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Abstract
Background: The application of machine learning in health care often necessitates the use of hierarchical codes such as the
International Classification of Diseases (ICD) and Anatomical Therapeutic Chemical (ATC) systems. These codes classify
diseases and medications, respectively, thereby forming extensive data dimensions. Unsupervised feature selection tackles the
“curse of dimensionality” and helps to improve the accuracy and performance of supervised learning models by reducing
the number of irrelevant or redundant features and avoiding overfitting. Techniques for unsupervised feature selection, such
as filter, wrapper, and embedded methods, are implemented to select the most important features with the most intrinsic
information. However, they face challenges due to the sheer volume of ICD and ATC codes and the hierarchical structures of
these systems.
Objective: The objective of this study was to compare several unsupervised feature selection methods for ICD and ATC code
databases of patients with coronary artery disease in different aspects of performance and complexity and select the best set of
features representing these patients.
Methods: We compared several unsupervised feature selection methods for 2 ICD and 1 ATC code databases of 51,506
patients with coronary artery disease in Alberta, Canada. Specifically, we used the Laplacian score, unsupervised feature
selection for multicluster data, autoencoder-inspired unsupervised feature selection, principal feature analysis, and concrete
autoencoders with and without ICD or ATC tree weight adjustment to select the 100 best features from over 9000 ICD and
2000 ATC codes. We assessed the selected features based on their ability to reconstruct the initial feature space and predict
90-day mortality following discharge. We also compared the complexity of the selected features by mean code level in the ICD
or ATC tree and the interpretability of the features in the mortality prediction task using Shapley analysis.
Results: In feature space reconstruction and mortality prediction, the concrete autoencoder–based methods outperformed other
techniques. Particularly, a weight-adjusted concrete autoencoder variant demonstrated improved reconstruction accuracy and
significant predictive performance enhancement, confirmed by DeLong and McNemar tests (P<.05). Concrete autoencoders
preferred more general codes, and they consistently reconstructed all features accurately. Additionally, features selected by
weight-adjusted concrete autoencoders yielded higher Shapley values in mortality prediction than most alternatives.
Conclusions: This study scrutinized 5 feature selection methods in ICD and ATC code data sets in an unsupervised context.
Our findings underscore the superiority of the concrete autoencoder method in selecting salient features that represent the
entire data set, offering a potential asset for subsequent machine learning research. We also present a novel weight adjustment
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approach for the concrete autoencoders specifically tailored for ICD and ATC code data sets to enhance the generalizability
and interpretability of the selected features.
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Introduction
Machine learning is increasingly being used in health care
to analyze patient data and provide insights on improving
health outcomes and the quality of care [1]. With the rise of
electronic health data (EHD) and entering a large amount of
data per patient in hospitals, there are big opportunities to
train machine learning models for a variety of applications,
such as the prediction or diagnosis of diseases, outcome
prediction, and treatment planning [1,2]. EHD are a valua-
ble source of information on a patient, containing details
on their demographics, hospital visits, medical diagnoses,
physiological measurements, and treatments received [3].
However, despite the opportunities offered by these large
data sets, there are challenges in terms of data quality,
privacy, and the complexity of medical conditions [1]. In
terms of machine learning, EHD can include many irrelevant
and redundant features, where their direct use can lead to
the “curse of dimensionality” as the high dimensionality of
the data can make it more difficult to extract meaningful
patterns and relationships [4]. Therefore, it is important to
apply appropriate techniques for dimensionality reduction and
feature engineering to address this challenge and improve the
effectiveness of predictive models built from EHD.

Feature selection is one of the critical aspects of machine
learning. It involves selecting a subset of relevant features
that are the most useful for predicting a target variable. In
the case of medical data, these features could include patient
demographics, medical history, laboratory test results, and
diagnosis codes [3]. Feature selection is essential because it
can help improve the accuracy and performance of machine
learning models by reducing the number of irrelevant or
redundant features and avoiding overfitting [4]. Unsupervised
feature selection is a type of feature selection method that
is used when there is no target variable available to guide
the selection of features. Unlike supervised feature selection,
which chooses features that better predict a certain target
variable, unsupervised feature selection methods rely on the
intrinsic structure of the data to identify the most impor-
tant features. This behavior helps the selected features to
be unbiased and perform well when there are no labeled
data. It can also reduce the risk of overfitting to a certain
target variable and ensure robustness to new target variables
[5]. This is an important advantage in health care, where
collecting labeled data is usually difficult and the same data
are often used to predict multiple target variables.

Generally, there are 3 main categories of feature selec-
tion methods: filter, wrapper, and embedded methods. Filter
methods use statistical tests such as variance to rank
individual features within a data set and select the features
that maximize the desired criteria. However, they usually lack
the ability to consider the interactions between features [6].
Wrapper methods, on the other hand, select features that
optimize an objective function for a clustering algorithm.
Therefore, these methods are generally specific to particu-
lar clustering algorithms and may not be suitable for use
with other algorithms. Wrapper methods can detect poten-
tial relationships between features, but this often results in
increased computational complexity [5]. Embedded methods
also take into account feature relationships but generally do
so more efficiently by incorporating feature selection into the
learning phase of another algorithm. Lasso regularization is
one of the well-known embedded methods that can be applied
to a variety of machine learning models [6].

The International Classification of Diseases, Tenth
Revision (ICD-10) is a method of classifying diseases that
was created by the World Health Organization and is used
internationally [7]. It categorizes diseases based on their
underlying cause, characteristics, symptoms, and location in
the body and uses codes to represent each disease. The
ICD-10 system organizes thousands of codes in a hierarchi-
cal structure that includes chapters, sections, categories, and
expansion codes. Within this structure, section codes and their
corresponding chapter codes can be thought of as child-parent
relationships, with each ICD-10 code serving as a node in
the classification system. The same relationship applies to
categories and sections, as well as expansion codes and
categories. The high number of codes in this system is one
of the major challenges of using them in machine learning
applications [8]. It is worth noting that Canada has added or
changed some codes in the lower levels according to their
health care system requirements (ICD-10, Canada [ICD-10-
CA]) [9].

Similar to International Classification of Diseases
(ICD) codes, the Anatomical Therapeutic Chemical (ATC)
classification system, developed by the World Health
Organization Collaborating Centre for Drug Statistics
Methodology, is an international tool for the active and
systematic categorization of active pharmaceutical ingredients
[10]. ATC codes are also structured hierarchically and are
assigned based on the organ or system they impact, as well as
their therapeutic, pharmacological, and chemical properties.
This hierarchical system comprises 5 distinct levels, with
the lower levels providing detailed information about the
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pharmacological subgroup and chemical substance, and the
highest level representing the anatomical main group. As
in the ICD-10, the ATC’s hierarchy introduces child-parent
relationships at each level.

In this research, we used 3 administrative databases
comprising ICD-10 and ATC codes pertaining to patients
with coronary artery disease (CAD). These databases,
relevant to acute care, ambulatory care, and pharmacy
facilities, were used to select the most insightful codes
characterizing this cohort.

Methods
Data Set and Preprocessing
The Alberta Provincial Project for Outcome Assessment
in Coronary Heart Disease (APPROACH) registry [11] is
one of the most comprehensive data repositories of CAD
management in the world, matching unique disease pheno-
types with rich clinical information and relevant outcomes for
patients in Alberta, Canada, who have undergone diagnos-
tic cardiac catheterization or revascularization procedures.
Our cohort’s patients were selected from the APPROACH
registry. These patients underwent diagnostic angiography
between January 2009 and March 2019 at 1 of the following
3 hospitals in Alberta: Foothills Medical Centre, University
of Alberta Hospital, and Royal Alexandra Hospital. We
excluded patients with ST elevation myocardial infarction
from the study to focus on nonemergency CAD.

Discharge Abstract Database (DAD), National Ambula-
tory Care Reporting System (NACRS), and Pharmaceutical
Information Network (PIN) data for the abovementioned
patients were extracted from Alberta provincial health
records. The DAD contains summary hospitalization
information from all acute care facilities in Alberta. The
NACRS includes all visits to ambulatory care facilities (ie,
emergency department, urgent care, and day surgery visits) in
the province as well as some nonabstracted data from other
specialty clinics. The PIN is based on a system that collects
all prescription medicine dispensations from pharmacies all
over Alberta.

In the DAD and NACRS, for each patient, we aggrega-
ted all ICD-10-CA codes of hospital admissions or physician
visits every 3 months following the first admission date (all
codes in that period are treated as 1 record’s codes). This
helps us to make sure that chronic diseases are captured more
comprehensively in fewer records and reduce the effect of
noisy records. We did a similar procedure for ATC codes in
the PIN data set and aggregated the codes every 6 months,
since most medications prescription refills did not extend
beyond 6 months. We one-hot encoded the ICD-10-CA and
ATC codes and their parent nodes for each record. For
example, if the ICD-10-CA code “I251” was present, “I25,”
“I20-I25,” and “Chapter IX” were also encoded in the one-hot
table. Similarly, if the ATC code “C07AB02” was present,
“C07AB,” “C07A,” “C07,” and “C” were also encoded. We
show the number of all unique ICD-10-CA or ATC codes in
the data set with NAll.

To validate the performance of the selected features in
a real clinical problem, we pulled the mortality data of
the patients enrolled in the cohort from the Vital Statistics
Database and matched them with the aggregated records to
determine 90-day mortality following the end of the last
procedure.
Feature Selection
The following unsupervised algorithms were used for feature
selection:

• Concrete autoencoder (CAE) [6]: In this method,
continuous relaxation of discrete random (concrete)
variables [12] and the Gumbel-Softmax reparameteriza-
tion trick are used to construct a special layer in the
neural network to transform discrete random varia-
bles into continuous ones, which allows for efficient
computation and optimization using gradient-based
methods. The reparameterization trick allows the use of
a softmax function in this layer, which is differentiable,
unlike the argmax function. This characteristic is useful
for designing an autoencoder, in which features are
selected in the concrete layer (as the encoder) through
the softmax operation and a common neural network
(as the decoder) is used to reconstruct the main feature
space out of the selected features. During the training,
a temperature parameter can be gradually decreased,
allowing the concrete selector layer to try different
features in the initial epochs and behave more similar
to an argmax function in the last epochs to keep the
best features. After training, we can use an argmax
function on the weights to find the features passed to
the neurons of the encoder layer. One of the major
problems of this method is that it may converge to a
solution where some duplicate features are selected in
some neurons (ie, fewer than the desired number of
features are selected).

• Autoencoder-inspired unsupervised feature selection
(AEFS) [13]: This method combines autoencoder and
group lasso tasks by applying an L1,2 regularization on
the weights of the autoencoder. The autoencoder in this
method tries to map the inputs to a latent space and
then reconstruct the inputs from that space. The L1,2
regularization will optimize the weights (change them
toward 0) to select a smaller number of features. The
neural network structure of the autoencoder will enable
the model to incorporate both linear and nonlinear
behavior of the data in the results. After training this
neural network, the features with higher weight values
in the first layer can be selected as the most informa-
tive features. The authors claimed that this algorithm
showed promising results in computer vision tasks.

• Principal feature analysis (PFA) [14]: This method
selects features based on principal component analy-
sis (PCA). The most important features are selected
by applying a k-means clustering algorithm to the
components of PCA and finding the features dominat-
ing each cluster (closest to the mean of the cluster).
This algorithm is primarily designed for computer
vision.
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• Unsupervised feature selection for multicluster data
(MCFS) [15]: This approach prioritizes the preserva-
tion of the multicluster structure of data. The algo-
rithm involves constructing a nearest neighbor graph
of the features, solving a sparse eigen-problem to find
top eigenvectors with regard to the smallest eigenval-
ues. Then, an L1-regularized least squares problem
is optimized to find the linear weights between the
features and the eigenvectors. This allows us to define
the MCFS score as the maximum weight of each feature
across different clusters and select the highest scores as
the best features.

• Laplacian score (LS) [16]: The LS algorithm uses the
nearest neighbor graph to capture the local structure
of the data in the affinity matrix. For each feature,
its adjusted variation is calculated by removing the
feature’s mean, normalized by a degree matrix, which
itself is derived from the sum of similarities in the
affinity matrix. The Laplacian matrix, essential for
this calculation, is formed by subtracting the affinity
matrix from the degree matrix. The significance of each
feature is then assessed by the LS, which is the ratio
of the feature’s ability to preserve local information
(captured by its adjusted variation’s alignment with the
Laplacian matrix) to its overall variance (measured by
its alignment with the degree matrix). The lower the
LS, the more relevant the feature for representing the
intrinsic geometry of the data set.

We applied the LS, AEFS, PFA, MCFS, and CAE algorithms
to a 67% training data set (split based on patients) of one-hot
encoded features to select the best 100 features (NBest=100)
with the following specifications (we chose NBest based on
preliminary experimentations).

For the AEFS method, we used a single hidden-layer
autoencoder and optimized the loss function as described in
Han et al [13], with α=0.001 as the trade-off parameter of
the reconstruction loss and the regularization term and β=0.1
as the penalty parameter for the weight decay regularization.
The choice of these parameters was based on preliminary
experimentations on a small set of data and exploring α and β
of {0.001, 0.1, 1, 1000}.

For the PFA method, we used incremental PCA instead
of the normal PCA in the original paper [14], with a
batch size of 2NAll due to the high computational cost. We
decomposed the data to NAll2  components and then applied
k-means clustering to find NBest clusters. We also tried
{ NAll5 , NAll3 , NAll2  } as the number of components of the PCA in
the preliminary experiments.

To use the LS and MCFS methods for feature selection,
we used the Euclidean distances between features to construct
a nearest neighbor graph G based on the 5 nearest neighbors.
For the LS method, we set the weights of the connected nodes
of G to 1, assuming a large t in the LS formulation. Then, we
computed the LS for each feature and selected the top features
with higher scores. Due to the high computational resources
required for the LS and MCFS methods, we did not explore

different parameters and used the same settings suggested by
the implementation codes of these algorithms.

As the structure of the loss function allows us to priori-
tize some target variables, the CAE method was applied in
2 different ways—with and without adjusting weights for
features. The reason for adjusting the weights is that since
there are many correlated features in the ICD-10-CA and
ATC code data sets, the model may choose one of them
randomly [3]. Therefore, we applied the function in equation
1 as the class weights of the features to the loss function of
the model:

(1)WF = 11 + d F
where WF is the weight for feature F and d(F) is the depth
of feature F as a node of the ICD-10-CA or ATC tree.
This weight adjustment will force the model to give more
importance to the features at the top of the tree and to
generalize more in clinical settings. In the rest of the paper,
this variant of the CAE model will be referred to as the
CAE with weight adjustment (CAEWW) and the regular
CAE model will be referred to as the CAE with no weight
adjustment (CAENW).

We defined NBest neurons in the concrete selector layer
and used a learning rate of 0.001, a batch size of 64, and
1000 epochs. We also controlled the learning of the con-
crete selector layer by the temperature parameter that started
from 20 and decreased to 0.01 exponentially (this annealing
strategy was suggested by Abid et al [6] for better conver-
gence). The decoder of the CAE was a feed-forward neural
network with 2 hidden layers with 64 neurons and used a
sigmoid activation function for the output layer and a leaky
rectified linear unit activation function for the other layers.
The learning rate, number of neurons, and the layers were
determined based on preliminary experiments for the fastest
convergence of the autoencoder.
Evaluation of Selected Features:
Reconstruction of Initial Feature Space
To evaluate the effectiveness of the selected features, we
trained a simple feed-forward neural network model using
the chosen features to reconstruct the original feature space
for each data set separately. The neural network consisted
of 2 hidden layers, each with 64 neurons, and used leaky
rectified linear unit activation functions, with a 10% dropout
rate, in the hidden layers and a sigmoid activation function
in the output layer. We trained the model using the same
training set used in the feature selection step and evaluated
its performance on the remaining 33% test set using binary
cross entropy. We also calculated the accuracy of each feature
selection method to determine which method produced the
most accurate results. One of the challenges in comparing
models with a large number of targets is that the accuracy
values are inflated, because most of the targets are heavily
imbalanced (ie, most of them were 0s) and the models were
able to predict them easily. To circumvent this issue, we used
a 2-tailed t test analysis and compared the accuracy values of
the classes with the accuracy of a baseline model that simply
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outputs the mode of the training data for each class regardless
of the input.
Evaluation of Selected Features:
Prediction of 90-Day Mortality
To demonstrate the utility of using unsupervised feature
selection methods in a supervised setting, we conducted a
case study where we used the selected features from each
method to predict 90-day mortality following the end of the
last procedure for each data set separately. Since our data sets
were highly imbalanced, with only ~6%, ~2%, and ~1% of
the aggregated records for the DAD, NACRS, and PIN data
set, respectively, leading to 90-day mortality, we upsam-
pled the minority class using random sampling to balance
the training sets. We then trained extreme gradient boost-
ing (XGBoost) models using the training sets with 5-fold
cross-validation to tune the hyperparameters for each model.
We used the best models to predict the binary outcome
variables on the test sets and measured their performances.
XGBoost was selected for its efficiency with sparse data,
which was crucial for our data sets. XGBoost’s regulariza-
tion features help prevent overfitting [17]. Additionally, its
ability to provide interpretable models through tree-based
Shapley values aligns with our objective to not only predict
mortality but also understand the contributing factors [18].
XGBoost’s scalability on multiple processors and speed
(for both training [17] and Shapley analysis [18]) are also
beneficial for processing large volumes of data and com-
plex model tuning. After training the mortality prediction
models for each method and data set, we calculated tree-based
Shapley values corresponding to the features. This allowed us
to rank the importance of each feature and explain their roles
in predicting mortality.

We have made the implementation code for the methods
discussed available at our GitHub repository [19].

Ethical Considerations
This study received ethics approval from the Conjoint
Health Research Ethics Board at the University of Calgary
(REB20-1879). Informed consent was waived due to the
retrospective nature of the data and the large number of
patients involved, making it impractical to seek consent from
each patient. All data were deidentified. No compensation
was provided to the participants as the study did not involve
direct participant interaction.

Results
Data Set Description
Table 1 summarizes the characteristics of the patients in the
cohort at the time of their initial catheterization. The total
numbers of patients with at least 1 record in the respective
data sets, as well as the time ranges for each data set,
are provided in Table 2. The aggregation procedure descri-
bed in the Methods section reduced the number of records
to the values listed in the “Aggregated Records” row, and
the table also includes the total number of codes (unique
ICD-10-CA or ATC codes and their parent codes) in a data
set, along with the average number of codes per record.
Multimedia Appendix 1 illustrates the percentages of the
20 most common ICD-10-CA and ATC codes within each
processed data set. Within the data set, there were 9942
cases corresponding to a 90-day mortality, resulting in a 20%
mortality rate in the cohort. The final aggregated data for each
data set were split into 67% for the training sets and 33% for
the test sets at the patient level.

Table 1. Key characteristics of the patients with CADa enrolled in the cohort.
Variable Overall (N=51,506)
Total population, n (%) 51,506 (100)
Sex, n (%)

Female 12,875 (25)
Male 38,631 (75)

Age (years), mean (SD) 66.09 (11.41)
BMI (kg/m2), mean (SD) 29.51 (7.45)

Missing data, n (%) 8449 (16.4)
CAD type, n (%)

Non-ST elevation myocardial infarction 24,119 (46.83)
Unstable angina 10,671 (20.72)
Stable angina 9832 (19.09)
Missing data 6884.0 (13.37)

Canadian Cardiovascular Society angina grade, n (%)
II (slight limit) 4688 (9.1)
IVb 7513 (14.59)
IVa (hospitalized with acute coronary syndrome) 21,117 (41)
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Variable Overall (N=51,506)

III (marked limit) 2581 (5.01)
IVc 1627 (3.16)
I (strenuous) 1309 (2.54)
Atypical 698 (1.36)
Other or missing data 11,973 (23.25)

Diabetes, n (%)
No diabetes 37,544 (72.89)
Type II 12,067 (23.43)
Type I 806 (1.56)
Other 1089 (2.11)

Dyslipidemia, n (%) 32,967 (64.01)
Heart failure, n (%) 3689 (7.16)
Atrial fibrillation or flutter, n (%) 1220 (2.37)
Hypertension, n (%) 32,264 (62.64)
Angina, n (%) 2559 (4.97)
Family history of CAD, n (%) 15,209 (29.53)
Smoking, n (%)

Never 25,822 (50.13)
Current 11,196 (21.74)
Past 14,488 (28.13)

Chronic lung disease, n (%) 5318 (10.33)
Cerebrovascular disease, n (%) 2040 (3.96)
Psychiatric history, n (%) 1097 (2.13)
Venous insufficiency, n (%) 476 (0.92)
Alcohol consumption, n (%) 599 (1.16)
Extent of CAD, n (%)

3 VDsb 247 (0.48)
3 VDs (one >75%) 7765 (15.08)
3 VDs (>75% proximal LADc) 5704 (11.07)
3 VDs (proximal LAD) 3318 (6.44)
2 VDs 5392 (10.47)
2 VDs (>75% LAD) 569 (1.1)
2 VDs (both >75%) 5215 (10.13)
2 VDs (>75% proximal LAD) 2819 (5.47)
1 VD (>75% proximal LAD) 2299 (4.46)
1 VD (>75%) 8504 (16.51)
1 VD (50%‐75%) 4032 (7.83)
Severe left main disease 3058 (5.94)
Left main disease 2584 (5.02)

aCAD: coronary artery disease.
bVD: vessel disease.
cLAD: left anterior descending.

Table 2. Summary statistics of the DADa, NACRSb, and PINc data sets.
Summary statistics Data set

DAD NACRS PIN
Patients with at least 1 record, n 49,075 50,628 49,052
Records, n 273,910 3,974,403 28,807,136
Aggregated records, n 166,083 173,507 997,997
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Summary statistics Data set

DAD NACRS PIN
Unique ICD-10-CAd or ATCe codes and their parent codes, n 9651 7803 2315
Codes per aggregated record, mean (SD) 24.90 (16.55) 15.27 (12.55) 33.31 (18.95)
Time range 2004‐2022 2010‐2022 2004‐2022

aDAD: Discharge Abstract Database.
bNACRS: National Ambulatory Care Reporting System.
cPIN: Pharmaceutical Information Network.
dICD-10-CA: International Classification of Diseases, Tenth Revision, Canada.
eATC: Anatomical Therapeutic Chemical.

Performances of the Feature Selection
Methods
Table 3 shows the accuracies and binary cross entropies of
the models based on the selected features from each method.

Table 4 shows the accuracy, F1-score, and area under the
receiver operating characteristic curve (AUC-ROC) metrics
of the XGBoost models to predict 90-day mortality.

Table 3. Average accuracy and binary cross entropy (BCE) loss of different sets of selected features in reconstructing the original feature space in a
neural network structure.
Feature
selection
method DADa NACRSb PINc

Accuracy, mean
(95% CI)

BCE, mean (95%
CI)

Accuracy, mean
(95% CI)

BCE, mean (95%
CI)

Accuracy, mean
(95% CI) BCE, mean (95% CI)

CAEWWd 0.9992e
(0.9992-0.9993)

0.0121e
(0.0121-0.0121)

0.9994e
(0.9994-0.9995)

0.0091e
(0.0091-0.0091)

0.9972e
(0.9969-0.9975)

0.0432e
(0.0432-0.0432)

CAENWf 0.9992e
(0.9991-0.9993)

0.0121e
(0.0121-0.0121)

0.9994e
(0.9993-0.9994)

0.0094e
(0.0094-0.0094)

0.9972e
(0.9969-0.9974)

0.0438e
(0.0438-0.0438)

AEFSg 0.9976
(0.9972-0.9980)

0.0370
(0.0370-0.0370)

0.9982
(0.9979-0.9985)

0.0274
(0.0274-0.0274)

0.9884
(0.9867-0.9901)

0.1794
(0.1794-0.1794)

MCFSh 0.9991e
(0.9990-0.9991)

0.0145e
(0.0145-0.0145)

0.9992e
(0.9992-0.9993)

0.0117e
(0.0117-0.0117)

0.9956e
(0.9951-0.9962)

0.0677e
(0.0677-0.0677)

PFAi 0.9975
(0.9971-0.9979)

0.0382
(0.0382-0.0382)

0.9981
(0.9978-0.9985)

0.0286
(0.0286-0.0286)

0.9871
(0.9852-0.9891)

0.1982
(0.1982-0.1982)

LSj 0.9989e
(0.9988-0.9990)

0.0165e
(0.0165-0.0165)

0.9991e
(0.9990-0.9992)

0.0136e
(0.0136-0.0136)

0.9945e
(0.9938-0.9952)

0.0850e
(0.0850-0.0850)

Mode of the
training set
(baseline
model)

0.9975
(0.9971-0.9979)

0.0384
(0.0322-0.0447)

0.9981
(0.9978-0.9984)

0.0294
(0.0245-0.0342)

0.9870
(0.9850-0.9889)

0.2012
(0.1712-0.2312)

aDAD: Discharge Abstract Database.
bNACRS: National Ambulatory Care Reporting System.
cPIN: Pharmaceutical Information Network.
dCAEWW: concrete autoencoder with weight adjustment.
eSignificantly different from the baseline model that outputs the mode of each class (P<.05). The P values are presented in Table S1 of Multimedia
Appendix 2.
fCAENW: concrete autoencoder with no weight adjustment.
gAEFS: autoencoder-inspired unsupervised feature selection.
hMCFS: unsupervised feature selection for multicluster data.
iPFA: principal feature analysis.
jLS: Laplacian score.

Table 4. Performance of the extreme gradient boosting (XGBoost) model in predicting 90-day mortality using different sets of selected features.
Feature selection method DADa NACRSb PINc

Accuracy F1-score AUC-ROCd Accuracy F1-score AUC-ROC Accuracy F1-score AUC-ROC
CAEWWe 0.86 0.37 0.87 0.85 0.15 0.75 0.84 0.1 0.82
CAENWf 0.86 0.36 0.87g 0.86 0.15 0.75 0.83 0.1 0.82
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Feature selection method DADa NACRSb PINc

Accuracy F1-score AUC-ROCd Accuracy F1-score AUC-ROC Accuracy F1-score AUC-ROC
AEFSh 0.88 0.21 0.61g 0.9 0.09 0.56g 0.85 0.08 0.69g

MCFSi 0.86 0.37 0.89g 0.84 0.13 0.74 0.81 0.09 0.84g

PFAj 0.92 0.05 0.5g 0.97 0.02 0.5g 0.93 0.05 0.54g

LSk 0.77 0.26 0.81g 0.8 0.11 0.73g 0.76 0.08 0.82
aDAD: Discharge Abstract Database.
bNACRS: National Ambulatory Care Reporting System.
cPIN: Pharmaceutical Information Network.
dAUC-ROC: area under the receiver operating characteristic curve.
eCAEWW: concrete autoencoder with weight adjustment.
fCAENW: concrete autoencoder with no weight adjustment.
gSignificantly different from the AUC-ROC of the model trained on CAEWW features in their corresponding data set (P<.05) using the DeLong test
[20]. The P values are presented in Table S2 in Multimedia Appendix 2.
hAEFS: autoencoder-inspired unsupervised feature selection.
iMCFS: unsupervised feature selection for multicluster data.
jPFA: principal feature analysis.
kLS: Laplacian score.

Both tables indicate that the CAE methods generally selected
superior features compared to the other algorithms. Adjusting
the weights within the CAE improved the performance of
feature space reconstruction slightly. In terms of predicting
90-day mortality, the CAE methods again performed better
than the other methods, as evidenced by the AUC-ROC.
This superior performance was statistically significant in most
instances (P<.05), according to the DeLong test for AUC-
ROC. Furthermore, the McNemar test revealed a significant
difference between the overall performance of the mortality
prediction models trained on the features of the CAEWW
method and those based on the other methods (P<.05). The

P values of the McNemar and DeLong tests can be found in
Table S2 of Multimedia Appendix 2.

Figure 1 shows the log-scale histograms of the original
feature space reconstruction accuracy in each ICD-10-CA or
ATC code for different feature selection methods. It shows
that CAEWW and CAENW were the best methods in terms
of reconstructing the majority of the features with high
accuracy. The other methods, despite having high average
accuracy, performed poorly in reconstructing some of the
features.
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Figure 1. Log-scale histograms of the initial feature space reconstruction accuracy in each International Classification of Diseases (ICD) code for
different feature selection methods and different data sets: (A) concrete autoencoder with weight adjustment (CAEWW), (B) concrete autoencoder
with no weight adjustment (CAENW), (C) autoencoder-inspired unsupervised feature selection (AEFS), (D) unsupervised feature selection for
multicluster data (MCFS), (E) principal feature analysis (PFA), and (F) Laplacian score (LS). DAD: Discharge Abstract Database; NACRS: National
Ambulatory Care Reporting System; PIN: Pharmaceutical Information Network.

Characteristics of the Selected Features
We also calculated the average depths of the codes selected
by each method and compared them (using 2-tailed t test
analysis) against the CAEWW method that is intended to
select more general codes (ie, smaller depths). The CAEWW
method selected codes with average depths of 1.38, 1.42, and
1.99 for the DAD, NACRS, and PIN data sets, respectively.
Although CAEWW’s code depths were significantly lower
than the depths of the codes selected by the other methods
(all P<.05), there was no significant difference between the
CAEWW and CAENW methods (with average depths of
1.48, 1.45, 2.03; all P>.05). The P values can be found in
Table S3 of Multimedia Appendix 2. Figure 2 illustrates
the difference in average code depth among the different
methods.

We used the average of the mean absolute Shapley values
from each mortality prediction model as an index for the
importance of the features selected by each method. To

compare the CAEWW method with the other methods across
the 3 different data sets, we conducted a 2-tailed t test
analysis. The CAEWW method did not show any significant
difference from the CAENW methods across all data sets (all
P>.05). However, the CAEWW method did yield signifi-
cantly higher mean absolute Shapley values compared to the
other methods (AEFS and PFA; all P<.001). The AEFS and
PFA methods had the lowest Shapley values compared to all
the other methods, indicating that they selected lower-quality
features for this task. The P values are available in Table S4
in Multimedia Appendix 2. Figure 3 illustrates the aforemen-
tioned differences in mean absolute Shapley values. Figure
4 shows the Shapley plots of the 20 most important features
selected by the CAEWW method across different data sets.
The corresponding Shapley plots for the other methods can be
found in Multimedia Appendix 3 (Figures S1-S5). Addi-
tionally, Multimedia Appendix 4 (Tables S1-S18) includes
all chosen features, detailed descriptions, and the average
absolute Shapley values across all data sets and methods.
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Figure 2. Average depths of the selected codes by each method in the ICD-10-CA or ATC tree. Methods with average depths significantly (P<.05)
larger than the CAEWW method in their corresponding data set are marked with asterisks (*). AEFS: autoencoder-inspired unsupervised feature
selection; ATC: Anatomical Therapeutic Chemical CAENW: concrete autoencoder with no weight adjustment; CAEWW: concrete autoencoder with
weight adjustment; DAD: Discharge Abstract Database; ICD-10-CA: International Classification of Diseases, Tenth Revision, Canada; LS: Laplacian
score; MCFS: unsupervised feature selection for multicluster data; NACRS: National Ambulatory Care Reporting System; PFA: principal feature
analysis; PIN: Pharmaceutical Information Network.

Figure 3. Average of mean absolute Shapley values of features in each mortality prediction model. Methods with average values significantly
(P<.05) smaller than the CAEWW method in their corresponding data set are marked with asterisks (*). AEFS: autoencoder-inspired unsupervised
feature selection; CAENW: concrete autoencoder with no weight adjustment; CAEWW: concrete autoencoder with weight adjustment; DAD:
Discharge Abstract Database; LS: Laplacian score; MCFS: unsupervised feature selection for multicluster data; NACRS: National Ambulatory Care
Reporting System; PFA: principal feature analysis; PIN: Pharmaceutical Information Network.
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Figure 4. SHAP values of the features selected by the CAEWW method across different data sets (20 most important features): (A) Discharge
Abstract Database (DAD), (B) National Ambulatory Care Reporting System (NACRS), and (C) Pharmaceutical Information Network (PIN).
CAEWW: concrete autoencoder with weight adjustment; SHAP: Shapley additive explanations.

Discussion
Principal Findings
The high dimensionality of the ICD and ATC code databa-
ses necessitates the use of dimensionality reduction techni-
ques to feed the data into machine learning models. Due
to interpretability concerns in the health domain, selecting
from original features, rather than transforming them into new
features, is an essential step in reducing dimensionality. In
this study, we demonstrated that the CAE methods performed
the best in selecting the most informative ICD and ATC codes
in an unsupervised setting. Using a clinical outcome as a
case study, we also demonstrated that ICD and ATC code
features selected by the CAE methods were able to predict
the outcome variable with better accuracy than the other
methods in the study, even though they were derived from
an unsupervised setting in the absence of the target variable.
This indicates that the selected features can be considered
unbiased toward a specific target variable and explain the
phenomenon appropriately. We also showed that the AEFS
and PFA methods did not select high-quality features in our
data set and were not suitable for both tasks of reconstructing
the feature space and predicting 90-day mortality. The LS
and MCFS methods, however, showed better performance in
both tasks (slightly lower than the CAE methods). Further-
more, the features selected by the CAE methods (especially
CAEWW) were generally higher-level codes (ie, lower depth
in the hierarchical structure), which helps the study to find
generalized solutions.

It is worth mentioning that our methodology code is
publicly shared, allowing other researchers to use the desired
methods for selecting the most informative features within
cohorts with large ICD, ATC, or other hierarchical-coded
health databases [19].
Computational Cost
The MCFS, PFA, and LS methods had multiple special
matrix operations that made them computationally expen-
sive. Considering our large-scale, high-dimensional data set,

these algorithms were not possible to run on a personal
computer and we had to optimize the operations for an
advanced computing cluster with 40 Intel Xeon Gold 6342
2.80 GHz CPUs and 2048 GB RAM. The MCFS and LS
feature selection experiments had some shared operations and
together took over 2 days to complete. The PFA method
also needed less than a day for the entire feature selection
experiments. The AEFS and CAE methods, however, had
the advantage of using GPUs and optimized deep learning
libraries for training the neural networks and were faster.
Each of these algorithms took less than 4 hours on an Nvidia
A100 80 GB GPU.
Selected Features
The Shapely analysis of the 20 most important features
selected in each data set using the CAEWW method for
predicting mortality revealed the multidimensional capabili-
ties of this method in identifying relevant information. In the
DAD and NACRS data sets, it selected disease codes relevant
to mortality among patients with CAD. In both data sets,
diseases related to cardiovascular conditions, hypertensive
and circulatory disorders, metabolic disorders, renal failures
[21], and cancer [22] were selected, which are important
factors in the outcomes of patients with CAD. Furthermore,
DAD-based features included accidents, arthropathies, and
hospitalization-specific conditions, whereas the NACRS data
set resulted in falls [23]; digestive disorders [24]; and codes
related to the rehabilitations, management, or complexity of
the diseases. In the PIN data set, direct interventions for
CAD and related risk factors were mainly selected, includ-
ing high-ceiling diuretics, statins, ace inhibitors, angioten-
sin II receptor blockers (plain and combinations), direct
factor Xa inhibitors, vasodilators, antianemic preparations,
antithrombotic agents, and other lipid-modifying agents,
addressing heart failure, cholesterol management, blood
pressure control, anticoagulation, anemia, and blood flow.
Also, drugs related to accompanying diseases or conditions
with CAD were selected: gastrointestinal issues (pantopra-
zole and general drugs for acid-related disorders [25,26] and
drugs for constipation [27]), pain management (opioids, other
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analgesics, and antipyretics) [28], inflammatory conditions
and immune responses (anti-inflammatory and antirheumatic
products and corticosteroids for systemic use) [29,30],
mental and behavioral health (antipsychotics) [31], respira-
tory conditions (adrenergic inhalants [32]), and urological
issues [33].

Previous studies typically selected codes as machine
learning model features based on expert opinions, the
presence of high-level codes (eg, categories or chapters), or a
combination of both [34,35]. To the best of our knowledge,
only 1 study [3] attempted to offer a sophisticated feature
selection method using tree-lasso regularization for ICD code
data sets, but it was in a supervised setting that required an
outcome variable. Our study provides a general tool for health
researchers to select the most informative ICD and ATC
codes without biasing the study toward a specific outcome
variable. We also introduced a unique target weight adjust-
ment function to the CAE model to guide the model to select
higher levels of the ICD table compared to the model without
adjustment.
Limitations and Future Work
One of the limitations of this study was the incapability
of the CAE method to select an exact number of desired
features. Since the neurons in the concrete selector layer work
independently, there is a possibility of selecting duplicate
features. Therefore, the number of final selected features
can be fewer than the desired number. Although it indicates
that the decoder model is still capable of reconstructing the
initial feature space with a smaller number of features, some
researchers may prefer to have an exact number of features
they desire for their models. One previous study [36] has used
a special regularization term in the training step to enforce
the model not to select duplicate features. This method can be
investigated for the ICD and ATC codes in the future.

The aggregation of codes should be viewed as a trade-off
in this study. We needed to select a reasonable aggregation
period that covers both long-term and short-term diseases. A
shorter period could skew the results by including multi-
ple correlated records from the same patient. Conversely,
longer periods could weigh short-term diseases equally with

long-term ones, and the codes of the patients with fewer
records (eg, recent patients in the cohort) would have a lower
chance of selection.

Another limitation was that we only used 3 data sets of
a specific disease cohort to choose the features. Therefore,
the selected features in this study may not generalize to
other patient cohorts or diseases. Furthermore, we selected
the 100 best features, but other data sets or patient cohorts
may require a different number of features. Future studies
may investigate the impact of the number of features on the
results. Moreover, our hyperparameter analysis was conduc-
ted within a constrained scope due to limited computational
resources. Future studies could further explore the impact of
a broader range of hyperparameter values. We anticipate that
the CAEs hold potential for this area due to their flexible
neural network structure and optimized algorithms. A similar
limitation also applies to the mortality prediction case study,
where we only trained XGBoost and did not explore other
model types.
Conclusions
In this study, we investigated 5 different methods for
selecting the best features in ICD and ATC code data sets
in an unsupervised setting. We demonstrated that the CAE
method can select better features representing the whole data
set that can be useful in further machine learning studies.
We also introduced weight adjustment of the CAE method
for ICD and ATC code data sets that can be useful in the
generalizability and interpretability of the models, given that
it prioritizes selecting high-level definitions of diseases.

The CAEWW method outperformed all other methods
in reconstructing the initial feature space across all data
sets. We validated the selected features through a supervised
learning task, predicting 90-day mortality after discharge
using 3 distinct data sets. Features selected via the CAEWW
method demonstrated significantly improved performance on
this task, as evidenced by the DeLong and McNemar tests.
Given the advantages of the CAE method, we recommend its
use in the feature selection phase of EHD analysis with ICD
or ATC codes.
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