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Abstract
Background: Numerous pressure injury prediction models have been developed using electronic health record data, yet
hospital-acquired pressure injuries (HAPIs) are increasing, which demonstrates the critical challenge of implementing these
models in routine care.
Objective: To help bridge the gap between development and implementation, we sought to create a model that was feasible,
broadly applicable, dynamic, actionable, and rigorously validated and then compare its performance to usual care (ie, the
Braden scale).
Methods: We extracted electronic health record data from 197,991 adult hospital admissions with 51 candidate features.
For risk prediction and feature selection, we used logistic regression with a least absolute shrinkage and selection operator
(LASSO) approach. To compare the model with usual care, we used the area under the receiver operating curve (AUC), Brier
score, slope, intercept, and integrated calibration index. The model was validated using a temporally staggered cohort.
Results: A total of 5458 HAPIs were identified between January 2018 and July 2022. We determined 22 features were
necessary to achieve a parsimonious and highly accurate model. The top 5 features included tracheostomy, edema, central
line, first albumin measure, and age. Our model achieved higher discrimination than the Braden scale (AUC 0.897, 95% CI
0.893-0.901 vs AUC 0.798, 95% CI 0.791-0.803).
Conclusions: We developed and validated an accurate prediction model for HAPIs that surpassed the standard-of-care risk
assessment and fulfilled necessary elements for implementation. Future work includes a pragmatic randomized trial to assess
whether our model improves patient outcomes.
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Introduction
Pressure injuries comprise damage to skin and underlying
tissue that usually occurs over a bony prominence but can be

related to placement of medical devices [1]. The injury occurs
because of intense or prolonged pressure that is combined
with shear forces. Pressure injuries are a widespread and
costly problem. A recent study found the prevalence of
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pressure injuries may be close to 30% for patients in intensive
care units, which is 10% higher than previous estimates
[2,3]. Patients with pressure injuries experience pain and
the potential for infection and debilitation, which prolongs
hospital stays and impacts recovery. Furthermore, increas-
ing evidence supports the association between severity of
pressure injuries and patient mortality [2]. In the United
States, health care systems absorb on average US $10,000 per
hospital-acquired pressure injury (HAPI), which contributes
to a cost burden that will soon exceed US $30 billion [4,5].

Prevention of pressure injuries requires an accurate risk
assessment and an interdisciplinary approach with routine
repositioning, maintaining dry skin, and padding pressure
points to reduce injury [6-8]. Currently, health care systems
are striving to accurately measure and prevent HAPIs, since
they can be common and negatively impact patient care [9].
Patient factors such as age, vasopressor support, mechani-
cal ventilation, low albumin, and renal failure can increase
the risk for pressure injuries [10,11]. Multiple standardized
risk assessment tools have been developed to systematically
assess patient factors and assist clinicians in identifying
at-risk patients [12,13]. Of these tools, the Braden scale
has remained the standard of care across health systems
for decades. The Braden scale incorporates components of
sensory perception, activity, mobility, and nutrition, as well
as skin moisture, friction, and shear force, to produce a
score that indicates the risk of developing a pressure injury
[14]. Although use of the Braden scale is widespread, its
accuracy and reliability in diverse settings and patients is in
question; thus, researchers have turned to more advanced risk

prediction models that incorporate additional patient factors
[12,13,15,16].

Recent literature reviews of advanced risk prediction
models have highlighted excellent performance in predicting
pressure injuries [17-21]. Zhou and colleagues [20] found that
74% of studies achieved an area under the receiver operating
curve (AUC) between 0.68 and 0.99. Although these models
were exceptionally accurate at predicting pressure injuries, no
studies to our knowledge have implemented such models to
reduce the number of pressure injuries. Numerous prediction
models have been developed across clinical domains, but
few have improved patient outcomes, leading researchers to
identify a variety of required elements that may be neces-
sary to implement prediction models in practice [22-24]. For
instance, Randall Moorman [23] proposed properties, such as
change of risk over time (eg, dynamic risk), for predictive
analytics in neonatal intensive care units. Keim-Malpass and
colleagues [24] found that potential users want prediction
tools to be integrated with the electronic health record (EHR;
eg, feasibility). We reviewed and agreed upon 5 elements that
applied to HAPI prediction (ie, it should be feasible, broadly
applicable, include dynamic risk and actionable criteria, and
be rigorously validated) and then applied these elements to
22 recent models from 2020 to 2022 (Figure 1) [17,20,21].
We found no models fulfilled all the necessary elements
to impact patient care. To help bridge the gap from model
development to implementation, the objective of this study
was, therefore, to develop and validate a model that fulfilled
these elements and then compare its performance to usual
care (ie, the Braden scale).
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Figure 1. Comparison of current pressure injury prediction models according to elements of implementable models [25-45].

Methods
Study Population
We used retrospective data from the EHR at Vanderbilt
University Medical Center between January 1, 2018, and
July 1, 2022. All hospital admissions were included if the
length of stay was longer than 24 hours and patient age was
greater than 18 years on admission. HAPIs were identified
using nurse flowsheet documentation. Nurses use flowsheets
to document a variety of assessments, with our institution
using a dedicated section for pressure injuries. The presence
or absence of a pressure injury is assessed on admission and
daily for each patient in the hospital. If a pressure injury
is identified, the nurse documents whether it was present

on admission and additional characteristics of the pressure
injury, including the stage and location. We considered
pressure injuries documented with a “no” in the column
“present on admission” as HAPIs. For patients who had more
than one HAPI, we used the first documented. The cohort
included 197,911 hospitalizations, 129,100 patients, and 5458
HAPIs.
Feature Selection and Cohort
Development
We first identified relevant features associated with pressure
injuries from the literature. The list of relevant features was
supplemented and pruned by clinical domain experts and
informaticians at Vanderbilt University Medical Center. In
total, 51 features were extracted as candidate features for
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predicting HAPIs. Importantly, features were only extracted
if they were available at the time of hospitalization and could
be used to update the risk prediction during the encounter
(ie, no claims data were used). Table 1 provides a summary
of the extracted features. Missing values were imputed with
the cohort median [46,47]. Multimedia Appendix 1 provides
the full cohort characteristics, including missing values and
a full list of measures. We split the full cohort temporally
into model development and validation cohorts based on

the number of events, with the development and validation
cohorts including 80% and 20% of HAPIs, respectively. The
development cohort included 161,816 hospitalizations and
4362 HAPIs from January 1, 2018, to August 26, 2021, and
the validation cohort included 36,095 hospitalizations and
1096 HAPIs from August 27, 2021, to June 29, 2022 (Figure
2). Outcomes and features were identified and extracted in the
same manner for the development and validation cohorts.

Table 1. Overview of extracted features.
Source Feature
Patient demographics and social
history

Age; gender; race; ethnicity; smoking status

Administration Hospital admission through emergency department; intensive care unit admission; length of stay
Flowsheets Hospital-acquired pressure injury (primary outcome); temperature; respiratory rate; heart rate; BMI;

oxygen saturation; blood pressure; Braden scale (items and composite score); consciousness; gait transfer;
Glasgow Coma Scale; malnutrition score; spinal cord injury; dialysis during hospitalization; tracheostomy;
gastric tube; central line; chest tube; ostomy; drain; extracorporeal membrane oxygenation

Laboratory results Hemoglobin; hemoglobin A1C; hematocrit; mean corpuscular hemoglobin concentration; red cell
distribution width; platelet count; chloride; blood urea nitrogen; creatinine; lactate; albumin; glucose

Figure 2. Model development and validation cohorts.

Model Development
We developed 3 models for comparison using logistic
regression. The present model (Vanderbilt) used a broad set
of candidate features (Table 1). The second model used the
sum of the individual item measures from the Braden scale
(ie, continuous Braden) [14]. Finally, since the Braden scale
is typically operationalized using a single composite score
(ie, less than 18=high risk; greater than or equal to 18=low
risk), we included the dichotomous Braden for comparison as

well. Logistic regression is the most frequently used model in
clinical care [20,48]. The primary advantages of using logistic
regression are that feature importance is easily interpretable
and that the mathematical equation used to extract features
and calculate a risk prediction is readily available in most
commercial EHRs. Currently, the output from many machine
learning models is not operationalizable for patient care in the
EHR. To account for nonlinearity of the numeric features, we
tested 3 knot-restricted cubic splines but found the discrimi-
nation failed to improve by using the nonlinear model [49].

JMIR MEDICAL INFORMATICS Reese et al

https://medinform.jmir.org/2024/1/e51842 JMIR Med Inform 2024 | vol. 12 | e51842 | p. 4
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e51842


Since the purpose was to develop a model that could be easily
implemented in the EHR and compare it to standard care, we
focused on use of logistic regression for the Vanderbilt and
continuous Braden models.

We first included all 51 candidate features in the present
(Vanderbilt) model to examine complexity versus accuracy as
measured by cross-validation AUC. Again, included features
were derived from the literature and refined by clinical
domain experts and informaticians. We tested for multicol-
linearity by examining the proportion of variance in each
candidate feature that could be explained by other candidate
features and removed hemoglobin. Included features had to
be structured and readily available for automated processing
in the EHR without additional input by the user. Using
the conservative 15:1 rule, we were able to include 290.8
degrees of freedom in the model. To ensure the model was
broadly applicable across settings and patients, we used a
least absolute shrinkage and selection operator (LASSO)
approach to identify important candidate features. Candidate
features were standardized (scaled and centered) prior to
running the LASSO regression. LASSO introduces a penalty
term to the standard regression model, which forces some of
the regression coefficients to shrink toward zero, effectively
performing feature selection [50]. Variables with nonzero
coefficients were included in the final model. The model
was designed to calculate a risk prediction on admission and
daily while the patient was in the hospital. Missing numeric
measures were to be imputed with the cohort median until
measures became available.
Model Evaluation
The final model was assessed in an external cohort that was
temporally separated from the model development cohort.
We evaluated the model using traditional and novel per-
formance measures, which included the AUC, Brier score,
slope, intercept, integrated calibration index, and calibration
curve. AUC is a performance measure for the discrimination
of HAPI versus no HAPI. It combines the true and false
positive rates, with an AUC of 0.5 indicating no meaningful
discrimination. The Brier score accounts for the predicted

HAPI outcome as well as the estimate and is calculated
by the squared difference between the prediction (0 to 1)
and outcome (0=no HAPI and 1=HAPI) [51]. For example,
if a patient had a 90% probability of developing a HAPI
and did develop a HAPI during that encounter, the Brier
score would be 0.01. A Brier score of 0 indicates perfect
accuracy and a score of 1 indicates perfect inaccuracy.
The integrated calibration index is a numeric summary of
model calibration across the predicted probabilities [52]. It
is the weighted average of the absolute difference between
the observed and predicted probabilities; therefore, a lower
integrated calibration index indicates better calibration. A
slope equal to 1 indicates agreement between the observed
response and the predicted probability, while a slope greater
than 1 indicates potential underfitting, and a slope lower than
1 indicates potential overfitting [52]. Similarly, an intercept
of zero is ideal. As with prior models, no adjustments were
made for multiple comparisons [47,53,54]. We used the
TRIPOD (Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis) reporting
guidelines (Checklist 1) and performed all analyses in R
(version 4.2.3; R Foundation for Statistical Computing) with
relevant extension packages [55].

Ethical Considerations
This study was approved by the Vanderbilt University
Medical Center Institutional Review Board (220644), and
data were deidentified.

Results
Cohort Characteristics
The full cohort of patient encounters was split temporally,
based on the number of HAPIs, into model development
and validation cohorts. The characteristics for each cohort
are provided in Table 2. Among the model development
cohort, those who developed HAPIs were older and male.
Table 3 provides the model development cohort characteris-
tics divided by whether a HAPI occurred.

Table 2. Characteristics for model development and validation cohorts. Measures were first taken during the hospital stay unless specified otherwise.
Race and ethnicity were not included as candidate features.

Development cohort (n=161,816
encounters)

Validation cohort (n=36,095
encounters)

Age (years), median (IQR) 56 (37-69) 56 (37-69)
Female, n (%) 84,727 (52.4) 17,060 (47.3)
Race, n (%)

White 125,322 (77.4) 27,649 (76.6)
African American 26,299 (16.3) 5659 (15.7)
Asian 2325 (1.4) 480 (1.3)
American Indian or Alaska Native 289 (0.2) 66 (0.2)
Pacific Islander 104 (0.1) 25 (0.1)
Multiple 1185 (0.7) 231 (0.6)

Hispanic, n (%) 7406 (4.6) 2074 (5.7)
Physiological and clinical features
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Development cohort (n=161,816
encounters)

Validation cohort (n=36,095
encounters)

Temperature (°C), median (IQR) 36.7 (36.5-36.9) 36.7 (36.5-36.9)
Respiratory rate (breaths per minute), median (IQR) 18 (16-19) 18 (16-20)
Heart rate (beats per minute), median (IQR) 87 (74-100) 87 (75-101)
BMI (kg/m2), median (IQR) 28.2 (24.1-33.4) 28.3 (24.2-33.5)
Oxygen saturation (%), median (IQR) 98 (96-99) 98 (96-99)
Systolic blood pressure (mm Hg), median (IQR) 131 (117-147) 130 (117-146)
Diastolic blood pressure (mm Hg), median (IQR) 77 (68-88) 77 (67-87)
Emergency department admissions, n (%) 91,363 (56.5) 20,972 (58.1)
Intensive care admissions, n (%) 34,190 (21.1) 7831 (21.7)
Length of stay (days), median (IQR) 4 (2-6) 4 (2-7)
Smokers, n (%) 56,750 (35.1) 12,561 (34.8)
Edema, n (%) 86,582 (53.5) 19,846 (55)
Spinal cord injury, n (%) 5908 (3.7) 1428 (4)
Dialysis, n (%) 92 (0.1) 74 (0.2)
Tracheostomy, n (%) 2122 (1.3) 520 (1.4)
Gastric tube, n (%) 35 (0) 5 (0)
Central line, n (%) 20,648 (12.8) 4803 (13.3)
Chest tube, n (%) 5186 (3.2) 1278 (3.5)
Ostomy, n (%) 2059 (1.3) 459 (1.3)
Drain, n (%) 17,800 (11) 4005 (11.1)
ECMOa, n (%) 414 (0.3) 71 (0.2)

Laboratory results, median (IQR)
Hemoglobin A1C (%) 6.1 (5.5-7.5) 6.1 (5.6-7.5)
Hemoglobin (g/dL) 12.0 (10.3-13.6) 11.9 (10.2-13.5)
Hematocrit (%) 36.0 (32.0-41.0) 36.0 (32.0-40.0)
MCHCb (g/dL) 33.0 (32.0-34.0) 32.9 (31.9-33.9)
Red cell distribution width (%) 13.9 (13.0-15.5) 14.0 (13.0-15.6)
Platelet count (×109/L) 228 (174-291) 234 (179-298)
Chloride (mEq/L) 105 (101-108) 104 (101-107)
Lactate (mmol/L) 1.1 (0.8-1.9) 1.2 (0.8-2.0)
Albumin (g/dL) 3.6 (3.1-4.0) 3.5 (3.0-3.9)
Urine blood urea nitrogen 412 (260-603) 415 (275-609)
Creatinine (mg/dL) 0.9 (0.9-1.3) 0.9 (0.8-1.3)
Glucose (mmol/L) 114 (96-146) 114 (96-145)

Nursing assessment features
Braden scale score, median (IQR) 20 (18-22) 20 (17-21)
Level of consciousness=2, n (%) 21,357 (13.2) 5043 (14)
Gait transfer=20, n (%) 10,673 (6.6) 2190 (6.1)
Glasgow Coma Scale=3, n (%) 4872 (3) 961 (2.7)
Malnutrition score=5, n (%) 1241 (0.8) 345 (1)

Outcomes, n (%)
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Development cohort (n=161,816
encounters)

Validation cohort (n=36,095
encounters)

Any pressure injury 9259 (5.7) 2143 (5.9)
Hospital-acquired pressure injury 4362 (2.7) 1096 (3)

aECMO: extracorporeal membrane oxygenation.
bMCHC: mean corpuscular hemoglobin concentration.

Table 3. Model development cohort characteristics with and without hospital acquired pressure injury. Measures were the first taken during the
hospital stay unless specified otherwise. Race and ethnicity were not included as candidate features.

No hospital-acquired pressure
injury (n=157,454 encounters)

Hospital-acquired pressure
injury (n=4362 encounters)

Age (years), median (IQR) 56 (37-68) 64 (52-74)
Female, n (%) 82,999 (52.7) 1728 (39.6)
Race, n (%)

White 121,786 (77.3) 3536 (81.1)
African American 25,654 (16.3) 645 (14.8)
Asian 2290 (1.5) 35 (0.8)
American Indian or Alaska Native 285 (0.2) 4 (0.1)
Pacific Islander 102 (0.1) 2 (0)
Multiple 1154 (0.7) 31 (0.7)

Hispanic, n (%) 7306 (4.6) 100 (2.3)
Physiologic and clinical features

Temperature (°C), median (IQR) 36.7 (36.5-36.9) 36.7 (36.4-37.0)
Respiratory rate (breaths per minute), median (IQR) 18.0 (16.0-19.0) 18.0 (16.0-22.0)
Heart rate (beats per minute), median (IQR) 87.0 (74.0-100.0) 91.0 (77.0-106.0)
BMI (kg/m2), median (IQR) 28.2 (24.1-33.5) 26.8 (22.6-32.2)
Oxygen saturation (%), median (IQR) 98.0 (96.0-99.0) 97.0 (95.0-99.0)
Systolic blood pressure (mm Hg), median (IQR) 131.0 (117.0-147.0) 124.0 (107.0-142.0)
Diastolic blood pressure (mm Hg), median (IQR) 78.0 (68.0-88.0) 72.0 (61.0-84.0)
Emergency department admissions, n (%) 88,552 (56.2) 2811 (64.4)
Intensive care admissions, n (%) 31,795 (20.2) 2395 (54.9)
Length of stay (days), median (IQR) 3 (2-6) 15 (8-26)
Smokers, n (%) 55,278 (35.1) 1472 (33.7)
Edema, n (%) 82,640 (52.5) 3942 (90.4)
Spinal cord injury, n (%) 5398 (3.4) 510 (11.7)
Dialysis, n (%) 81 (0.1) 11 (0.3)
Tracheostomy, n (%) 1491 (0.9) 631 (14.5)
Gastric tube, n (%) 24 (0) 11 (0.3)
Central line, n (%) 18,350 (11.7) 2298 (52.7)
Chest tube, n (%) 4598 (2.9) 588 (13.5)
Ostomy, n (%) 1881 (1.2) 178 (4.1)
Drain, n (%) 16,888 (10.7) 912 (20.9)
ECMOa, n (%) 242 (0.2) 172 (3.9)

Laboratory results, median (IQR)
Hemoglobin A1C (%) 6.1 (5.5-7.5) 6.0 (5.4-7.1)
Hemoglobin (g/dL) 12.0 (10.3-13.6) 12.0 (10.3-13.6)
Hematocrit (%) 37.0 (32.0-41.0) 34.0 (29.0-40.0)
MCHCb (g/dL) 33.0 (32.0-34.0) 32.6 (31.5-33.7)
Red cell distribution width (%) 13.9 (13.0-15.5) 14.9 (13.5-16.8)
Platelet count (×109/L) 228.0 (175.0-291.0) 215.0 (151.0-298.0)
Chloride (mEq/L) 105.0 (101.0-108.0) 104.0 (99.0-108.0)
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No hospital-acquired pressure
injury (n=157,454 encounters)

Hospital-acquired pressure
injury (n=4362 encounters)

Lactate (mmol/L) 1.1 (0.8-1.3) 1.4 (0.9-2.5)
Albumin (g/dL) 3.6 (3.1-4.0) 3.1 (2.6-3.5)
Urine blood urea nitrogen 412.0 (263.0-603.0) 410.0 (244.0-605.5)
Creatinine (mg/dL) 0.9 (0.8-1.3) 1.2 (0.8-1.9)
Glucose (mmol/L) 114.0 (96.0-145.0) 125.0 (101.0-168.0)

Nursing assessment features
Braden scale score, median (IQR) 20.0 (18.0-22.0) 15.0 (13.0-18.0)
Level of consciousness=2, n (%) 20,712 (13.2) 645 (14.8)
Gait transfer=20, n (%) 10,055 (6.4) 618 (14.2)
Glasgow Coma Scale=3, n (%) 4406 (2.8) 466 (10.7)
Malnutrition score=5, n (%) 1166 (0.7) 75 (1.7)

aECMO: extracorporeal membrane oxygenation.
bMCHC: mean corpuscular hemoglobin concentration.

Model Description
We determined 22 features were necessary to achieve a
parsimonious yet highly accurate model. Again, features were
selected using a LASSO approach. We fit the final model
with 4362 HAPI encounters and 291 degrees of freedom,
which indicated the model was unlikely to overfit the data.
Of the 40 features that exhibited association with develop-
ing a HAPI, the top 5 features included tracheostomy (odds
ratio [OR] 4.5, 95% CI 4.0-5.1), peripheral edema (OR 2.9,
95% CI 2.6-3.2), central line (OR 2.1, 95% CI 1.9-2.3),
first albumin measure (OR 0.6, 95% CI 0.6-0.6), and age

(OR 1.2, 95% CI 1.2-1.2) (Figure 3). Although the direction-
ality for each feature may vary, the relative importance in
Figure 3 was ranked on a single scale. Additional signifi-
cant features included whether the patient was on sympa-
thomimetic medications, had a spinal cord injury or chest
tube, and individual Braden score component measures. The
final Vanderbilt model with 22 features provided excellent
discriminatory ability with an AUC of 0.897 (95% CI
0.893-0.901). Multimedia Appendix 2 depicts the probability
density plot for the development and validation cohorts.
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Figure 3. Relative importance of features used in the final Vanderbilt model. Gray subfeatures represent item comparisons used to generate features.
P values for variable significance were derived using the Wald χ2 test. BUN: blood urea nitrogen; ECMO: extracorporeal membrane oxygenation;
ICU: intensive care unit; RDW: red cell distribution width.

Comparison With the Braden Scale
Using the model development cohort, the Vanderbilt model
achieved an AUC of 0.897 (95% CI 0.893-0.901), compared

to 0.798 (95% CI 0.791-0.803) and 0.733 (95% CI
0.725-0.740) for the continuous and dichotomous Braden,
respectively (Figure 4).
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Figure 4. Area under the receiver operating characteristic curve comparing the Vanderbilt (gold), continuous Braden (blue), and dichotomous Braden
(gray) models.

Model Validation
The validation cohort consisted of 34,999 hospitalizations
without a HAPI and 1096 hospitalizations with at least
one HAPI. Model development and validation cohorts were
compared to confirm that each had similar characteristics.
Overall, characteristics were similar between the 2 cohorts
(Table 3). We applied the same model from the devel-
opment cohort to the validation cohort without adjusting
coefficients, which provided a concordance statistic of 0.893
(95% CI 0.885-0.899; Table 4). Model calibration was
consistent between the development and validation cohorts.
The calibration curve indicated the model most accurately
predicted risk for patients in the range of 0%-25% predicted
risk (Figure 5); above this, the model could overpredict a
HAPI. Since the model was intended to bring nurse atten-
tion and interventions to patients who would otherwise be
overlooked, we believe the miscalibration at higher percen-
tages was less clinically relevant. There was no evidence
of collinearity. We are confident that this model performs
well for most patients across the intensive care and general
hospital settings, as 98.2% of the cohort had a predicted risk
of less than 25%.

Since the model was designed to be used broadly in the
general adult hospital, we performed a post hoc analysis
among subpopulations for age (older than 65 years), gender,

race, ethnicity, intensive care unit admission, and Braden
score (greater than 18). The subpopulation analysis revealed
only slight changes in discrimination performance (Multime-
dia Appendix 3).

To operationalize the Vanderbilt model in the EHR (Epic),
we generated the equation below. The output from the
equation is a numeric probability from 0 to 1. Z is the sum of
–4.1812002 and the product of the coefficient and measured
value (eg, first albumin) for each feature. In Multimedia
Appendix 4, we provide the coefficients for the equation. The
model has been deployed as a population management tool to
generate risk prediction data at Vanderbilt University Medical
Center, but the output is only available for the research team
until a trial period has been completed and governance has
approved it for patient care. Within a report for multiple
patients, output from the model is available as a column
among other relevant factors to prioritize pressure injury
interventions. As part of the implementation plan, we have
created an application for potential users to test the model
[56].

Probability of ℎospital − acquired pressure injury
= 11 + exp −Z

Table 4. Prediction model performance for hospital-acquired pressure injury.
Model Area under the curve (95% CI) Brier score Integrated calibration index Intercept Slope
Vanderbilt (logistic regression) 0.893 (0.885-0.899) 0.026 0.006 −0.041 0.977
Continuous Braden (logistic regression) 0.799 (0.789-0.811) 0.028 0.006 0.178 1.034
Dichotomous Braden (score<18) 0.733 (0.725-0.740) 0.025 Too few levels to compute 0.0 1.0
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Figure 5. Calibration curves for model development (left) and validation (right). Logistic calibration (solid line) represents parameter-based
calibration (logistic regression model fit between predicted and observed values). Nonparametric calibration (dotted line) represents locally estimated
scatterplot smoothing trend between predicted and observed values.

Discussion
Principal Findings
We developed and validated a risk prediction model for
HAPIs that can be used in the general adult population.
The model achieved excellent discrimination and adequate
calibration (Table 4). Although several recent models have
achieved similar performance, our model may have the
greatest likelihood of reducing HAPIs because it was built
with the foresight of overcoming known barriers to imple-
mentation of risk-prediction clinical decision support (Figure
1). According to the scoring criteria in Figure 1, the present
model would have achieved 8 of a possible 10, compared to
the current highest score of 6. It lost points for being limited
to adults from a single institution (broadly applicable) and
partially specified intervention (actionable criteria). Limiting
development of the model to a single institution could limit
the generalizability due to documentation patterns and data
availability. Although we specified how to deploy the model
in the EHR, the intervention components and implementa-
tion strategies were underspecified for implementation and
evaluation. The next step is to test the effectiveness of the
model in a pragmatic randomized clinical trial in which the
intervention will be fully specified [57].

Although our model achieved similar performance and
used the same regression approach as the top 3 models in
Figure 1 (Ladios-Martin et al [25], Levy et al [27], and Song
et al [26]), many of the most important features among the
models varied. Among the most important features in the
Ladios-Martin et al [25] model (eg, medical service, days of
antidiabetic therapy, ability to eat, number of red blood cell
units transfused, and hemoglobin range), only medical service
was similar to our model. Relatedly, 2 important features in
the Levy et al [27] model overlapped (friction and mobility).

However, several important features from the Song et al
[26] model (albumin, gait/transferring, activity, blood urea
nitrogen, chloride, and spinal cord injury) overlapped with
our model. We anticipate the similarity in features between
our model and the Song et al [26] model was due to use of
the same EHR and the models being developed at academic
medical centers in the United States.

Limited implementation of risk prediction models in the
EHR presents a critical challenge in health care today; the
barrier is now less about the performance of risk predic-
tion models and more the sociotechnical obstacles to uptake
in patient care [58-60]. Despite the growing availability
and sophistication of these models, their integration into
routine clinical practice remains inadequate. Of the 22 models
identified, we were unable to find one that decreased HAPIs.
Even when prespecified elements for an implementable
model are fulfilled, concerted efforts are needed from various
stakeholders. Collaboration between health care organiza-
tions, technology developers, and regulatory bodies is
essential to establish standards and guidelines for incorporat-
ing risk prediction models into EHR systems [61]. Enhanc-
ing data infrastructure, promoting data standardization, and
developing robust privacy and security frameworks are
crucial steps toward facilitating the implementation of these
models [62]. Additionally, targeted education and training
initiatives can help build trust and confidence among health
care providers, encouraging their acceptance and use of risk
prediction models in clinical practice, along with actiona-
ble steps to take for patients at highest risk [63,64]. Fur-
thermore, there are significant socio-organizational barriers
that impede the implementation of risk prediction models in
EHRs. Resistance to change, lack of awareness or understand-
ing among health care providers, and concerns regarding
liability and accountability are common challenges faced
by health care institutions. Clinicians may be skeptical of
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relying on risk prediction models, fearing that their judgment
and decision-making autonomy may be compromised. The
integration of risk prediction models also requires exten-
sive training and education for health care providers, which
may be resource-intensive and time-consuming [65,66]. Only
when these barriers are addressed in a pragmatic manner
can risk-prediction clinical decision support models improve
patient outcomes.

Pragmatic trials are crucial in testing the real-world
effectiveness and utility of interventions in health care
settings [57,67,68]. These trials provide valuable insights
into how interventions perform when integrated into routine
clinical practice, considering factors such as patient out-
comes, workflow integration, and usability. Institutions are
beginning to develop the infrastructure and stakeholder
engagement to support pragmatic trials. At our institution,
Semler and colleagues [69] tested the effectiveness of
balanced crystalloids and saline for fluids in critically ill
adults. This pragmatic trial was cluster-randomized with
5 intensive care units. The authors found that use of bal-
anced crystalloids resulted in a lower rate of death. A
key aspect that makes pragmatic trials feasible is the use
of existing infrastructure and real-world practice, which
typically includes an inclusive patient population, mini-
mal staff training, flexible protocols, minimally disruptive
interventions, and outcomes captured as part of care. For
pressure injuries specifically, the intervention infrastructure
and guidance already exist as part of routine care; however,
risk prediction will help identify and prioritize the most
at-risk patients for targeted intervention. Preliminarily, we
envision a clinician will use a list of patients ranked highest to
lowest risk for HAPI.
Strengths and Limitations
Pressure injury prediction models have shown promise in
identifying individuals at risk of developing pressure injuries.
However, there are several limitations with these models,
including ours, that should be considered. First, documenta-
tion of pressure injuries varies by institution and can lead
to misclassification. We found that documentation of some
pressure injuries carried over from previous encounters. On
further testing, we found that missing measures (eg, albumin)
can lead to inaccurate prediction. Thus, we chose to use a
replicable imputation method with the median. Although our

prediction model was developed and validated using incident
HAPIs, documentation errors should be carefully considered.
To increase the generalizability of our model, we chose
not to include text from notes, despite evidence that use of
clinical notes may have predictive power. Although we had
a relatively large sample size that was sufficient to include
all important features, the patient cohort was from a single
institution and may not generalize to institutions in differ-
ent geographical areas or using different EHRs. Finally, we
chose to use an interpretable model that could be operational-
ized in current EHRs; however, other models may provide
slightly higher performance. We anticipate certain EHR
vendors will continue to develop capabilities for implement-
ing complex machine learning models for more complicated
prediction tasks. In anticipation of this, we performed a
preliminary analysis of random forest, generalized additive
model, and XGBoost. Of these models, we found that
XGBoost had higher discrimination than ours in the model
development cohort (AUC 0.960, 95% CI 0.957-0.962 vs
AUC 0.893, 95% CI 0.885-0.899). In the model validation
cohort, however, performance was not superior to logistic
regression (AUC 0.869, 95% CI 0.861-0.877 vs AUC 0.893,
95% CI 0.885-0.899). Future work is needed to fully optimize
the machine learning models and explore the tradeoff between
interpretability and performance.
Conclusion
Despite numerous models developed to predict pressure
injuries, studies demonstrating improved patient outcomes
are missing. This is because implementing risk prediction
models for routine patient care is complex and requires model
developers, clinicians, and researchers to address challenges
early in the process. Therefore, we developed and valida-
ted an accurate prediction model for HAPIs that fulfilled
necessary elements for implementation. The next step is to
overcome socio-organizational barriers to rigorously evaluate
the model through a pragmatic randomized clinical trial that
includes targeted intervention for patients at highest risk.
Our approach to developing an implementable risk predic-
tion model, with feasible plans to evaluate its effectiveness,
is generalizable to risk prediction and may be necessary to
unlock the potential of this technology and improve decision-
making.
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