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Abstract
Background: With the capability to render prediagnoses, consumer wearables have the potential to affect subsequent
diagnoses and the level of care in the health care delivery setting. Despite this, postmarket surveillance of consumer wearables
has been hindered by the lack of codified terms in electronic health records (EHRs) to capture wearable use.
Objective: We sought to develop a weak supervision–based approach to demonstrate the feasibility and efficacy of EHR-
based postmarket surveillance on consumer wearables that render atrial fibrillation (AF) prediagnoses.
Methods: We applied data programming, where labeling heuristics are expressed as code-based labeling functions, to detect
incidents of AF prediagnoses. A labeler model was then derived from the predictions of the labeling functions using the
Snorkel framework. The labeler model was applied to clinical notes to probabilistically label them, and the labeled notes
were then used as a training set to fine-tune a classifier called Clinical-Longformer. The resulting classifier identified patients
with an AF prediagnosis. A retrospective cohort study was conducted, where the baseline characteristics and subsequent care
patterns of patients identified by the classifier were compared against those who did not receive a prediagnosis.
Results: The labeler model derived from the labeling functions showed high accuracy (0.92; F1-score=0.77) on the training
set. The classifier trained on the probabilistically labeled notes accurately identified patients with an AF prediagnosis (0.95;
F1-score=0.83). The cohort study conducted using the constructed system carried enough statistical power to verify the key
findings of the Apple Heart Study, which enrolled a much larger number of participants, where patients who received a
prediagnosis tended to be older, male, and White with higher CHA2DS2-VASc (congestive heart failure, hypertension, age ≥75
years, diabetes, stroke, vascular disease, age 65-74 years, sex category) scores (P<.001). We also made a novel discovery that
patients with a prediagnosis were more likely to use anticoagulants (525/1037, 50.63% vs 5936/16,560, 35.85%) and have an
eventual AF diagnosis (305/1037, 29.41% vs 262/16,560, 1.58%). At the index diagnosis, the existence of a prediagnosis did
not distinguish patients based on clinical characteristics, but did correlate with anticoagulant prescription (P=.004 for apixaban
and P=.01 for rivaroxaban).
Conclusions: Our work establishes the feasibility and efficacy of an EHR-based surveillance system for consumer wearables
that render AF prediagnoses. Further work is necessary to generalize these findings for patient populations at other sites.
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Introduction
Background
Consumer-facing devices such as the Apple Watch [1] and
Fitbit [2] now have the capability to notify users with
a prediagnosis such as atrial fibrillation (AF). As these
notifications may incentivize patients to seek follow-up
medical care, wearables now have the potential to affect
diagnosis rates and initiate cascades of medical care [3,4].
Although these devices undergo premarket validation to
obtain Food and Drug Administration (FDA) clearance [5],
limited information exists on their postmarket use and clinical
utility.

To conduct postmarket surveillance on consumer
wearables, electronic health records (EHRs) should capture
wearable use, in particular those incidents where patients
received prediagnosis notifications. However, EHRs are
often built around medical diagnosis codes used for billing
purposes [6,7], which do not contain terms for describing
wearable use. Prescription wearables should have ordering
information, but this does not capture how the wearables are
used. Therefore, unstructured data such as clinical notes must
be parsed to obtain the wearable use information.

Deep learning–based natural language processing (NLP)
methods [8-10] have been shown to outperform traditional
approaches on clinical note classification tasks [11,12].
However, these deep learning–based classifiers require large,
hand-labeled training sets that are costly to generate. For
EHR-based postmarket surveillance to be widely implemen-
ted, a scalable approach is necessary to reduce the labeling
burden.
Objectives
We aimed to demonstrate the feasibility and efficacy of
postmarket surveillance on consumer wearables that render

AF prediagnoses. The first aim of this study was to evaluate
the efficacy of a weakly supervised approach to heuristically
generate labels for a training set. A labeler model derived
from programmatically expressed heuristics probabilistically
assigns labels to clinical notes regarding whether the note
contains a mention of the patient receiving a prediagno-
sis from a wearable. The second aim was to evaluate the
performance of a classifier fine-tuned on the training set
labeled by the labeler model, which identifies mentions of
an AF prediagnosis in a note. The third aim was to summa-
rize the clinical characteristics of patients identified by the
classifier and compare them to patients who were not alerted
to a prediagnosis.

Methods
Cohort Identification
We used the Stanford Medicine Research Data Repository
(STARR) data set [13], which contains EHR-derived records
from the inpatient, outpatient, and emergency department
visits at Stanford Health Care and the Lucile Packard
Children’s Hospital. We retrieved all clinical notes from the
STARR data set that contain a mention of a wearable device
(Textbox 1), resulting in 86,260 notes from 34,329 unique
patients. Following the FDA guidance for pertinent cardiovas-
cular algorithms [5], we excluded patients younger than 22
years of age when the note was written, leaving 78,323 notes
from 30,133 unique patients. We further limited the data set
to notes written on or after January 1, 2019, since the first
consumer-facing AF detection feature became available in
December 2018 [14]. The resulting cohort comprised 56,924
notes from 21,332 unique patients.

Textbox 1. Search terms for wearable devices.
Apple watch, iwatch, applewatch, fitbit, fit bit, fit-bit, galaxy watch, samsung watch, google watch, kardia, alivecor, alive
cor, wearable, smart watch, and smartwatch

To evaluate the performance of the labeler model and the
classifier, we constructed a test set by manually labeling 600
notes. Specifically, we randomly selected 600 unique patients
and then selected 1 note for each patient that contained
action terms (Textbox 2) in the vicinity (30 characters) of a

wearable mention. This was to filter out nonrelevant wearable
descriptions (eg, boilerplate texts recommending the use of
wearables during meditation), so that resulting notes are
enriched with relevant use cases.

Textbox 2. Action terms used to enrich sample relevance.
Alert, notify, warn, observe, identify, detect, note, record, capture, show, report, give, alarm, register, read, tell, have, had,
see, saw, receive, get, got, notice, check, and confirm
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These notes were then labeled independently by 2 data
scientists, and differences were adjudicated by 2 physicians.
A clinical note was labeled as positive when the patient
received an automated AF notification from the wearable, or
when the patient initiated an on-demand measurement (eg,
electrocardiogram strip) that resulted in an AF prediagnosis.
There were no instances where the 2 physicians disagreed on
the label. The resulting test set contained 105 positive notes
(prevalence=0.18).

In addition to the test set, we prepared a development set
of 600 notes that was used to aid the development of the
labeler model. This set was manually labeled by a single data
scientist, using a labeling guideline (Multimedia Appendix

1) that was developed as part of the test set generation.
The development set contained 100 positive notes (preva-
lence=0.17).
Labeler Model Derivation
We then derived a labeler model that used weak supervision
to probabilistically assign labels for the training set. Specif-
ically, as shown in Figure 1, we used data programming
[15], where labeling heuristics are expressed as code-based
labeling functions. Using the encoded heuristics, the labeling
functions make predictions as to which label a clinical note
should be assigned. Predictions from these labeling functions
are then combined to develop a generative labeler model.

Figure 1. Labeler model generation process. Labeling heuristics were expressed as code-based labeling functions. Snorkel [16] then applied the
labeling functions to the sample clinical notes and fit a generative model on the predictions of the labeling functions. The resulting labeler model
probabilistically assigns a label to a clinical note based on whether the note mentions the patient receiving an AF prediagnosis from the wearable
device. AF: atrial fibrillation.

We used the Snorkel framework [16] to implement data
programming. A preprocessing framework [17] was applied
to our notes to split them into sentences using the spaCy
[18] framework, with a specialized tokenizer to recognize
terms specific to medical literature. Thus parsed grammatical
information was made available to the labeling functions as
metadata.

We then used the development set to understand how
the AF prediagnosis was described, and we expressed each
pattern as a labeling function. The development process was
iterative, where the Snorkel framework allowed us to observe
the predictive values of the labeling functions on development

set records. Each function could then be further optimized to
reduce the differences between predictive values and actual
labels, leading to overall performance improvement on the
development set. Textbox 3 shows all the terms that were
identified as denoting AF. Negations were properly handled.

Once developed, we applied the labeling functions on the
samples and then instructed Snorkel to fit a generative model
on the output. Specifically, we used 10-fold cross-validation
on the test set and chose the labeler model with the best
F1-score. This model was then applied to the entire corpus of
56,924 notes to probabilistically assign labels.

Textbox 3. Terms denoting atrial fibrillation.
Af, afib, a-fib, a.fib, arrhythmia, paf, atrial fibrillation, a. fib, a fib, atrial fib, atrial arrhythmia, irregular heartbeat, irregular
hr, irregular rhythm, irregular pulse, irreg hr, irregular heart beat, irregular heart rhythm, irregular heart rate, irreg heart
rhythm, irreg heart beat, irreg heart rate, abnormal ekg rhythm, paroxysmal atrial fibrillation, a. fib, a - fib, pafib, abnormal
heart rhythm, abnormal rhythm, abnormal HR, and arrhythmia

Classifier Fine-Tuning
Notes that were probabilistically labeled by the labeler model
were then used to fine-tune a large, NLP-based classifier:
Clinical-Longformer [12] (Figure 2). The resulting classifier
takes plain note text as the input and classifies the note as

positive (ie, includes mention of a patient receiving an AF
notification, or patient-initiated cardiac testing or electrocar-
diogram resulting in an AF prediagnosis) or negative. When
a classifier is tuned on the labeler model output, it enables
generalizing beyond the labeling heuristics encoded in the
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labeling functions, such that the classifier can recognize more
patterns.

Figure 2. Classifier generation process. The labeler model was used to probabilistically assign labels for a large number of unlabeled clinical notes,
which were then used to fine-tune a classifier to detect whether a patient received an AF prediagnosis from a wearable device. AF: atrial fibrillation;
NLP: natural language processing.

Specifically, we fine-tuned the pretrained Clinical-Long-
former for the sequence classification task, with varying
training set sizes. For a single fine-tuning run, we chose
the snapshot with the best F1-score on the test set as the
representative. The Adam optimizer was used, with the
learning rate ramping up to 1 × 10−5 followed by linear
decay over 3 epochs. Clinical-Longformer has a maximum
input length of 4096 subword tokens: 94% (53,509/56,924)
of our notes fit this criterion, and notes with more tokens
were trimmed. Fine-tuning other NLP-based classifiers (eg,
ClinicalBERT [11], which takes a smaller number of input
tokens [512 or fewer]) resulted in abysmal performance
numbers (F1-score=0.21), hinting that they could not be
properly fine-tuned on our lengthy clinical notes.

The test set was never presented to the classifier during the
fine-tuning process. Since our data set was highly skewed
toward negative samples, we stratified the training set to
maintain a 1:2 ratio between the positive and negative notes.
All samples were chosen randomly.

The classifier with the best F1-score was then run across
the entire set of 56,924 clinical notes to identify all incidents
of AF prediagnoses.
Retrospective Cohort Study
Using the classifier, we identified patients who received an
AF prediagnosis and performed 3 retrospective cohort studies
comparing the characteristics of patients who received a
prediagnosis to those who did not, using the same STARR
data set.

First, we considered all the patients in the cohort
regardless of their prior AF diagnosis. We compared the

demographics, CHA2DS2-VASc (congestive heart failure,
hypertension, age ≥75 years, diabetes, stroke, vascular
disease, age 65-74 years, sex category) [19] score, and its
related comorbidities on the date the index note was created.
We defined the oldest note with a prediagnosis as the index
note since it was the most likely to drive downstream medical
intervention. When a patient had not received any prediagno-
sis, the oldest note with mention of a wearable was chosen as
the index.

Second, we focused on patients who did not have a
prior AF diagnosis. A patient was filtered out if the patient
had received an AF diagnosis, defined as an ambulatory
or inpatient encounter with SNOMED code 313217 and its
descendants, prior to the index note. We then compared the
same demographics and comorbidities between those who
received a prediagnosis and those who did not, on the date the
index note was created.

Lastly, we further confined the analysis to patients who
received a clinician-assigned AF diagnosis within 60 days
from the index note. Same as before, we excluded patients
who had a prior AF diagnosis before the index note. Patients
were then grouped based on whether they had received
an AF prediagnosis from a wearable and characterized on
the date they received the index AF diagnosis. In addition
to the demographics and comorbidities, we also compared
anticoagulant medication (Textbox 4), rhythm management
medication (Textbox 5), and cardioversion rates between the
2 groups. Only the index prescription and procedure that took
place within 60 days from the index diagnosis were consid-
ered.
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Textbox 4. Anticoagulant medications analyzed in this study.
Warfarin
Direct oral anticoagulants

• Apixaban, dabigatran, rivaroxaban, edoxaban, and betrixaban

Textbox 5. Rhythm management medications analyzed in this study.
Class I antiarrhythmics

• Propafenone, disopyramide, quinidine, mexiletine, and flecainide
Class II antiarrhythmics

• Metoprolol, carvedilol, labetalol, nadolol, propranolol, carteolol, penbutolol, pindolol, atenolol, betaxolol, bisoprolol,
esmolol, nebivolol, and timolol

Class III antiarrhythmics
• Sotalol and dofetilide

Class IV antiarrhythmics
• Verapamil, diltiazem, nicardipine, amlodipine, felodipine, nifedipine, isradipine, and nisoldipine

Others
• Digoxin

Statistical Analysis
When compiling patient race and ethnicity information, we
used the 5 categories of race defined by the US Census
and denoted Hispanic as a dedicated ethnicity. A total of
11.12% (2371/21,327) of the patients were missing race and
ethnicity information, so we categorized them as belonging to
the undisclosed category.

For hypothesis testing, we used the 1-tailed Welch t test
for continuous variables and χ2 test for categorical variables.
One-tailed tests were chosen over 2-tailed tests since clinical
contexts helped establish the comparison direction, providing
for a stricter analysis. Statistical analysis was performed using
Pandas [20] 1.3.0 and SciPy [21] 1.7.0, running on Python
3.9.6 configured through Conda 4.5.11.
Ethical Considerations
The STARR data set is derived from consented patients
only. Patients were not compensated for participation. Data
analyzed in this study were not deidentified, but its analysis
was conducted in a HIPAA (Health Insurance Portability and
Accountability Act)–compliant, high-security environment.
The Stanford University Institutional Review Board approved
this study (62865).

Results
Labeler Model Performance
In total, 8 labeling functions were developed. Most (7/8, 88%)
labeling functions used the grammatical information present
in the metadata, whereas 1 (12%) used a simple dictionary-
based lookup. Table 1 provides the performance of each
labeling function, followed by the combined labeler model.

Since each labeling function was geared toward identifying
positive samples that follow a specific pattern, each labeling
function exhibited substantially higher precision than recall.
By combining these labeling functions into 1 generative
labeler model, we improved recall (0.72). The high labeler
model accuracy (0.92) also showed that the model correctly
classified negative samples. After running the labeler model
on the set of 56,924 clinical notes, 5829 notes were flagged
as positive, a substantial increase from the 105 positive notes
identified through manual labeling.

Table 1. Labeling function (LF) and labeler model performancea.
Function or
model Target pattern Example Precisionb Recallc F1-scored Accuracye

LF1 Simple dictionary lookup “AF” and “wearable” and “notification” 0.90 0.33 0.51 0.87
LF2 AFf+verb+prepg+wearable “AF noted on wearable” 0.78 0.12 0.24 0.84
LF3 Wearable+verb+AF “Wearable notified AF” 0.91 0.42 0.55 0.89
LF4 Verb+wearable+verb+AF “Observed wearable showing AF” 0.85 0.14 0.29 0.85
LF5 Verb+AF+prep+wearable “Received AF from wearable” 0.81 0.15 0.31 0.85
LF6 Verb+event+prep+wearable+AF “Got notification from wearable of AF” 0.67 0.02 0.20 0.83
LF7 Event+prep+wearable+AF “Notified on wearable of AF” 0.74 0.10 0.27 0.84
LF8 Wearable+subject+verb+AF “Per wearable, patient had AF” 0.96 0.22 0.38 0.86
Labeler model N/Ah N/A 0.84 0.72 0.77 0.92
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aAverages taken from 10-fold cross-validation on the test set of 600 manually labeled notes. Italic numbers indicate the best observed performance
for each metric.
bPrecision = true positive / (true positive + false positive).
cRecall = true positive / (true positive + false negative).
dF1-score = 2 × precision × recall / (precision + recall).
eAccuracy = (true positive + true negative) / (positive + negative).
fAF: atrial fibrillation.
gPrep: preposition.
hN/A: not available.

Classifier Performance
Here, we report the performance of the classifier that was
fine-tuned using the clinical notes labeled by the labeler
model. Table 2 shows the average performance of the
classifier on the test set, across varying training set sizes.

The training set size was capped at 15,000 to maintain the
1:2 positive-to-negative ratio (the labeler model labeled 5829
notes as positive). Regardless of the training set size, the test
set was excluded from the input to the fine-tuning process.

Table 2. Classifier performance across varying training set sizesa.
Training set size Precisionb Recallc F1-scored Accuracye

600 0.37 0.68 0.48 0.73
5000 0.79 0.85 0.81 0.93
10,000 0.84 0.81 0.83 0.94
15,000 0.85 0.81 0.83 0.94

aFor each training set, average values are reported across 3 runs with different random seeds. For each run, the classifier snapshot with highest
F1-score was used. Italic numbers indicate the best performance observed for each metric.
bPrecision = true positive / (true positive + false positive).
cRecall = true positive / (true positive + false negative).
dF1-score = 2 × precision × recall / (precision + recall).
eAccuracy = (true positive + true negative) / (positive + negative).

Table 2 demonstrates how classifier performance benefits
from the weakly supervised approach. In particular, a training
set size of 600 emulated the hypothetical scenario where the
size of the training set is limited due to manual labeling
overhead. Such a small data set was not enough to adequately
fine-tune Clinical-Longformer (F1-score=0.48).

As the training set size increased, the classifier obtained
better performance, reaching the best average F1-score of

0.83. When compared to the labeler model in Table 1
(recall=0.72), the classifier significantly improved recall
(0.81), demonstrating that the classifier managed to general-
ize beyond the rules specified by the labeling functions.

Figures 3 and 4 show the comparisons of the best-perform-
ing (by F1-score) classifiers from each training set size.

JMIR MEDICAL INFORMATICS Yoo et al

https://medinform.jmir.org/2024/1/e51171 JMIR Med Inform 2024 | vol. 12 | e51171 | p. 6
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e51171


Figure 3. Classifier receiver operating characteristic (ROC) curve across varying training set sizes. For each training set, the best-performing (by
F1-score) run was chosen among 3 runs with different random seeds. For each run, the best-performing classifier snapshot was chosen.

Figure 4. Classifier precision-recall curve across varying training set sizes. For each training set, the best-performing (by F1-score) run was chosen
among 3 runs with different random seeds. For each run, the best-performing classifier snapshot was chosen.

The receiver operating characteristic curve (Figure 3) shows
that even the best classifier with a training set size of 600
performed worse than classifiers from larger data set sizes.
In the precision-recall curve (Figure 4), the classifier lost

substantial precision for small gains in recall, further hinting
that the classifier was not properly trained.

Across all training set sizes and runs, the best-perform-
ing classifier achieved an F1-score of 0.85 (accuracy=0.95).
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Running this classifier on 56,924 clinical notes identified
6515 notes as containing an AF prediagnosis across 2279
unique patients.
Cohort Study: All Patients
Table 3 summarizes the characteristics of the entire cohort
regardless of their prior AF diagnosis, reflecting the

characteristics of generic patients that used wearables. In
all, 5 patients were missing sex information and were not
included in the analysis.

Table 3. Characteristics of all patientsa.
Characteristics With a prediagnosis (n=2279) Without a prediagnosis (n=19,048) P value
Demographics

Age (y), mean (SD) 63.85 (14.21) 53.53 (16.70) <.001b

Race and ethnicity, n (%) <.001b

Asian 295 (12.94) 3143 (16.5)
Black 53 (2.33) 619 (3.25)
Hispanic 96 (4.21) 1731 (9.09)
White 1613 (70.78) 11,240 (59.01)
Others 13 (0.57) 153 (0.8)
Undisclosed 209 (9.17) 2162 (11.35)

Sex, n (%) <.001b

Male 1384 (60.73) 7739 (40.63)

Female 895 (39.27) 11,309 (59.37)
Comorbidities, n (%)

Congestive heart failure 341 (14.96) 1434 (7.53) <.001b

Hypertension 1267 (55.59) 6796 (35.68) <.001b

Diabetes mellitus 101 (4.43) 1018 (5.34) .07
Vascular disease 251 (11.01) 1582 (8.31) <.001b

CHA2DS2-VAScc score, mean (SD) 2.12 (1.55) 1.61 (1.35) <.001b
aMeasured on the date of the index note.
bStatistically significant at α=.05.
cCHA2DS2-VASc: congestive heart failure, hypertension, age ≥75 years, diabetes, stroke, vascular disease, age 65-74 years, sex category.

Patients who received an AF prediagnosis from a weara-
ble tended to be older, with more comorbidities except for
diabetes mellitus. White and male individuals constituted
a larger portion of patients with a prediagnosis, who also
exhibited higher CHA2DS2-VASc scores.

Cohort Study: Patients Without a Prior
AF Diagnosis
Table 4 then compares the characteristics of patients who
had no AF diagnosis prior to the index note, highlighting the
efficacy of wearables on the undiagnosed population.

Table 4. Characteristics of patients without a prior atrial fibrillation diagnosisa.
Characteristics With a prediagnosis (n=1037) Without a prediagnosis (n=16,560) P value
Demographics

Age (y), mean (SD) 60.16 (15.65) 51.54 (16.28) <.001b

Race and ethnicity, n (%) <.001b

Asian 127 (12.25) 2890 (17.45)
Black 28 (2.7) 553 (3.34)
Hispanic 55 (5.3) 1598 (9.65)
White 723 (69.72) 9414 (56.85)
Others 3 (0.29) 136 (0.82)
Undisclosed 101 (9.74) 1969 (11.89)

Sex, n (%) <.001b
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Characteristics With a prediagnosis (n=1037) Without a prediagnosis (n=16,560) P value
Male 595 (57.38) 6241 (37.69)
Female 442 (42.62) 10,319 (62.31)

Comorbidities, n (%)
Congestive heart failure 85 (8.2) 696 (4.2) <.001b

Hypertension 461 (44.46) 5082 (30.69) <.001b

Diabetes mellitus 42 (4.05) 805 (4.86) .27
Vascular disease 95 (9.16) 1090 (6.58) .002b

CHA2DS2-VAScc score, mean (SD) 1.78 (1.44) 1.46 (1.23) <.001b
aMeasured on the date of the index note.
bStatistically significant at α=.05.
cCHA2DS2-VASc: congestive heart failure, hypertension, age ≥75 years, diabetes, stroke, vascular disease, age 65-74 years, sex category.

These patients exhibited similar characteristics to the overall
cohort, where those who received an AF prediagnosis tended
to be older, White, and male, with more comorbidities except
for diabetes mellitus. In particular, 50.63% (525/1037) of the
patients who received a prediagnosis had CHA2DS2-VASc
scores of 2 or higher, warranting anticoagulation therapy [22].
In contrast, among the patients without a prediagnosis, only
35.85% (5936/16,560) had CHA2DS2-VASc scores of 2 or
higher.
Cohort Study: Patients With a Clinician-
Assigned AF Diagnosis
Among those patients who did not have a prior AF diagnosis,
29.41% (305/1037) of the patients with a wearable-assigned
prediagnosis received a clinician-assigned AF diagnosis

within 60 days from the index prediagnosis. The average
duration from prediagnosis to diagnosis was 4.74 days. In
contrast, only 1.58% (262/16,560) of those patients without a
prediagnosis received a clinician-assigned AF diagnosis.

Table 5 compares the clinical characteristics of those
patients who received an AF diagnosis, based on whether
they had received a wearable-assigned prediagnosis prior to
the diagnosis.

None of the patient characteristics reported in Table 5
differed significantly between those with an AF prediagno-
sis and those without (all P>.05). However, anticoagulant
prescriptions differed based on AF prediagnoses, where more
patients with a prediagnosis were prescribed apixaban and
rivaroxaban.

Table 5. Characteristics of patients with a clinician-assigned atrial fibrillation diagnosisa.

Characteristics
With a prediagnosis
(n=305)

Without a prediagnosis
(n=262) P value

Demographics
Age (y), mean (SD) 64.45 (14.16) 63.65 (14.29) .75
Race and ethnicity, n (%) .21

Asian 35 (11.48) 27 (10.31)
Black 6 (1.97) 11 (4.20)
Hispanic 10 (3.28) 15 (5.73)
White 218 (71.48) 175 (66.79)
Others 1 (0.33) 5 (1.91)
Undisclosed 35 (11.48) 29 (11.07)

Sex, n (%) .86

Male 193 (63.28) 163 (62.21)

Female 112 (36.72) 99 (37.79)
Comorbidities, n (%)

Congestive heart failure 14 (4.59) 21 (8.02) .13
Hypertension 111 (36.39) 109 (41.6) .24
Diabetes mellitus 10 (3.28) 4 (1.53) .29
Vascular disease 24 (7.87) 30 (11.45) .19

CHA2DS2-VAScb score, mean (SD) 1.76 (1.49) 1.81 (1.39) .36
Diagnosis subtype, n (%) .40

Generic 230 (75.41) 213 (81.3)
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Chronic 2 (0.66) 1 (0.38)
Paroxysmal 68 (22.3) 45 (17.18)
Persistent 5 (1.64) 3 (1.15)

Anticoagulant, n (%)
Warfarin 1 (0.33) 3 (1.15) .51
Direct oral anticoagulants

Apixaban 76 (24.92) 39 (14.89) .004c

Rivaroxaban 29 (9.51) 10 (3.82) .01c

Rhythm management, n (%)
Class I antiarrhythmics

Propafenone 7 (2.3) 2 (0.76) .26
Flecainide 17 (5.57) 8 (3.05) .21

Class II antiarrhythmics
Metoprolol 50 (16.39) 45 (17.18) .89
Carvedilol 1 (0.33) 3 (1.15) .51
Labetalol 6 (1.97) 4 (1.53) .94
Atenolol 3 (0.98) 5 (1.91) .57

Class IV antiarrhythmics
Verapamil 3 (0.98) 2 (0.76) >.99
Diltiazem 15 (4.92) 9 (3.44) .51
Amlodipine 4 (1.31) 3 (1.15) >.99

Others
Digoxin 3 (0.98) 1 (0.38) .73

Procedures, n (%)
Cardioversion 30 (9.84) 14 (5.34) .07

aMeasured on the date of the index atrial fibrillation diagnosis. Medications that were not prescribed are omitted.
bCHA2DS2-VASc: congestive heart failure, hypertension, age ≥75 years, diabetes, stroke, vascular disease, age 65-74 years, sex category.
cStatistically significant at α=.05.

Discussion
Principal Findings
In this study, we applied a weak supervision–based approach
to demonstrate the feasibility and efficacy of an EHR-based
postmarket surveillance system for consumer wearables that
render AF prediagnoses.

We first derived a labeler model from labeling heuristics
expressed as labeling functions, which showed high accuracy
(0.92; F1-score=0.77) on the test set. We then fine-tuned a
classifier on labeler model output, to accurately identify AF
prediagnoses (0.95; F1-score=0.83).

Further, using the classifier output, we identified patients
who received an AF prediagnosis from a wearable and
conducted a retrospective analysis to compare the baseline
characteristics and subsequent clinical treatment of these
patients against those who did not receive a prediagnosis.

Across the entire cohort, patients with a prediagnosis were
older with more comorbidities. The race and sex composition
of these patients also differed from those who did not receive
a prediagnosis (P<.001).

Focusing on the subgroup of patients without a prior
AF diagnosis (Table 4), we observed that a higher percent-
age of patients (525/1037, 50.63% vs 5936/16,560, 35.85%)
who received a wearable-assigned prediagnosis exhibited
CHA2DS2-VASc scores that warranted a recommendation
for anticoagulation therapy [22]. This increased likelihood
for anticoagulation therapy could be attributed to an early
prediagnosis from the wearable.

In the same subgroup, patients who received a prediag-
nosis were 18.61 times more likely to receive a clinician-
assigned AF diagnosis than those who did not. The existence
of a prediagnosis was not correlated with patient demograph-
ics, comorbidities, or AF subtype at the index diagnosis
(Table 5) but did correlate with anticoagulant prescription,
where patients with an AF prediagnosis were more frequently
prescribed apixaban (P=.004) and rivaroxaban (P=.01).
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Comparison With Prior Work
Given that more consumer wearables will be introduced
with increasing prediagnostic capabilities, a surveillance
framework for wearable devices is urgently needed to
properly assess their impact on downstream health care
[3,4]. However, publications sponsored by wearable vendors
focused mostly on ascertaining the accuracy of the prediag-
nostic algorithm itself [1,2].

On the other hand, publications that sought to conduct
postmarket surveillance relied solely on manual chart review
[3,4], which is hard to scale. In a prior study on wearable
notifications, clinician review of 534 clinical notes yielded
only 41 patients with an AF prediagnosis [3]. With a weakly
supervised approach, our clinician review of 600 notes (ie, the
test set) allowed the subsequent identification of 2279 patients
with a prediagnosis.

Such an improvement in recall enhanced the statistical
power of our analysis. First, our cohort study findings that
showed patients with an AF prediagnosis tended to be
older, male, and White with higher CHA2DS2-VASc scores
matches the key findings of the Apple Heart Study [1], which
enrolled a much larger number of participants (n=419,297).
Second, we were able to make a novel discovery in that
a wearable-assigned prediagnosis increases the likelihood
of patients receiving anticoagulation therapy and an even-
tual AF diagnosis, and we identified statistically meaningful
anticoagulant prescription differences.

Prior work has applied various methods of weakly
supervised learning to some form of medical surveillance
[16,17,23-25]. Most relevantly, Callahan et al [23] implemen-
ted a surveillance framework for hip implants, and Sanyal et
al [25] implemented one for insulin pumps. To the best of our
knowledge, however, our work is the first to apply a weakly
supervised approach to consumer wearable surveillance.
Without prescription records, consumer wearable surveillance
can be challenging to scale.
Limitations
We acknowledge that the STARR data set is confined to a
small health care system in a single geographic region, which

is known [13] to serve populations with higher percentages
of male, White, and older individuals. We recommend other
institutions to monitor their patient population by developing
their own surveillance framework using our weakly super-
vised methodology. In fact, work is already underway to
adapt this approach for use at Palo Alto Veterans Affairs.

We could not establish causality between prediagnoses
and patient characteristics. The fact that patients who are
older, with more comorbidities; White; and male had a higher
likelihood of receiving an AF prediagnosis may very well
reflect that they are health conscious and use wearables more
frequently.
Conclusions
By providing prediagnoses, consumer wearables have the
potential to affect subsequent diagnoses and downstream
health care. Postmarket surveillance of wearables is neces-
sary to understand the impact but is hindered by the lack of
codified terms in EHRs to capture wearable use. By apply-
ing a weakly supervised methodology to efficiently identify
wearable-assigned AF prediagnoses from clinical notes, we
demonstrate that such a surveillance system could be built.

The cohort study conducted using the constructed system
carried enough statistical power to verify the key findings
of the Apple Heart Study, which enrolled a much larger
number of patients, where patients who received a prediag-
nosis tended to be older, male, and White with higher
CHA2DS2-VASc scores. We also made a novel discovery in
that a prediagnosis from a wearable increases the likelihood
for anticoagulant prescription and an eventual AF diagnosis.
At the index diagnosis, the existence of a prediagnosis from
a wearable did not distinguish patients based on clinical
characteristics but did correlate with anticoagulant prescrip-
tion.

Our work establishes the feasibility and efficacy of
an EHR-based surveillance system for consumer wearable
devices. Further work is necessary to generalize these
findings for patient populations at other sites.
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