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Abstract

Background: The rehabilitation of a patient who had a stroke requires precise, personalized treatment plans. Natural language
processing (NLP) offers the potential to extract valuable exercise information from clinical notes, aiding in the development of
more effective rehabilitation strategies.

Objective: This study aims to develop and evaluate a variety of NLP algorithms to extract and categorize physical rehabilitation
exercise information from the clinical notes of patients who had a stroke treated at the University of Pittsburgh Medical Center.

Methods: A cohort of 13,605 patients diagnosed with stroke was identified, and their clinical notes containing rehabilitation
therapy notes were retrieved. A comprehensive clinical ontology was created to represent various aspects of physical rehabilitation
exercises. State-of-the-art NLP algorithms were then developed and compared, including rule-based, machine learning–based
algorithms (support vector machine, logistic regression, gradient boosting, and AdaBoost) and large language model (LLM)–based
algorithms (ChatGPT [OpenAI]). The study focused on key performance metrics, particularly F1-scores, to evaluate algorithm
effectiveness.

Results: The analysis was conducted on a data set comprising 23,724 notes with detailed demographic and clinical characteristics.
The rule-based NLP algorithm demonstrated superior performance in most areas, particularly in detecting the “Right Side” location
with an F1-score of 0.975, outperforming gradient boosting by 0.063. Gradient boosting excelled in “Lower Extremity” location
detection (F1-score: 0.978), surpassing rule-based NLP by 0.023. It also showed notable performance in the “Passive Range of
Motion” detection with an F1-score of 0.970, a 0.032 improvement over rule-based NLP. The rule-based algorithm efficiently
handled “Duration,” “Sets,” and “Reps” with F1-scores up to 0.65. LLM-based NLP, particularly ChatGPT with few-shot prompts,
achieved high recall but generally lower precision and F1-scores. However, it notably excelled in “Backward Plane” motion
detection, achieving an F1-score of 0.846, surpassing the rule-based algorithm’s 0.720.

Conclusions: The study successfully developed and evaluated multiple NLP algorithms, revealing the strengths and weaknesses
of each in extracting physical rehabilitation exercise information from clinical notes. The detailed ontology and the robust
performance of the rule-based and gradient boosting algorithms demonstrate significant potential for enhancing precision
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rehabilitation. These findings contribute to the ongoing efforts to integrate advanced NLP techniques into health care, moving
toward predictive models that can recommend personalized rehabilitation treatments for optimal patient outcomes.

(JMIR Med Inform 2024;12:e52289) doi: 10.2196/52289
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Introduction

Precision medicine is a promising field of research that aims to
provide personalized treatment plans for patients [1]. Recent
years have seen a rise in interest in this field, as advances in
machine learning and data collection techniques have greatly
facilitated this research [2]. However, the principles of precision
medicine have primarily been applied to the development of
medications, and relatively little research has been conducted
on their applications in other areas [3]. For instance, although
rehabilitation clinics require individualized treatment procedures
for patients, little research has been conducted on methods that
use data analysis and machine learning to facilitate the design
of such procedures [4]. Although the application of precision
medicine to physical therapy has proven effective in improving
the health of patients, current methods of creating personalized
treatments rarely use automated approaches to facilitate decision
support [5]. Thus, there is a need for tools to assist in the
development of personalized treatments in physical therapy [6].
In the treatment of patients who had a stroke, the lack of decision
support tools is especially pronounced, as the available
treatments for this condition have not led to consistent outcomes
across patient populations [7].

To develop decision support tools for the design of precision
rehabilitation treatments for patients who had a stroke, it would
be necessary to use electronic health record data to develop a
predictive model of existing treatment options and their impact
on patient outcomes [8]. However, physical therapy procedures
are typically described in unstructured clinical notes, meaning
that simple data extraction methods such as database queries

cannot be applied to obtain sufficient information. Additionally,
the language used to describe these procedures can differ
between clinicians, locations, and periods [9]. More advanced
natural language processing (NLP) algorithms are required to
extract this information from clinical notes, but such a method
has not yet been developed for this application.

In this paper, we aim to develop and evaluate NLP algorithms
to extract physical rehabilitation exercise information from the
clinical notes in the electronic health record. Our specific
contributions are as follows. First, we created a novel and
comprehensive clinical ontology to represent physical
rehabilitation exercise information, which includes the type of
motion, side of the body, location on the body, the plane of
motion, duration, information on sets and reps, exercise purpose,
exercise type, and body position. Second, we developed and
compared a variety of NLP algorithms leveraging state-of-the-art
techniques, including rule-based NLP algorithms, machine
learning–based NLP algorithms (ie, support vector machine
[SVM], logistic regression [LR], gradient boosting, and
AdaBoost), and large language model (LLM)–based NLP
algorithms (ie, ChatGPT [OpenAI] [10]) for the extraction of
physical rehabilitation exercise from clinical notes. We are
among the first to evaluate the capabilities of ChatGPT in
extracting useful information from clinical notes.

Methods

Overview
Figure 1 illustrates the data flow and the various stages of the
research process. Each of these stages will be described in detail
in the following sections.
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Figure 1. Flowchart illustrating the data flow throughout the study. IIA: interannotator agreement (IAA); NLP: natural language processing.

Data Collection
The study identified a cohort of patients diagnosed with stroke
between January 1, 2016, and December 31, 2016, at University
of Pittsburgh Medical Center (UPMC). For these patients,

clinical encounter notes created between January 1, 2016, and
December 31, 2018, were extracted from the institutional data
warehouse. Table 1 provides the demographic characteristics
of the patients included in this data set.

Table 1. Demographic information of patients included in the unfiltered data set (N=13,605).

ValuesDemographics

75 (16)Age (years), mean (SD)

Gender, n (%)

6931 (51)Female

6673 (49)Male

Race, n (%)

64 (0.5)Asian

1325 (9.7)Black

11,661 (86)White

153 (1.1)Other

402 (3)Not specified

Ethnicity, n (%)

64 (0.5)Hispanic or Latinx

12,471 (92)Not Hispanic or Latinx

984 (7.2)Not specified

Ethical Considerations
The study was approved by the University of Pittsburgh’s
institutional review board (#21040204).

Clinical Ontology for Physical Rehabilitation Exercise
To determine the relevance and hierarchy of extracted
information, we developed a clinical ontology consisting of 9
categories of concepts relating to exercise descriptions, informed
by consultation with clinical experts (PD, BA, and AB) in the
field of physical therapy. In developing our clinical ontology,
we also consulted established frameworks such as the

International Classification of Functioning, Disability, and
Health (ICF) [11] and the Systematized Nomenclature of
Medicine—Clinical Terms (SNOMED CT) [12]. These
comprehensive systems offered valuable insights into the
structuring and categorization of health-related concepts, which
we adapted for the specific context of physical rehabilitation
exercises. Additionally, our ontology incorporates principles
from the Unified Medical Language System (UMLS) [13] to
ensure compatibility and interoperability with other health care
informatics systems.
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Each category was given a set of values, as well as examples
of how those values might be expressed in clinical notes. The
categories are type of motion, side of the body, location on the
body, the plane of motion, duration, information on sets and
reps, exercise purpose, exercise type, and body position. The
ontology also includes examples of indications that the
mentioned exercise was not performed during the visit
corresponding to the clinical note. This ontology was used to
inform both the structure of the annotations and the methods
used to extract relevant documents from the data set.

The ontology reflects the complexity and nuance of physical
rehabilitation exercises by incorporating terms and categories
that are sensitive to the variations and specificities observed in
clinical settings. This approach ensures that the ontology not
only represents the theoretical model of rehabilitation exercises
but also aligns with the practical, real-world application and
documentation by health care professionals. Table 2 displays
the 9 categories for 3 exercise descriptions (performed in-office,
home exercise program, and not performed), with sets and reps
split into separate rows and including negations and out-of-office
exercises at the bottom.

Table 2. Summary of the clinical ontology used for annotations.

ConceptsData typeCategory

Performed in-office, home exercise program, not performedEnumeratedExercise description

ROMa, active ROM, active-assisted ROM, and passive ROMEnumeratedType of motion

Right, left, bilateral, unilateral, contralateral, and ipsilateralEnumeratedSide of body

Upper extremity (arms), lower extremity (legs), hip, thigh, knee, ankle, foot, heel, toe,
shoulder, scapula, elbow, forearm, wrist, hand, thumb, head, neck, chest, abdomen, and
lower back

EnumeratedLocation on body

Flexion, extension, abduction, adduction, internal rotation, external rotation, lateral flexion,
horizontal abduction, horizontal adduction, protraction, retraction, elevation, depression,
inversion, eversion, pronation, supination, plantarflexion, dorsiflexion, radial deviation,
ulnar deviation, upward rotation, downward rotation, opposition, forward, backward,
lateral, medial, scaption, rotation, closure, clockwise, counterclockwise, distraction, all
planes, anterior, posterior, horizontal, vertical, diagonal, and gravity elimination

EnumeratedPlane of motion

N/AbIntegerDuration (seconds)

N/AIntegerNumber of sets

N/AIntegerNumber of reps

Strength, fine motor, motor control, perception, simulated, power, endurance, joint mo-
bility, joint alignment, muscle flexibility, cardio, pulmonary, agility, and vestibular

EnumeratedExercise purpose

Upper extremity strength, lower extremity strength, trunk or core strength, scapular
strength, ROM, flexibility or mobility, balance or vestibular, gait training, cardio or aer-
obic, and functional mobility

EnumeratedExercise type

Weight bearing and non-weight bearingBinaryBody position

Held or not performed and home exercise programBinaryNegation or hypothetical

aROM: range of motion.
bN/A: not applicable.

Preprocessing and Section Extraction
Physical therapeutic procedures were usually documented in
the section “THERAPY.” Therefore, we first filtered out the
notes that did not contain a physical therapy visit by excluding
files whose names lacked the string “THERAPY.” From the
resulting set of files, the section on therapeutic procedures was
extracted using a regular expression, if such a section existed.
This resulted in a total of 23,724 notes, some of which were
empty or lacked pertinent information.

The method of section extraction has a few minor limitations.
Because the regular expression used to locate these sections
assumes a structure in the notes that is not always present, it is
possible that a file may contain additional text from other
sections of the original note in rare instances. All sections used
in the creation of the gold-standard labels were manually

examined to ensure the absence of these errors. It is also possible
that some therapeutic procedures’ sections are completely
omitted from the note due to copy-and-paste errors made by
their authors.

Because many of the extracted sections were very brief or lacked
relevant information, we developed a method to create a more
robust set of sections by extracting keywords. Initially, concepts
were organized into 9 categories based on the clinical ontology.
Each category was then assigned a list of keywords. A section
was considered to mention a category if it contained at least 1
of the keywords. Consequently, each section was assigned a
score between 0 and 9 based on the number of categories
mentioned. All sections with a score of 9 and a random selection
of notes with a score of 8 were extracted to generate 300
enriched sections that were anticipated to be relatively dense in
information. In addition, 300 random sections were selected,
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excluding those with a length of fewer than 200 characters in
order to reduce the likelihood of omissions.

Gold-Standard Data Set Creation
Gold standard labels were developed by 2 clinical experts in
the field of physical therapy (PD and BA) under the supervision
of a senior clinical expert in physical therapy (AB). Each
annotator was given a set of guidelines on how to label sections
and was told to refer to the clinical ontology for examples of
each concept to label. Instructions were given to label explicit
mentions of each concept, and inferences were only to be made
when specified. For example, the concepts under the categories
exercise type and positioning were each given several common
keywords that indicate exercises that relate to them. The
annotators were given identical batches of 20 randomly selected

sections to annotate, and the interannotator agreement was
calculated using Fleiss κ. This process was repeated for a total
of 3 batches, after which all 3 annotators achieved an
interannotator agreement greater than 0.7. Throughout this
process, the annotation guidelines were revised, and the structure
of the labels was finalized. Once sufficient agreement was
reached, 50 sections from the enriched set and 50 more from
the random set were given to each annotator, totaling 300
distinct annotated sections. These sections were then split
randomly into a training set consisting of 125 sections from
each of the original sets and a test set consisting of the remaining
50 sections. The details of this corpus are included in Textbox
1, which outlines the total word count, the number of distinct
words, and 2 examples of the data.

Textbox 1. Summary of the annotated corpus.

Total words: 74,104

Total distinct words: 2371

Deidentified note example 1:

• “1: AROM right elbow flx/ext HEP (right arm supported on table) 2: AROM right wrist flx/ext HEP 3: AROM right forearm pronation/supination
HEP 4: Thumb opposition HEP 5: Seated AAROM table slide??”

Deidentified note example 2:

• “1: foam balance (heel/toe rocking): x 30 2: step taps with 2 taps from foam 12“”“” block: x 20 B/L 3: tandem walking: 25' x 2 4: backward
walking: 25' x 2 5: foam Lunges: x 20 B/L 6: Dips 4“”“” stair: 2x10 B/L 7: side stepping green TB 10 ft x5 each direction 9: bridging with LLE
leg lift 1“”“” off mat x10 10: tandem stance on foam x 1' 11: Nustep: L5 x 10' (LEs only)”

Rule-Based NLP
The first NLP method we developed was a named entity
recognition (NER) algorithm using MedTagger (OHNLP),
which is a software that uses rule-based methods to segment
documents and extract named entity information with regular
expressions [14]. We used this tool to detect the categories
outlined in the ontology by creating explainable rules to extract
the physical rehabilitation exercise information and compare it
against the gold-standard labels. For each rule defined in the
algorithm, MedTagger identified spans of text that matched the
expression as well as the corresponding category and concept
predicted for that text. We initiated the rules using simple
keywords in the clinical ontology as defined in Table 2 and then
refined the rules using the training set of the gold-standard notes.

Machine Learning–Based NLP
In addition to attempting to automate the annotation of clinical
notes with exercise information, several sequence-level binary
classification methods were explored to predict whether a
specific concept is mentioned in a given span of text at least
once according to the gold-standard labels. Here, a sequence is
defined as a string of text within a section that describes an
individual exercise. As the therapeutic procedures are
documented as numbered lists, it is assumed that each
enumerated item that contains text constitutes a single procedure
for the purpose of this study. The aim was to extract these
procedures from sections and then classify each according to
which concepts they mention.

For this task, the sequences provided in the gold-standard data
were used as raw input, and targets were defined using the labels
that were associated with each sequence. These labels consisted
of 101 concepts as given by the clinical ontology in Table 2,
excluding duration, sets, and reps since these are numeric types
unfit for binary classification tasks. Because the postprocessed
output from MedTagger was formatted in a similar manner to
the gold-standard data for ease of comparison, a similar method
was used to create predictions and directly score MedTagger
against the true labels for this task. In this manner, we compared
our rule-based NLP algorithm against several other methods by
redefining the information extraction task as a sequence
classification task. The labels of all predicted spans of text were
assigned to the section containing it.

A total of 4 machine learning models were trained to perform
binary classification on sections, including SVM [15], LR [16],
gradient boosting [17], and AdaBoost [18]. We built different
machine learning models for different physical rehabilitation
exercise concept extraction tasks. This resulted in 101 distinct
SVM, LR, gradient boosting, and AdaBoost models each trained
to predict a distinct concept. Each model was created using the
scikit-learn [19] library in Python (version 3; Python Software
Foundation). The input for each model was given in a simple
uncased bag-of-words vector space fitted to the training set.

The LR was performed with a learning rate of 1 × 10–4 and
balanced class weights. The SVM model used a polynomial
kernel with a degree of 2 and also used balanced class weights.
The AdaBoost and gradient boosting were performed with the
default parameters provided by scikit-learn, with 100 and 50
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estimators, respectively. All unspecified hyperparameters were
kept at the default values used by scikit-learn.

LLM-Based NLP
Recently, LLMs have gained much interest due to their
promising results across many NLP tasks and straightforward
development pipelines. To measure a baseline for the
performance of LLMs on this data set, this study used OpenAI’s
ChatGPT, specifically GPT-3.5-turbo [20], which serves as the
NLP backend for the first release of ChatGPT. This study
accessed ChatGPT through the Microsoft Azure secure cloud
service with an approved institutional review board.

For each of the concepts to be identified, a separate prompt was
created asking the model to identify whether or not that concept
is mentioned in the given sections. We note that the sections
used in this exercise were fully deidentified and contained no
sensitive information. One of the primary advantages of using
LLMs to perform NLP tasks is that they can yield results
comparable to other methods with much less time spent on
fine-tuning and other manual design tasks. Therefore, in order
to evaluate the practicality of using this method in an application
with constraints on time or available machine learning expertise,
prompts were automatically generated using a template and the
name assigned to each label. Two simple prompting techniques
were compared: a few-shot prompting technique that included
example dialogue for 2 positive examples and 2 negative
examples [21] and a zero-shot prompt that omitted any examples
[22]. Prompts were created by providing a list of dialogue strings
that can be attributed to the user providing the prompt, the model
giving the response, and a third party giving instructions to the
model, hereafter named System. The following is an example
of a few-shot prompt that was automatically generated and sent
to ChatGPT.

System: You are an assistant assigned to determine
if a given text segment from a medical record contains
mentions of Active Range of Motion. You must answer
yes or no.

User: 7: [PERSONALNAME] maze - AROM LUE -
3 rep

Model: Yes.

User: 23: / Supine on mat / dowel rod no wt above
head for triceps

Model: No.

User: 2: AROM Right wrist ext/flex - 20 x

Model: Yes.

User: 24: SL HS activation- with tapping and
suspended to limit friction x10 DEFERRED

Model: No.

User: 14: SLR- 2x10 deferred to HEP

Prompts were made in this manner using 4 dialogue exchanges,
switching out the last line for the section to be classified. Any
concepts that were labeled fewer than 2 times were excluded
from the experiment because not enough examples could be
generated for the few-shot prompt. A total of 3 additional
concepts were excluded relating to whether a procedure was
performed in-office, at home, or not at all, as well as the 3
numeric concepts. This left a total of 82 concepts to be extracted.

Results

Because the clinical ontology covered a broad range of concepts
within this domain, many of these concepts were very sparse
in our data. More than half of the 101 concepts were present in
fewer than 10 exercise descriptions in the train or test sets; these
concepts have been omitted from the results. Table 3 contains
a breakdown of the F1-scores for each machine learning method,
as well as the performance of the rule-based NLP algorithm on
the NER task, for each of the remaining 40 concepts. See
Multimedia Appendix 1 for the results on all concepts. The
best-performing machine learning model is shown in bold for
each concept.
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Table 3. Binary F1-scores of each algorithm on the test set (50 documents).

Test set
size, n

Training
set size, n

ChatGPT (ze-
ro-shot), n

ChatGPT
(few-shot), n

Gradient
boosting, n

Ad-
aBoost, n

SVMd, nLRc, nRBNLP se-
quence, n

RBNLPa

NERb, n

Category and
concept

Description

4972464N/AN/Af0.983e0.9770.9600.9700.9760.957Performed
in-office

3493N/AN/A0.986e0.986e0.9380.986e0.986e0.986eHome exer-
cise pro-
gram

2061295N/AN/A0.950e0.9360.9090.9230.9490.949Not per-
formed

ROMg

221030.1090.3210.863e0.863e0.8400.8240.8300.839Active

241600.2100.5430.857e0.8370.7910.8000.7690.769Active-as-
sisted

161210.1980.5520.970e0.9380.9030.970e0.9380.952Passive

Side

975480.8780.9120.6800.6280.8510.6740.975e0.912Right side

1344620.8320.8230.7520.7210.8230.7630.937e0.912Left side

512600.7230.7060.6590.6670.4740.5590.907e0.772Bilateral

Location

472850.2410.2910.8760.9010.8470.8790.939e0.847Upper ex-
tremity

442230.3390.3780.978e0.9660.9300.9360.9360.955Lower ex-
tremity

361680.8060.4030.9720.9430.973e0.973e0.9470.949Hip

191080.4340.4690.974e0.974e0.8820.9190.9500.950Knee

14550.2620.6071.000e1.000e0.6000.9231.000e1.000eAnkle

442240.5480.7440.9530.9530.9520.9520.977e0.936Shoulder

10720.6070.5250.833e0.833e0.7000.7830.833e0.833eScapula

261470.4470.8480.9230.9230.9430.9630.9630.967eElbow

10860.2040.1510.952e0.8700.952e0.8700.8330.815Forearm

231290.3140.6000.8750.8750.7730.8260.8980.902eWrist

682430.5740.4380.9490.9250.8480.9260.9440.951eHand

Plane

331700.8390.5760.9710.9710.9370.9710.985e0.976Abduction

10220.1950.2210.6670.750e0.6670.750e0.5450.545Anterior

11920.7900.7200.8460.952e0.8000.6880.7200.727Backward

482660.6840.5560.989e0.989e0.9330.9790.9800.980Extension

11740.5430.6550.8700.8700.8180.8700.917e0.897External
rotation

553270.6150.7570.964e0.964e0.9550.964e0.9470.956Flexion

191480.7290.6670.9000.9500.8650.8570.9740.977eForward
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Test set
size, n

Training
set size, n

ChatGPT (ze-
ro-shot), n

ChatGPT
(few-shot), n

Gradient
boosting, n

Ad-
aBoost, n

SVMd, nLRc, nRBNLP se-
quence, n

RBNLPa

NERb, n

Category and
concept

231320.3730.5460.8510.870e0.8370.7860.5880.577Lateral

11820.4800.5500.9170.9170.9170.8800.9170.923eSupination

Exercise type

211380.1660.2720.8940.913e0.7910.8400.913e0.913eUpper ex-
tremity
strength

974470.3320.4490.8940.9240.8940.9130.969e0.926Lower ex-
tremity
strength

12350.0900.1040.7000.4710.4710.6920.889e0.897Trunk or
core
strength

532570.1530.3010.6740.7250.8430.8420.876e0.853Range of
motion

381780.1470.2790.9490.9470.8570.9090.974e0.962Flexibility
or mobility

473510.4700.5970.939e0.8820.8090.8520.7520.787Balance or
vestibular

473100.5290.6260.860e0.8510.8140.8370.8370.808Gait train-
ing

332040.1820.2200.7800.6910.7500.7270.831e0.775Functional
mobility

Purpose

10480.6670.6880.870e0.8570.7620.870e0.7690.769Simulated

Positioning

432550.2820.1970.8710.8570.8670.876e0.8330.788Weight
bearing

915390.0380.2830.9230.946e0.9180.9160.9320.931Non-
weight
bearing

532830.4330.5020.8830.8750.8350.8610.891e0.878Average

aRBNLP: rule-based natural language processing.
bNER: named entity recognition.
cLR: logistic regression.
dSVM: support vector machine.
eThe best performance for each entity.
fN/A: not applicable.
gROM: range of motion.

The rule-based NLP’s performance on the sequence
classification task was similar to its performance on the NER
task. Instances of higher performance in sequence classification
compared to NER can be partially explained by mismatches in
predicted spans and their labels affecting NER accuracy, yet
still allowing for correct overall text section classification. The
rule-based algorithm tied with or outperformed the other models
on half of the concepts in Table 3. Among the machine learning
models, gradient boosting performed nearly as well, achieving
the highest F1-score on 18 concepts.

In addition to these concepts, the rule-based NLP algorithm
also predicted the spans of durations, sets, and reps. Since these
categories do not have any specific concepts assigned to them,
the number presented in each span was used instead as a
comparison against the true label, converting minutes to seconds
where applicable. This resulted in F1-scores of 0.65, 0.58, and
0.88, respectively. It is important to note that we limited the
experiments for “Duration,” “Sets,” and “Reps” exclusively to
rule-based algorithms because these categories inherently
involve numeric data, which align well with the deterministic
and pattern-based nature of rule-based approaches.
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Gradient boosting demonstrated the best performance for
identifying range of motion (ROM) concepts and determining
the location of exercise (performed in-office, home exercise
program, and not performed) with F1-scores of 0.863 for active
ROM; 0.857 for active-assisted ROM; and 0.977, 0.986, and
0.950, respectively, for the locations. The rule-based natural
language processing algorithm outperformed machine learning
models in detecting sides of the body with F1-scores of 0.975
for the right side and 0.937 for the left side, and it also
performed the best on most exercise types, except for balance
or vestibular and gait training concepts, which were classified
best by gradient boosting with F1-scores of 0.939 and 0.860,
respectively. The LR obtained a strictly higher score than other
methods in the weight-bearing exercise concept with an F1-score
of 0.876. The AdaBoost got a strictly higher score on 3 concepts,
notably on non–weight bearing positioning with an F1-score of
0.946. The SVM model did not score higher than other models
but had 3 ties, indicating competitive performance.

These findings indicate that the rule-based approach is
particularly effective for certain types of exercises, with superior
performance in most categories. However, gradient boosting
demonstrated strength in more complex categorizations such
as balance or vestibular and gait training, where understanding
nuanced differences is crucial.

For the LLM-based NLP, the results show that both zero-shot
prompts and few-shot prompts result in high recall scores that
sometimes exceed other methods. However, precision was quite
low for most concepts, and F1-scores did not exceed every other
method for any concept. However, ChatGPT did occasionally
outperform some of the simpler machine learning models and,
on 1 occasion, even outperformed the rule-based algorithm (on
the backward plane of motion concept). The average precision
over all 82 concepts tested was 0.33 for the zero-shot approach
and 0.27 for the few-shot approach. The average recall was 0.8
for the zero-shot approach and 0.82 for the few-shot approach.
This resulted in average F1-scores of 0.37 and 0.35, respectively,
indicating that the zero-shot approach was slightly better on
average than the few-shot approach. However, the few-shot
approach performed the best for all but 10 concepts. The reason
the zero-shot method performed better on average is thus due
to the fact that it shows significant improvement on a few
specific concepts, such as hip, scapula, hand, abduction, and
extension.

Discussion

Observations
As indicated by the high performance of the machine learning
models on many of the concepts, the task of extracting
information from exercise descriptions was not complex.
Although some of these concepts could be extracted effectively
using straightforward rules or a small machine learning model,
there were also many cases where clinical notes appeared
ambiguous without context. For instance, the abbreviation “SL”
could be interpreted as “single leg” or “side-lying” depending
on the exercise being described. In addition, “L” could mean
“left” or “lateral,” which explains why the rule-based NLP

algorithm performed slightly worse when classifying left versus
right. The use of single letters as abbreviations, especially “A”
as a shorthand for “anterior,” could cause issues in machine
learning algorithms without careful consideration. It would be
possible to increase the performance of the rule-based algorithm
by further tuning the rules to search for context clues at other
points in the document, but this could potentially cause the rules
to overfit the training set. Of particular interest are the numeric
data present in duration, sets, and reps. These are particularly
tricky to extract since they are expressed in a wide variety of
ways by different physicians. It can be difficult to define what
sets and reps are depending on the exercise, and sometimes one
or both are not well-defined at all. Additionally, the use of
apostrophes and quotes can either indicate measurements of
time or distance, once again requiring context to disambiguate.
Mentions of distance were not annotated in the gold-standard
labels, but it is important in measuring the intensity of some
exercises, so we plan to include it in the future.

Some of the misclassifications of the rule-based algorithm are
due to inaccuracies in the gold-standard data set. For instance,
many false positives produced by the rule-based algorithm
appeared to be concepts that were missed by the annotators.
There were also a few minor errors that could be explained by
a mouse slip, including a span of text being assigned the wrong
concept or a span excluding the last letter in a word. There were
also some spelling mistakes in the notes themselves; common
instances were explicitly mentioned in the rules to increase
precision. Preprocessing clinical notes to correct spelling
mistakes might be useful to improve results, although this
creates a risk of incorrect changes being made to uncommon
words. All of these errors were not particularly common
throughout the labels, but they could have a significant effect
on concepts that are already uncommon in the data.

Another obstacle that obscured some of the signals in the data
came from the deidentification process. In addition to removing
names, addresses, and other protected information from these
documents, many other tokens and phrases were mistakenly
removed, including equipment names and numbers denoting
indices in a list. These were replaced with placeholder tokens
such as “[ADDRESS]” or “[PERSONALNAME].” The low
precision of the deidentification process caused some relevant
information to be obfuscated or entirely erased from notes.

During the data annotation, we found that many of the concepts
identified as relevant in this domain were not well documented
in the data we extracted for annotation. This could be due in
part to the fact that the data were only collected from patients
who had a stroke, but this is not expected to be the main reason
because patients who had a stroke can have a wide variety of
musculoskeletal problems, resulting in a correspondingly wide
variety of treatments being mentioned in clinical notes [23].
The other reason the data set lacks many of these concepts could
be that they are rarely mentioned in these particular sections of
clinical notes, either because they are not common enough to
appear in many records at all or because they are mentioned
more often in other sections. Thus, future research could focus
on improving extraction methods to focus more on these
uncommon concepts or include information from outside of the
exercise descriptions.
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In addition to ChatGPT for the LLM-based NLP approach, we
also fine-tuned a Bidirectional Encoder Representations from
Transformers (BERT) model with the task of categorizing the
physical rehabilitation exercise concept. The BioClinicalBERT
model [24] was used, which was pretrained on Medical
Information Mart for Intensive Care-III (MIMIC-III) [25].
However, the amount of data collected seemed insufficient to
make the model perform comparably to simpler methods. The
model with the highest F1-score on the validation set had an
average F1-score of 0.05 across all concepts on the test set. It
accurately predicted in-office exercise performance with an
F1-score of 0.72. However, the performance on the remaining
100 concepts ranged only from 0 to 0.35. Therefore, we did not
include this approach in the experimental comparison.

Limitations and Future Work
One limitation in this research was the necessary exclusion of
“Duration,” “Number of Sets,” and “Number of Reps” from our
machine learning–based NLP analysis due to their numeric
nature, rendering them unsuitable for binary classification tasks.
In future work, we plan to incorporate regression models or
specialized classification techniques capable of handling
numeric data. We also plan to expand our research to include
additional variables such as stroke duration and severity,
recognizing their potential to significantly enhance the prediction
accuracy and effectiveness of rehabilitation strategies.

Furthermore, another limitation of this study is that we did not
consider technique names and their association with specific
motion types in rehabilitation exercise notes. For instance, we
encountered the text “1: Standing AAROM PNF exercise D1/D2
flexion - 20 x” during annotation but did not annotate the
technique name PNF (proprioceptive neuromuscular
facilitation). To address this, in future work, we intend to
develop a supplementary module for our algorithm that can
effectively extract and map popular technique names to their
corresponding motion types and categories, thereby enhancing
the comprehensiveness and applicability of the algorithm.

Moreover, we plan to implement a robust standardized extraction
protocol in the next version of our algorithm to mitigate the
omission of therapeutic procedure sections due to
copy-and-paste errors. This protocol will include multiple checks
for consistency and completeness and will be assessed through
a pilot study to ensure its reliability and accuracy. To enhance
our model’s generalizability amid varied note-writing practices
across rehabilitation facilities, future research will also focus
on diversifying data sources, refining adaptability to diverse
writing styles and terminologies, and conducting extensive
validation studies in a range of settings to improve performance.
Through continuous monitoring and refinement of our extraction
process, we are committed to enhancing the reliability and
validity of our data, thereby strengthening the overall quality
and impact of our research.

Conclusions
In this study, we developed and evaluated several NLP
algorithms to extract physical rehabilitation exercise information
from clinical notes of patients who had stroke. We first created
a novel and comprehensive clinical ontology to represent
physical rehabilitation exercise in clinical notes and then
developed a variety of NLP algorithms leveraging
state-of-the-art techniques, including rule-based NLP algorithms,
machine learning–based NLP algorithms, and LLM-based NLP
algorithms. The experiments on the clinical notes of a cohort
of patients who had a stroke showed that the rule-based NLP
algorithm had the best performance for most of the physical
rehabilitation exercise concepts. Among all machine learning
models, gradient boosting achieved the best performance on a
majority of concepts. On the other hand, the rule-based NLP
performed well for extracting handled durations, sets, and reps,
while gradient boosting excelled in ROM and location detection.
The LLM-based NLP achieved high recall with zero-shot and
few-shot prompts but low precision and F1-scores. It
occasionally outperformed simpler models and once bet the
rule-based algorithm.
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