have been denoted as ward 7 days (W7D), ward 30 days
(W30D), room 3 days (R3D), room 7 days (R7D), room static
3 days (RS3D), and room static 7 days (RS7D). Using Keras
Tuner, we adjusted the hyperparameters of the models and
subsequently validated the models through a 5-fold time series
cross-validation.

The prediction performances of the models for WBOR and
RBOR were compared, which showed that they were more
accurate at predicting WBOR, with MAE values of 0.06t0 0.07.
The W7D model based on Bi-LSTM, which used 7 days of ward
datato predict the next day’sward occupancy, had aMAE value
of 0.067, MSE vaue of 0.009, and RMSE value of 0.094,
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showing high accuracy. The R? score was also 0.544, which
was approximately 0.240 higher than that of the W30D model
(0.304), indicating that the variables in that model explained
occupancy reasonably well.

We next compared the performances of the 8 modelsfor RBOR
prediction, and among them, the RS7D model based on
Bi-LSTM, whichwastrained on a 7-day time step by integrating
static and dynamic data, showed the best performance. It
achieved a MAE value of 0.129, MSE vaue of 0.050, RMSE

valueof 0.227, and R? score of 0.260. In particular, the R? score
outperformed that of the R3D model by 0.014. These data are
summarizedin Table 4. Regarding the WBOR prediction model,
the mode! with ashorter training unit, W7D, demonstrated better
performance. However, regarding the RBOR prediction model,
the model with a longer training unit of 7 days, which
incorporated detailed room-specific information, exhibited
dlightly higher performance than the model with a shorter
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training unit of 3 days. The model with the added room-specific
information still demonstrated superior performance overall.

We visualized the predicted and actual occupancy for Bi-LSTM
models and investigated the occupancy trends since July 2022
on our test data set. First, we selected a specific ward in W7D
to demonstrate the change in the WBOR over 2 months. The
right panel of Figure 5 showsthe WBOR change over 5 months
from July 2022 in W30D. The blue line represents the actual
occupancy value, and the red line represents the predicted
occupancy value by the model. This provides an at-a-glance
view of the overall predicted occupancy level for each month

https://medinform.jmir.org/2024/1/€53400
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and allows hospital staff to observe trends to obtain a rough
understanding of the WBOR.

Figure 6 shows graphs of occupancy rate values for a
randomized specific room, displaying the predicted and actual
values for the 4 RBOR prediction models, with 2 graphs for
each model. The left graph shows the occupancy rate change
over 5 monthsfrom July to November 2022, and theright graph
shows the occupancy rate for the months of July and August,
providing adetailed view of the RBOR. By examining thetrends
of the predicted and actual valuesfor the 4 modelsin this period
for a specific room, we can observe that the models maintain a
similar trend to the actual occupancy rate.
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Table 4. Performances of the occupancy prediction models.

Model and fold MAE? MSEP RMSE® R? score
LsTMd Bi.LsTMe  LSTM Bi-LSTM  LSTM Bi-LSTM  LSTM Bi-LSTM
Ward
w30D'
1 0.081 0.097 0.014 0.015 0.117 0.121 0.040 -0.081
2 0.074 0.064 0.011 0.007 0.107 0.085 0.106 0.430
3 0.118 0.109 0.031 0.025 0.175 0.161 -0.130 0.086
4 0.150 0.087 0.033 0.013 0.182 0.113 -0.572 0.399
5 0.087 0.061 0.019 0.008 0.139 0.089 0.212 0.678
Mean 0.102 0.084 0.021 0.014 0.144 0.114 -0.068 0.304
w7D9
1 0.071 0.063 0.011 0.007 0.103 0.086 0.263 0.479
2 0.067 0.054 0.009 0.005 0.094 0.071 0.302 0.606
3 0.119 0.091 0.033 0.016 0.183 0.126 -0.241 0.408
4 0.116 0.068 0.021 0.009 0.145 0.098 -0.009 0.537
5 0.083 0.060 0.015 0.007 0.123 0.087 0.380 0.690
Mean 0.091 0.067 0.018 0.009 0.130 0.094 0.139 0.544
Room
R7D"
1 0.120 0.111 0.057 0.045 0.238 0.212 0.026 0.226
2 0.127 0.108 0.057 0.047 0.238 0.216 0.054 0.222
3 0.190 0.148 0.167 0.072 0.327 0.269 0.018 0.336
4 0.209 0.162 0.068 0.055 0.261 0.234 -0.089 0.125
5 0.158 0.124 0.069 0.048 0.263 0.220 0.102 0.370
Mean 0.161 0.131 0.071 0.053 0.265 0.230 0.022 0.256
R3D'
1 0.134 0.115 0.058 0.045 0.242 0.212 0.001 0.229
2 0.130 0.097 0.060 0.048 0.245 0.220 0.006 0.195
3 0.178 0.147 0.118 0.080 0.344 0.283 -0.084 0.266
4 0.210 0.204 0.078 0.075 0.280 0.275 -0.247 -0.201
5 0.161 0.120 0.064 0.048 0.254 0.220 0.168 0.377
Mean 0.163 0.167 0.076 0.059 0.273 0.242 -0.031 0.173
RS7D/
1 0.147 0.114 0.057 0.045 0.238 0.212 0.027 0.228
2 0.151 0.099 0.057 0.046 0.240 0.215 0.042 0.227
3 0.216 0.160 0.104 0.063 0.322 0.267 0.048 0.260
4 0.194 0.152 0.064 0.050 0.252 0.224 -0.016 0.198
5 0.181 0.120 0.068 0.047 0.261 0.217 0.112 0.385
Mean 0.178 0.129 0.070 0.050 0.262 0.227 0.043 0.260
RS3DK
1 0.109 0.116 0.056 0.046 0.237 0.215 0.039 0.213
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Model and fold MAE? MSEP RMSE® R score
LsTMA Bi.LsTMe  LSTM Bi-LSTM  LSTM Bi-LSTM  LSTM Bi-LSTM
2 0.118 0.092 0.061 0.048 0.246 0.219 -0.009 0.203
3 0.182 0.160 0.116 0.090 0.340 0.300 -0.062 0.172
4 0.278 0.191 0.152 0.065 0.389 0.255 -1.410 -0.039
5 0.159 0.116 0.074 0.047 0.272 0.218 0.043 0.387
Mean 0.169 0.135 0.092 0.059 0.297 0.241 -0.028 0.187

3 AE: mean absolute error.
BMSE: mean square error.
°RMSE: root mean square error.
dLsT™: long short-term memory.
€Bi-LSTM: hidirectional long short-term memory.
fw30D: ward 30 days.

O9W7D: ward 7 days.

PR7D: room 7 days.

'R3D: room 3 days.

IRS7D: room static 7 days.
KRS3D: room static 3 days.

Figure5. Examples of the predicted and actual bed occupancy rates for the 2-month period from July to August 2022 for ward 7 days and the 5-month
period from July to November 2022 for ward 30 days.
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Figure 6. Examples of the predicted and actual bed occupancy rates for the 2-month period from July to August 2022 and the 5-month period from
July to November 2022.
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Discussion administrative and financia planning for bed management
within the hospital .
Principal Findings During the specified period, we compared the results of using

Theentire data set of this study consisted of administrativedata DL models to predict the overall BOR for each ward and
collected at AMC at an hourly interval for each ward fromMay  individual rooms. In the case of WBOR prediction, the MAE
27, 2020, to November 21, 2022. To improve the hospital’s Of the 7-day window model based on Bi-LSTM was
challenges, we developed amodel to predict the occupancy rate  approximately 0.067, demonstrating a remarkably close
of wards and rooms. Our aim was to contribute toward Prediction to the occupancy compared with that of the 30-day
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window model based on LSTM, with a difference of
approximately 0.035. Furthermore, the MSE and RM SE were
0.009 and 0.094, respectively, indicating high accuracy in the

predictions. Moreover, the R? score of 0.544 indicated that the
model had better explanatory potential than the average. For
theindividual RBOR prediction, among the 8 models, the RS7D
model based on Bi-LSTM performed the best, exhibitingaMAE
of approximately 0.129, which was remarkably lower than that
of the other models. Moreover, the MSE and RMSE were
significantly lower than those of the RBOR models, with

differences of 0.042 and 0.07, respectively. The R? score of
0.260 indicated that it had higher explanatory potential than the
RS3D models based on LSTM, with the value being higher by
0.291.

Finally, wevisualized the predicted and actua valueson agraph
for aspecific period and observed that each model captured the
trend of the actual BOR quite well. Although the models were
lessaccuratein predicting low occupancy periods, they followed
the general trend closely. Overall, these findings demonstrate
that our DL models effectively predicted BORs for both wards
and individua rooms, with certain models demonstrating
superior performance in different scenarios.

Strengthsand Limitations

Although the models in this study demonstrated good
performance in following the trends of BORs and achieved
good results, there were several limitations in this research.
First, there were limitations in the data. Although we used
administrative data and detailed room information available
from the hospital to enable the models to capture occupancy
trends, the relationship between the variables and the model’s
explanatory potential showed room for improvement, as

indicated by the R? score. To achieve higher prediction accuracy,
it would be beneficial to incorporate diverse data sources and
real-time updated information.

Second, therewas variability in external factors. Hospital BORs
are heavily influenced by external environmental factors. Sudden
events, such asenvironmental factorsand outbreaks of infectious
diseases like COVID-19, can render accurate prediction of bed
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occupancy challenging [18,32]. Furthermore, seasonal effects
and accidents can increase the number of patients. Sufficient
collection of long-term data on these external factors would be
necessary, but such uncertainties can reduce the accuracy of
predictions.

Despite these limitations, our study demonstrated a significant
level of adherenceto trendsin the prediction of individual ward
and room occupancy. More detailed variables and a longer
period of data accumulation would be required to predict the
specific number of beds.

Conclusion

We presented models that can predict the occupancy rates of
wards and individual hospital rooms using artificial neural
networks based on time-series data. The predicted results of
these models demonstrated ahigh level of accuracy in capturing
the future trends of the BOR. In particular, we presented 8
RBOR models with structure and window changes to compare
their performance and found that the RS7D model showed the
best performance. Our results can be implemented as a web
application on hospital online dashboards, as depicted in Figure
1 [25]. In fact, Johns Hopkins University has been applying
these methods in their command center to monitor hospital
capacity and achieve effectiveness in patient management
planning [39].

Furthermore, predicting BORS supports patient admission and
discharge planning, helping to aleviate overcrowding in
emergency departments and reduce patient waiting times. Staff
members can effectively schedule patient admission and
discharge, and minimize waiting times by understanding the
BOR, providing urgent treatment to emergency patients.
Moreover, providing appropriate information to patientswaiting
in the emergency department can increase patient satisfaction
and facilitate efficient transition to hospital admission [40,41].
By applying Al models that combine BOR prediction, which
contributes toward reducing emergency department waiting
timeswith individual patient admission and discharge prediction,
hospitals can achieve resource optimization and cost savings,
resulting in improved patient satisfaction.

This work was supported by a Korea Medical Device Development Fund grant funded by the Korean government (the Ministry
of Science and ICT; the Ministry of Trade, Industry and Energy; the Ministry of Health & Welfare, Republic of Korea; the
Ministry of Food and Drug Safety) (project number: 1711195603, RS-2020-KD000097, 50%) and by a grant from the Korea
Health Technology R& D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of
Health & Welfare, Republic of Korea (grant number: HR20C0026).

Conflictsof I nterest
None declared.

References

1. Reuben DB, Cassel CK. Physician stewardship of health care in an era of finite resources. JAMA. Jul 27,
2011;306(4):430-431. [doi: 10.1001/jama.2011.999] [Medline: 21791692]
2. Nationa Health Expenditure Projections 2011-2021. Centers for Medicare and Medicaid Services. URL: https://www.

cms.gov/files’document/forecastsummaryandtabl espdf [accessed 2024-02-21]

https://medinform.jmir.org/2024/1/€53400

JMIR Med Inform 2024 | vol. 12 | €53400 | p. 17
(page number not for citation purposes)


http://dx.doi.org/10.1001/jama.2011.999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21791692&dopt=Abstract
https://www.cms.gov/files/document/forecastsummaryandtablespdf
https://www.cms.gov/files/document/forecastsummaryandtablespdf
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Seoeta

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

The world health report 2000 - Health systems: improving performance. World Health Organisation. URL: https://cdn.
who.int/media/docs/default-source/heal th-fi nanci ng/whr-2000. pdf 2sfvrsn=95d8b803 _1& download=true [accessed
2024-02-21]

Kabene SM, Orchard C, Howard JM, Soriano MA, Leduc R. The importance of human resources management in health
care: aglobal context. Hum Resour Health. Jul 27, 2006;4(1):20. [FREE Full text] [doi: 10.1186/1478-4491-4-20] [Medline:
16872531]

Page K, Barnett AG, Graves N. What isahospital bed day worth? A contingent valuation study of hospital Chief Executive
Officers. BMC Health Serv Res. Feb 14, 2017;17(1):137. [FREE Full text] [doi: 10.1186/s12913-017-2079-5] [Medline:
28196489]

Keegan AD. Hospital bed occupancy: more than queuing for abed. Med J Aust. Sep 06, 2010;193(5):291-293. [doi:
10.5694/.1326-5377.2010.tb03910.x] [Medline: 20819049]

Kaier K, Mutters N, Frank U. Bed occupancy rates and hospital-acquired infections--should beds be kept empty? Clin
Microbiol Infect. Oct 2012;18(10):941-945. [FREE Full text] [doi: 10.1111/j.1469-0691.2012.03956.x] [Medline: 22757765]
Anderson D. Theimpact of resource management on hospital efficiency and quality of care. University of Maryland. 2013.
URL: https://api.drum.lib.umd.edu/server/api/core/bitstreams/ 7ec54849-e2d2-449b-9a9a-f 506b429834b/content [accessed
2024-02-21]

KutafinaE, Bechtold I, Kabino K, Jonas SM. Recursive neural networksin hospital bed occupancy forecasting. BMC Med
Inform Decis Mak. Mar 07, 2019;19(1):39. [FREE Full text] [doi: 10.1186/s12911-019-0776-1] [Medline: 30845940]
Baas S, Dijkstra S, Braaksma A, van Rooij P, Snijders FJ, Tiemessen L, et a. Real-time forecasting of COVID-19 bed
occupancy in wards and Intensive Care Units. Health Care Manag Sci. Jun 25, 2021;24(2):402-419. [FREE Full text] [doi:
10.1007/s10729-021-09553-5] [Medline: 33768389

Esteban C, Staeck O, Baier S, Yang Y, Tresp V. Predicting Clinical Events by Combining Static and Dynamic Information
Using Recurrent Neural Networks. 2016. Presented at: 2016 | EEE International Conference on Healthcare Informatics
(ICHI); October 4-7, 2016;93-101; Chicago, IL. [doi: 10.1109/ICHI.2016.16]

Mackay M, Lee M. Using Compartmental Models to Predict Hospital Bed Occupancy. Semantic Scholar. URL: https:/
/www.semanti cschol ar.org/paper/Us ng-Compartmental-M odel s-to-Predi ct-Hospital -Bed-M ackay-L ee/f 2b32e60df 7dd80bd48
e8ccd0af 920134d1452¢57p2df [accessed 2024-02-21]

Littig SJ, Isken MW. Short term hospital occupancy prediction. Health Care Manag Sci. Feb 28, 2007;10(1):47-66. [doi:
10.1007/s10729-006-9000-9] [Medline: 17323654]

Kumar A, Mo J. Modelsfor Bed Occupancy Management of aHospital in Singapore. In: Proceedings of the 2010 International
Conference on Industrial Engineering and Operations Management. 2010. Presented at: 2010 International Conference on
Industrial Engineering and Operations Management; January 9-10, 2010; Dhaka, Bangladesh.

Seematter-Bagnoud L, Fustinoni S, Dung D, Santos-Eggimann B, Koehn V, Bize R, et al. Comparison of different methods
to forecast hospital bed needs. European Geriatric Medicine. Jun 2015;6(3):262-266. [doi: 10.1016/j.eurger.2014.09.004]
Farmer RD, Emami J. Modelsfor forecasting hospital bed requirementsin the acute sector. J Epidemiol Community Health.
Dec 01, 1990;44(4):307-312. [FREE Full text] [doi: 10.1136/jech.44.4.307] [Medline: 2277253]

KimK, LeeC, O'Leary KJ, Rosenauer S, Mehrotra S. Predicting Patient Volumesin Hospital Medicine: A Comparative
Study of Different Time Series Forecasting M ethods. Northwestern University. URL : https.//www.mcs.anl.gov/~kibaekkim/
ForecastingHospital M edicine.pdf [accessed 2024-02-21]

Rosenbaum L. Facing Covid-19 in Italy - Ethics, Logistics, and Therapeutics on the Epidemic's Front Line. N Engl JMed.
May 14, 2020;382(20):1873-1875. [doi: 10.1056/NEJM p2005492] [Medline: 32187459]

Bouhamed H, Hamdi M, Gargouri R. Covid-19 Patients’ Hospital Occupancy Prediction During the Recent Omicron Wave
via some Recurrent Deep Learning Architectures. Int. J. Comput. Commun. Control. Mar 14, 2022;17(3):4697. [doi:
10.15837/ijccc.2022.3.4697)

Bekker R, Uit Het Broek M, Koole G. Modeling COVID-19 hospital admissions and occupancy in the Netherlands. Eur J
Oper Res. Jan 01, 2023;304(1):207-218. [FREE Full text] [doi: 10.1016/j.ejor.2021.12.044] [Medline: 35013638]
Farcomeni A, Maruotti A, Divino F, Jona-Lasinio G, Lovison G. An ensemble approach to short-term forecast of COVID-19
intensive care occupancy in Italian regions. Biom J. Mar 30, 2021;63(3):503-513. [FREE Full text] [doi:
10.1002/bimj.202000189] [Medline: 33251604]

Caro JJ, Mdller J, Santhirapala V, Gill H, Johnston J, El-Boghdadly K, et al. Predicting Hospital Resource Use During
COVID-19 Surges: A Simple but Flexible Discretely Integrated Condition Event Simulation of Individual Patient-Hospital
Trajectories. Value Health. Nov 2021;24(11):1570-1577. [FREE Full text] [doi: 10.1016/j.jval.2021.05.023] [Medline:
34711356]

Schmidt R, Geisler S, Spreckelsen C. Decision support for hospital bed management using adaptable individual length of
stay estimations and shared resources. BMC Med Inform Decis Mak. Jan 07, 2013;13:3. [FREE Full text] [doi:
10.1186/1472-6947-13-3] [Medline: 23289448]

Hancock WM, Walter PF. The use of computer simulation to develop hospital systems. SIGSIM Simul. Dig. Jul
1979;10(4):28-32. [doi: 10.1145/1102815.1102819)]

https://medinform.jmir.org/2024/1/€53400 JMIR Med Inform 2024 | vol. 12 | €53400 | p. 18

(page number not for citation purposes)


https://cdn.who.int/media/docs/default-source/health-financing/whr-2000.pdf?sfvrsn=95d8b803_1&download=true
https://cdn.who.int/media/docs/default-source/health-financing/whr-2000.pdf?sfvrsn=95d8b803_1&download=true
https://human-resources-health.biomedcentral.com/articles/10.1186/1478-4491-4-20
http://dx.doi.org/10.1186/1478-4491-4-20
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16872531&dopt=Abstract
https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-017-2079-5
http://dx.doi.org/10.1186/s12913-017-2079-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28196489&dopt=Abstract
http://dx.doi.org/10.5694/j.1326-5377.2010.tb03910.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819049&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1198-743X(14)61090-9
http://dx.doi.org/10.1111/j.1469-0691.2012.03956.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22757765&dopt=Abstract
https://api.drum.lib.umd.edu/server/api/core/bitstreams/7ec54849-e2d2-449b-9a9a-f506b429834b/content
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-0776-1
http://dx.doi.org/10.1186/s12911-019-0776-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30845940&dopt=Abstract
https://europepmc.org/abstract/MED/33768389
http://dx.doi.org/10.1007/s10729-021-09553-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33768389&dopt=Abstract
http://dx.doi.org/10.1109/ICHI.2016.16
https://www.semanticscholar.org/paper/Using-Compartmental-Models-to-Predict-Hospital-Bed-Mackay-Lee/f2b32e60df7dd80bd48e8ccd0af920134d1452c5?p2df
https://www.semanticscholar.org/paper/Using-Compartmental-Models-to-Predict-Hospital-Bed-Mackay-Lee/f2b32e60df7dd80bd48e8ccd0af920134d1452c5?p2df
https://www.semanticscholar.org/paper/Using-Compartmental-Models-to-Predict-Hospital-Bed-Mackay-Lee/f2b32e60df7dd80bd48e8ccd0af920134d1452c5?p2df
http://dx.doi.org/10.1007/s10729-006-9000-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17323654&dopt=Abstract
http://dx.doi.org/10.1016/j.eurger.2014.09.004
https://jech.bmj.com/lookup/pmidlookup?view=long&pmid=2277253
http://dx.doi.org/10.1136/jech.44.4.307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2277253&dopt=Abstract
https://www.mcs.anl.gov/~kibaekkim/ForecastingHospitalMedicine.pdf
https://www.mcs.anl.gov/~kibaekkim/ForecastingHospitalMedicine.pdf
http://dx.doi.org/10.1056/NEJMp2005492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32187459&dopt=Abstract
http://dx.doi.org/10.15837/ijccc.2022.3.4697
https://europepmc.org/abstract/MED/35013638
http://dx.doi.org/10.1016/j.ejor.2021.12.044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35013638&dopt=Abstract
https://europepmc.org/abstract/MED/33251604
http://dx.doi.org/10.1002/bimj.202000189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33251604&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1098-3015(21)01609-0
http://dx.doi.org/10.1016/j.jval.2021.05.023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34711356&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-13-3
http://dx.doi.org/10.1186/1472-6947-13-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23289448&dopt=Abstract
http://dx.doi.org/10.1145/1102815.1102819
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Seoeta

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

40.

41.

Shahpori R, Gibney N, Guebert N, Hatcher C, Zygun D. An on-line dashboard to facilitate monitoring of provincial ICU
bed occupancy in Alberta, Canada. JHA. Oct 10, 2013;3(1):47. [doi: 10.5430/jha.v3n1p47]

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. Oct 9,
1986;323(6088):533-536. [doi: 10.1038/323533a0]

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. Nov 15, 1997;9(8):1735-1780. [doi:
10.1162/nec0.1997.9.8.1735] [Medline: 9377276]

Schuster M, Paliwal K. Bidirectional recurrent neural networks. |EEE Trans. Signal Process. 1997;45(11):2673-2681. [doi:
10.1109/78.650093]

Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Transl ate. arXiv. 2014. URL:
https://arxiv.org/abs/1409.0473 [accessed 2024-02-21]

Luong MT, Pham H, Manning CD. Effective Approaches to Attention-based Neural Machine Translation. arXiv. 2015.
URL: https://arxiv.org/abs/1508.04025 [accessed 2024-02-21]

LeontjevaA, Kuzovkin I. Combining Static and Dynamic Featuresfor Multivariate Sequence Classification. 2016. Presented
at: 2016 |EEE 3rd International Conference on Data Science and Advanced Analytics (DSAA); October 17-19, 2016;21-30;
Montreal, QC. [doi: 10.1109/DSAA.2016.10]

Vincent J, Creteur J. Ethical aspects of the COVID-19 crisis: How to deal with an overwhelming shortage of acute beds.
Eur Heart J Acute Cardiovasc Care. Apr 29, 2020;9(3):248-252. [EREE Full text] [doi: 10.1177/2048872620922788]
[Medline: 32347745]

VakhariaV, Shah M, Nair P, Borade H, Sahlot P, Wankhede V. Estimation of Lithium-ion Battery Discharge Capacity by
Integrating Optimized Explainable-Al and Stacked LSTM Model. Batteries. Feb 09, 2023;9(2):125. [doi:
10.3390/batteries9020125]

Joshi S, Owens JA, Shah S, Munasinghe T. Analysis of Preprocessing Techniques, Keras Tuner, and Transfer Learning on
Cloud Street image data. 2021. Presented at: IEEE International Conference on Big Data (Big Data); December 15-18,
2021; Orlando, FL. [doi: 10.1109/BigData52589.2021.9671878]

Jung Y. Multiple predicting K-fold cross-validation for model selection. Journal of Nonparametric Statistics. Nov 21,
2017;30(1):197-215. [doi: 10.1080/10485252.2017.1404598]

Nair P, VakhariaV, Borade H, Shah M, Wankhede V. Predicting Li-lon Battery Remaining Useful Life: An XDFM-Driven
Approach with Explainable Al. Energies. Jul 31, 2023;16(15):5725. [doi: 10.3390/en16155725]

Seo H, Ahn I, Gwon H, Kang HJ, Kim Y, Cho HN, et a. Prediction of hospitalization and waiting time within 24 hours of
emergency department patients with unstructured text data. Health Care Manag Sci. Nov 03, 2023.:09660-5. [doi:
10.1007/s10729-023-09660-5] [Medline: 37921927]

Deng A. Time series cross validation: A theoretical result and finite sample performance. Economics Letters. Dec
2023;233:111369. [doi: 10.1016/j.econlet.2023.111369]

Martinez DA, Kane EM, Jalalpour M, Scheulen J, Rupani H, Totgja R, et al. An Electronic Dashboard to Monitor Patient
Flow at the Johns Hopkins Hospital: Communication of Key Performance Indicators Using the Donabedian Model. JMed
Syst. Jun 18, 2018;42(8):133. [doi: 10.1007/s10916-018-0988-4] [Medline: 29915933]

Gartner D, Padman R. Machine learning for healthcare behavioural OR: Addressing waiting time perceptionsin emergency
care. Journal of the Operational Research Society. Apr 15, 2019;71(7):1087-1101. [doi: 10.1080/01605682.2019.1571005]
Welch SJ. Twenty years of patient satisfaction research applied to the emergency department: a qualitative review. AmJ
Med Qual. Dec 04, 2010;25(1):64-72. [doi: 10.1177/1062860609352536] [Medline: 19966114]

Abbreviations

Al: artificial intelligence

AMC: Asan Medical Center
Bi-LSTM: bidirectional long short-term memory
BOR: bed occupancy rate

DL: deeplearning

DNN: deep neural network

LeakyRelL U: leaky rectified linear unit
LSTM: long short-term memory
MAE: mean square error

ML: machinelearning

R3D: room 3 days

R7D: room 7 days

RBOR: room bed occupancy rate
RMSE: root mean square error

RNN: recurrent neural network

RS3D: room static 3 days

https://medinform.jmir.org/2024/1/€53400 JMIR Med Inform 2024 | vol. 12 | €53400 | p. 19

(page number not for citation purposes)


http://dx.doi.org/10.5430/jha.v3n1p47
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9377276&dopt=Abstract
http://dx.doi.org/10.1109/78.650093
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025
http://dx.doi.org/10.1109/DSAA.2016.10
https://journals.sagepub.com/doi/abs/10.1177/2048872620922788?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/2048872620922788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32347745&dopt=Abstract
http://dx.doi.org/10.3390/batteries9020125
http://dx.doi.org/10.1109/BigData52589.2021.9671878
http://dx.doi.org/10.1080/10485252.2017.1404598
http://dx.doi.org/10.3390/en16155725
http://dx.doi.org/10.1007/s10729-023-09660-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37921927&dopt=Abstract
http://dx.doi.org/10.1016/j.econlet.2023.111369
http://dx.doi.org/10.1007/s10916-018-0988-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29915933&dopt=Abstract
http://dx.doi.org/10.1080/01605682.2019.1571005
http://dx.doi.org/10.1177/1062860609352536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19966114&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Seoeta

RS7D: room static 7 days

W7D: ward 7 days

W30D: ward 30 days

WBOR: ward bed occupancy rate

Edited by C Lovis; submitted 05.10.23; peer-reviewed by V Vakharia, T Leili; comments to author 10.11.23; revised version received
20.12.23; accepted 16.02.24; published 21.03.24

Please cite as.

Seo H, Ahn |, Gwon H, Kang H, Kim Y, Choi H, KimM, Han J, Kee G, Park S, Ko S Jung H, Kim B, Oh J, Jun TJ, Kim YH
Forecasting Hospital Room and Ward Occupancy Using Satic and Dynamic Information Concurrently: Retrospective Sngle-Center
Cohort Sudy

JMIR Med Inform 2024;12:€53400

URL: https://medinform.jmir.org/2024/1/€53400

doi: 10.2196/53400

PMID:

©Hyeram Seo, Imjin Ahn, Hansle Gwon, Hegjun Kang, Yunha Kim, Hegjung Choi, Minkyoung Kim, Jiye Han, Gaeun Kee,
Seohyun Park, Soyoung Ko, HyoJe Jung, Byeolhee Kim, Jungsik Oh, Tae Joon Jun, Young-Hak Kim. Originally published in
JMIR Medical Informatics (https://medinform.jmir.org), 21.03.2024. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the origina work, first published in IMIR Medical Informatics, is properly
cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this
copyright and license information must be included.

https://medinform.jmir.org/2024/1/€53400 JMIR Med Inform 2024 | vol. 12 | €53400 | p. 20
(page number not for citation purposes)

RenderX


https://medinform.jmir.org/2024/1/e53400
http://dx.doi.org/10.2196/53400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

