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Abstract

Integrating machine learning (ML) models into clinical practice presents a challenge of maintaining their efficacy over time.
While existing literature offers valuable strategies for detecting declining model performance, there is a need to document the
broader challenges and solutions associated with the real-world development and integration of model monitoring solutions. This
work details the development and use of a platform for monitoring the performance of a production-level ML model operating
in Mayo Clinic. In this paper, we aimed to provide a series of considerations and guidelines necessary for integrating such a
platform into a team’s technical infrastructure and workflow. We have documented our experiences with this integration process,
discussed the broader challenges encountered with real-world implementation and maintenance, and included the source code
for the platform. Our monitoring platform was built as an R shiny application, developed and implemented over the course of 6
months. The platform has been used and maintained for 2 years and is still in use as of July 2023. The considerations necessary
for the implementation of the monitoring platform center around 4 pillars: feasibility (what resources can be used for platform
development?); design (through what statistics or models will the model be monitored, and how will these results be efficiently
displayed to the end user?); implementation (how will this platform be built, and where will it exist within the IT ecosystem?);
and policy (based on monitoring feedback, when and what actions will be taken to fix problems, and how will these problems be
translated to clinical staff?). While much of the literature surrounding ML performance monitoring emphasizes methodological
approaches for capturing changes in performance, there remains a battery of other challenges and considerations that must be
addressed for successful real-world implementation.
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Introduction

As machine learning (ML) models integrate into clinical
practice, ensuring their continued efficacy becomes a critical
task. A pervasive limitation in ML is the inability of most
models to adapt to changes in their environment over time. As
a result, a model that may have performed exceptionally in its
development environment can become gradually or immediately
less accurate while in production [1,2]. This problem has been
well studied by the ML community, with current literature

offering invaluable methodological strategies for the detection
of declining model performance and the ethical implications of
such declines [3-7]. However, the proper choice of monitoring
algorithm is only one step in the larger series of problems and
considerations surrounding the sustained maintenance of these
models in a real-world scenario. While some authors address
the wider set of problems encountered in the long-term
maintenance strategy of a deployed model, it is typically only
an acknowledgment of these problems, rather than the personal
experiences and solutions developed to solve them [8,9]. As
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such, we aimed to supplement current literature with an
alternative approach in which we provided an in-depth review
of the experiences and challenges encountered when integrating
our ML monitoring solution into clinical practice.

This paper focuses on an ML model implemented into Mayo
Clinic’s practice in 2018. The model, known as “Control
Tower,” is a fully integrated health care delivery model that
predicts the need for inpatient palliative care through modeling
palliative care consultation. The model runs automatically on
all inpatients at Mayo Clinic’s St Marys and Methodist Hospitals
in Rochester, Minnesota, with patient scores monitored by the
palliative care practice [10]. The approach was to treat the
palliative care consult as a time-to-event outcome. Some of the
features used are static (patient demographics and prior history),
while others are time varying or dynamic (such as laboratory
values, vitals, and in-hospital events). To capture the
time-varying nature of these covariates, we used a heterogeneous
Poisson process. Furthermore, it was crucial to account for
nonlinearity and interactions; as a result, we used a gradient
boosting machine. The model was validated through a clinical
trial conducted from 2019 to 2022 to assess real-world
effectiveness and is still in use by the palliative care practice as
of July 2023 [11,12]. The study by Murphree et al [10] provides
a complete methodological overview of the ML model and
validation procedure. The Control Tower monitoring platform
was developed and implemented over the course of 6 months.
The platform has been used and maintained for 2 years and is
still in use as of July 2023.

This paper provides a series of guidelines for developing and
integrating ML performance monitoring into a team’s workflow.
Guidelines were developed from real-world experiences and
challenges encountered throughout this process by a data science
team at Mayo Clinic. In addition, a comprehensive overview
of the developed monitoring platform is provided, as well as
the accompanying source code for demonstration purposes
(Multimedia Appendix 1). Overall, this paper serves as a primer
for considerations that must be made when implementing and
maintaining a model-monitoring system in a clinical setting,
coupled with the corresponding solutions that our team had
used.

Development of the Model Monitoring
Platform

Overview
Traditionally, guidelines are developed through expert-driven
processes, such as the Delphi method that seeks to provide
standards through initial conceptions followed by several rounds
of revisions until ultimately converging to an agreed-upon set
[13]. However, in emerging areas where expertise is sparse,
expert-driven approaches are often costly when seeking
consensus of multiple experts through multiple rounds of
responses [14]. An alternative to the expert-driven approach is
experience-driven methodologies, which emphasize the personal
experiences and observations of individuals who have directly
encountered the phenomena. Normally these methodologies
focus on practical knowledge through the explication of the

“real world.” Our team opted to derive a set of guidelines based
on our specific real-world experiences and the challenges faced
when designing, implementing, and integrating the Control
Tower monitoring platform. Our specific methodologies used
throughout this process are documented here and later
generalized into a series of guidelines in the Design
Considerations section.

Establishing the Team and Responsibilities
When planning the phases of Control Tower, it was decided
that the role of monitoring the model would remain with the
model development team. The task of monitoring was divided
among 4 team members, rotating the responsibility of
monitoring, monthly. This approach ensured monitoring would
not significantly inhibit the bandwidth of any 1 team member.
Monitoring responsibilities did not fall to the team member who
developed the model, as their primary task in monitoring would
be to retrain the model when necessary. The monitoring platform
was checked biweekly, Mondays and Thursdays, to balance
coverage and analyst time. The Monday check ensured
immediate response to any issues that may have occurred during
the previous weekend, and the Thursday check provided enough
time before the upcoming weekend to identify and resolve any
errors that may have occurred during the week. Typically, a
single-model monitoring session would take approximately 5
to 10 minutes, assuming no problems were encountered.

Platform Development

Overview
Performance monitoring of Control Tower was accomplished
through the development of an R Shiny web application that
comprised data visualizations and interactive tables. The goal
was to create a centralized, user-friendly platform for all team
members to check model performance. The platform consisted
of 5 different tabs addressing different types of data shift,
providing multiple degrees of granularity depending on the
depth of investigation required. The model used a set of 126
features, measured daily, and was called an average of 80,000
times per day. Daily metrics collected for performance
monitoring included mean and scale covariate shifts per feature,
predicted probabilities, and the number of daily predictions
made by the model. The resulting data size of these collected
performance monitoring metrics was trivial; however, capturing
patient-generated data resulted in data creation on the order of
GB per day, requiring a dedicated storage space.

Figure 1 provides an overview of the system architecture for
the Control Tower model and monitoring platform. The figure
details the offline data pipeline used for the initial training of
the Control Tower model; the components of the broader
production environment and pipelines necessary for the
predictive model and clinical graphical user interface (GUI)
app; and finally, the components necessary for monitoring the
performance of the Control Tower model. A more detailed
visualization and comprehensive description of the system
architecture is provided by Murphree et al [10]. Briefly, they
outlined our deployment strategy which integrates a
Representational State Transfer application programming
interface within a Docker container, enabling the integration of
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predictive models into the Control Tower GUI. The data
ingestion and preprocessing pipeline, integrated with IBM
Streams and Operational Decision Manager, facilitates real-time
prediction processing triggered by updates to institutional health

records (Health Level Seven messages by our electronic health
record). The Control Tower GUI application is built with
Angular (Google LLC).

Figure 1. System architecture for Control Tower. For the Control Tower monitoring platform, we have 3 parent processes (training, production, and
monitoring) that constitute our deployment. Child processes include the orchestration of the streams, events, and the prediction pipeline, which sends
scores to the graphical user interface (GUI). EHR: electronic health record; REST API: Representational State Transfer application programming
interface.

Monitoring Model Probabilities
In the absence of ground truth labels, predicted probabilities
from the model were monitored as an alternative to evaluating
model performance. The platform visualizes these predicted
probabilities as distributions of daily risk scores (Figure 2).
Distributions are plotted on probability and logarithmic scales,
allowing for easier detection of shifts when most predicted
probabilities are low, considering that most patients will not be
“high risk.” Historical daily distributions extend back 2 weeks,
which is considered an optimal amount of time to notice shifts
without overwhelming the user with data. Alongside these

visualizations, several statistics are presented for comparing the
prior 2 weeks data against the original training data. Means and
SDs for the incoming and training distributions, the standard
difference, and a P value for the Kolmogorov-Smirnov test of
differences between the 2 distributions are provided. These
statistics allow the user to detect gradual, more long-term
changes that may go unnoticed when surveying 2 weeks of
historic data. Overall, the tab shown in Figure 2 provides an
overview of model predictions, allowing the user to quickly
gauge whether a sudden or gradual probability shift has
occurred.
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Figure 2. The startup screen of the Control Tower performance monitoring platform. This screen provides the user a quick overview of the model’s
predicted probabilities over the past 2 weeks. The table near the top provides several statistics comparing the distribution of predicted probabilities over
the last 2 weeks with the predicted probabilities on the training data. The 2 graphs contain a series of violin plots featuring the daily distribution of
predicted probabilities. Given that the predicted probabilities cluster near 0, the distributions are also displayed on the log scale for easier visual inspection.

Monitoring Covariate Shift
Covariate shift was addressed in Control Tower by creating an
interactive table containing all features included in the model
(Figure 3) [4]. The table lists feature names and type, that is,
continuous or discrete, and displays different statistical tests
and plots, dependent on the feature type. To assess the impact
of a feature with drift, the team included global feature
importance scores from the originally trained model, in this
case, the gradient boosting machine’s relative influence rank
statistic. Providing a ranking of features based on the extent of
error reduction in the model enables the user to triage different
drifts. All other things being equal, a drifting feature with higher
importance to the model than another feature would indicate a
higher priority need of a fix. Similar to the predicted probability
tab, the previous 2 weeks of incoming data are compared with
the training data, with standard differences, means, and SDs
provided. To accommodate for the discrete variables present,
the distributional Kolmogorov-Smirnov test is changed to the
chi-square test. The user can sort the table by column, allowing
them to quickly pinpoint features, for example, with high
standard difference. Clicking on a feature’s row in the table
generates 2 plots underneath the table: the first is a line graph
visualizing the daily standard differences, spanning back 2
weeks, and the second plot is dependent on the feature type.
For continuous variables, the plot compares the feature’s daily
distributions over the past 2 weeks with the distribution of the

training data, using box plots. For discrete variables, bar plots
are displayed in a similar fashion indicating the percentage of
patients where the discrete feature was present or “True.” In
tandem with the interactive table, these plots provide an efficient
means of investigating a feature’s historic values at a glance.

When a deeper investigation into a feature is necessary, the
2-week “look-back” may be insufficient. Therefore, the platform
also keeps a log of the full historic feature trends, spanning back
to when the model was deployed (Figure 4). Feature plots are
sorted by the model’s global feature importance and color-coded
“green” or “red” to indicate whether the feature significantly
drifted from the initial training distribution. Significance was
determined via a nonparametric test developed by Capizzi and
Masarotto [15], using a P value of .05. A nonparametric model
was used because a moderate number of features were highly
skewed, making traditional methods that assume normal
distributions unworkable. Each feature contains plots for the
location (level) and dispersion (scale) of the distribution.
Overall, this tab, in addition to serving as a historical reference,
provides a simple way to spot check for gradual shifts. Finally,
an additional tab (Figure 5) is provided to assess the proportion
of missing values over time, using the same visualizations and
tests.

The final tab of the platform provides a simple line graph
displaying the number of daily calls made to the model within
the previous 2 weeks (Figure 6). Monitoring the number of daily
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calls can provide quick insight into whether the model is
performing appropriately. For example, an abnormal number

of model calls in a day, such as 0, may indicate an error in the
data pipeline or model environment.

Figure 3. The “Features” screen of the platform details the distributions of all features used by the model. The distribution of each feature based on
the last 2 weeks of data is compared with the feature’s distribution from the training data. These comparisons are provided via statistics in the table near
the top, which can be sorted by each statistic to quickly find features with potential drift. Clicking on a feature populates 2 graphs, which are displayed
below the table. The first graph displays the standardized difference between the feature’s distribution for that day against the distribution from the
training data. Below this graph, one of the 2 graphs will be displayed depending on whether the selected feature was binary or continuous. These graphs
display the daily distributions of the feature, using bar graphs for binary features (red outline) or box plots for continuous features (yellow outline).
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Figure 4. The “Historical Covariates” screen of the platform visualizes each feature’s daily distribution, beginning with the training data and then
spanning from the day the model was deployed and onward. Each feature contains plots for the location (level) and dispersion (scale) of the nonparametric
distribution. Each feature’s graph is color-coded “green” or “red” to indicate whether the feature’s distribution has significantly drifted from the initial
training distribution, with red indicating significant drift.

Figure 5. The “Historical NA’s” screen of the platform visualizes each feature’s historical missingness, beginning with the training data and then
spanning from the day the model was deployed and onward. Each feature contains plots for the location (level) and dispersion (scale) of the nonparametric
distribution. Each feature’s graph is color-coded “green” or “red” to indicate whether the feature’s missingness has significantly drifted from the initial
training distribution, with red indicating significant drift. NA: not available.
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Figure 6. The “Number of Daily Observations” screen visualizes the number of model calls or predictions made each day over the past 2 weeks.

Error Classification
Any production-level model is susceptible to various errors,
and Control Tower was no exception. Most errors primarily
revolved around technical infrastructure, particularly issues with
databases being inaccessible due to nightly processing or a high
influx of requests. In Textbox 1, a sample of encountered errors
while monitoring Control Tower is presented. Although some
errors were seemingly random occurrences, such as server
reboots or expired certificates, others were more frequent and
persistent. For instance, every night at specific hours, the
database that supplies data to Control Tower, called Clarity,
became unresponsive due to data updates. On January 5, 2022,
this process was delayed and caused errors in the morning
scores. In addition, updates to our electronic health record (Epic,

Epic Systems Corporation), often resulted in Clarity being
temporarily unavailable. In such cases, most issues were
resolved on the same day, requiring no further action besides
acknowledging the possibility of outdated or missing scores.
However, a few errors necessitated intervention. On November
7, 2022, a data mart containing diagnosis codes underwent
structural changes, breaking a Control Tower query.
Furthermore, the team identified a covariate shift where they
observed a gradual decrease in troponin blood tests. This error
was traced back to a change in laboratory codes used for
troponin; the clinical practice had adopted a new laboratory
code that was not present in the training data. To address this,
the error was rectified by associating the new codes with the
“Troponin” feature on the platform’s back end.
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Textbox 1. Error logging: A convenience sample of encountered errors while monitoring Control Tower is presented. This was constructed through
email chains of discussions between IT personnel who oversaw the Control Tower system and the data scientists who oversaw model delivery.

Date and error

• August 26, 2019

• Multiple errors in logs. It looks like calls were during 1:45 AM to 6:00 AM. During the period 1:45 AM to 6:00 AM, all messages are failing
due to Clarity Refresh.

• November 27, 2019

• Server reboot schedule, Control Tower team was not notified of schedule leading to unexpected downtime.

• July 24, 2020

• Increase in FHIR (Fast Healthcare Interoperability Resources) API (application programming interface) for real-time observation calls
leading to timeouts of model predictions.

• February 15, 2021

• Generic FHIR API error call: “HTTP error code: 500.”

• April 8, 2021

• Model errors after Epic upgrade.

• July 30, 2021

• Troponin issues fixed causing covariate drift in model scores.

• September 15, 2021

• Production system competed for resources requiring scale back of Control Tower scores updates. Errors created and schedule has now been
updated for processing.

• January 5, 2022

• Nightly Clarity Database delay causing morning score errors.

• May 16, 2022

• IBM queue server certificate update causing server errors.

• November 7, 2022

• Data mart for diagnoses codes update causing pipeline to break down.

• November 8, 2022

• Issues with Clarity Database slowing down Control Tower queues.

• March 21, 2023

• Control Tower FHIR API for real-time unit changes failing for a single request, causing payload slowdown.

• April 5, 2023

• JSON structure changing causing model error (unintended repo change).

• May 1, 2023

• An unplanned issue impacting Enterprise API Services, who manages real-time data feeds, resulting in internal server error.

Monitoring Protocol
Actions prompted by model monitoring feedback were
synthesized into a protocol to communicate model failures and
downtimes with clinical staff. The Control Tower protocol used
a triage system, consisting of 4 stages in which each stage
prompts a message to the clinical team, as outlined in Figure 7.

The first stage (blue) was reserved for when everything was
operating as expected. Stage 2 (green) indicated a minor change
in the layout of the tool, such as a user interface change. These
first 2 stages delivered informational prompts to the user,
notifying them of the tool’s status and requiring no action from
the user. The third stage (yellow) indicated possible performance
degradation, such as when patient scores from the model were
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not up-to-date, that is, a day old. The day-old scores can still
provide evidence for action, but the clinical team may need to
be cautious, as updated scores can change the patient’s risk. As
such, users were notified of these issues and asked to use the

tool at their discretion. The last stage (red) indicated a significant
error within the tool, such as a covariate completely missing
from the model’s input. This stage would notify staff not to use
the tool until a fix was implemented.

Figure 7. Communication triage protocol for Control Tower. The protocol’s stages are color-coded to signify different statuses and recommendations:
blue for normal operation, green for minor layout changes, yellow for potential performance issues, and red for significant errors.

Design Considerations

Overview
From our experience of developing and implementing the
Control Tower monitoring platform, we have derived a series
of broader considerations necessary for model monitoring to
serve as generalized guidelines for future implementations.
Central to these guidelines arose themes of feasibility, design,
implementation, and policy. While existing frameworks have
proven successful in managing long-term IT infrastructure
projects in health care, ML models are experimental and
inherently open systems, entailing costly development and
maintenance. As such, they demand additional considerations
due to their reliance not solely on technical data but also on
statistical and clinical assessments to identify errors.
Consequently, there is no unequivocal, predetermined signal
that can be provided to an IT group lacking clinical or data
science expertise to detect these errors. Identifying them often
necessitates the accumulation of statistical data over time. While
readily available and accessible data may be used to identify
some errors, others may require weeks or months of new data
collection to draw inferences. Furthermore, in traditional
software operations, refinements can be implemented more
quickly. Responding to user feedback can often be met with
bug fixes or minor feature requests. However, implementing

refinements to an ML model often requires a longer development
cycle, as many changes will require a complete retraining of
the model or the acquisition of novel data. Such complications
in model maintenance underscore the need for input from
multiple teams, alongside established structures and policies,
to ensure effective orchestration of model maintenance.

Feasibility: Are the Resources to Facilitate Productive
Monitoring Available?
Successful real-world implementation of models must consider
the present and future bandwidth limitations of a team. In an
ideal scenario, a team would be provided ongoing dedicated
time or personnel to ensure the upkeep of deployed models.
However, this is not always feasible, and the responsibility of
maintenance competes with a team’s constant stream of new
projects and tasks. As such, it is important to first determine
how long-term monitoring of a model (or eventually, models)
will be integrated into the team’s workflow. For example, who
will check in on the model and with what frequency? If and
when the model requires retraining, who will perform the
retraining, and how will they be guaranteed the flexibility to
shift from their current projects to accomplish this?

In addition to personnel, computational resources must also be
considered for long-term monitoring. Regarding storage
requirements, the amount of data produced from monitoring
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depends on a variety of factors, including the model’s feature
set, the frequency of calls made to the model, and the number
of feature and performance metrics that will be tracked. For
example, a model that delivers constant, real-time feedback in
a critical care setting may, in turn, require constant monitoring
to ensure performance does not suddenly degrade, resulting in
performance metrics and feature distribution logs needing to
be generated continuously.

When assessing the feasibility of long-term monitoring, an
attractive option to consider is automated monitoring:
developing models that detect whether a significant change has
occurred in a deployed model’s predictions or its incoming data.
While our team chose a “hands-on” approach, others have found
success in implementing an additional model for performance
monitoring to notify the team of data shifts and, in some cases,
automatically retrain the original model [16]. Ultimately, the
decision to use an automated monitoring model comes down
to the type of model deployed, the bandwidth of the team, and
the reliability of the data to support automatically retraining the
deployed model. In any case, even an automated monitoring
model will still require some human monitoring as well. Our
team is currently working on an automated monitoring system
for this purpose.

Design: Deciding What and How to Monitor?

Overview
The design of an investigative platform to facilitate model
monitoring may range from dynamic and interactive interfaces
to static reports, the choice of which is dependent on feasibility
factors and nuances of the particular scenario, but design should
ultimately enable rapid and comprehensive assessment.
Furthermore, there are standard functionalities each platform
should feature to appropriately assess long-term model
performance.

Deployed models encounter performance declines through
distributional and relational shifts in the underlying data [17].
These shifts are the crux of why postdeployment monitoring is
necessary, and no model is immune to them, regardless of how
well it performed in its testing environment [18]. This
impediment has received a wealth of attention from the ML
community and has been synthesized into 3 types of distinct
shifts.

Prior Probability Shift
The distribution of the target variable Y changes between the
training data and incoming data, but not P (X|Y) [19]. This can
occur when the prevalence of a disease changes over time in
the target population; however, the underlying factors that cause
the disease remain constant, for example, a spike in influenza
rates during the influenza season. Prior probability shift is
assessed by monitoring the distribution of the target variable
over time, measuring for any sudden or gradual changes.

Covariate Shift
Distributions of input data diverge between training data and
new incoming data [4]. Such shifts may occur in the clinical
setting, for example, when diagnostic screenings are updated.
This procedural change may decrease the specific laboratory

values, which are heavily relied upon by the model. Conversely,
diagnostic variables that were initially infrequent may become
more prevalent over time. This can result in situations where
the model, which had limited instances of these variables during
training, struggles to fully capture, and therefore use, their
predictive signals.

Concept Drift
The relationship between the incoming input data and target
variable changes over time, drifting from the original
relationship captured in the training data [20]. The COVID-19
pandemic provided a real-world example of concept drift, as
hospital census models were affected by admissions that
drastically moved toward higher-risk patients due to increases
in complications from the COVID-19 disease and decreases in
hospital use among people with a milder spectrum of illness
[21].

Usability
A successful UI will take into consideration the professional
backgrounds of those using the platform. However, when the
responsibilities of monitoring are handed to a different group,
the new group’s level of familiarity with the model should guide
the design. For example, guidelines for what is acceptable
variance should be established and implemented. One method
for accomplishing this may be through using control charts,
allowing the modeling team to prespecify a simple and visual
approximation of how much drift is tolerable before action must
be taken [22].

Implementation: How Will the Platform Be Built and
Sustained?
When implementing a monitoring platform, it is necessary to
consider how the back end of the platform will process and store
the necessary data elements. The efficiency of this task is critical
and must accommodate the model’s scale and responsiveness.
Data can amass quickly as large feature sets are monitored, and
the model may be called frequently to predict on many patients
throughout the day. Furthermore, the back end must be capable
of efficiently parsing, formatting, and, if necessary, compressing
the data into clean data sets for the platform to analyze and
visualize. For Control Tower, many of these data storage
requirements were already in place for capturing and storing
the necessary patient elements. This will likely be the case for
many clinical scenarios, as patient data must be securely and
efficiently housed. Instead, implementation efforts are more apt
to center around ensuring these data elements are efficiently
piped to the monitoring platform.

Using a web application for model monitoring provides a
dynamic interface, allowing any user with log-in permissions
to view the real-time status of the model and the surrounding
data. This investigation mechanism can eliminate potential
confusion, which may arise from a routine generation and
sharing of static technical reports, such as accidentally
referencing outdated documents. When selecting a programming
language to build the app, preference should be given to those
languages that facilitate efficient app development. For Control
Tower, R Shiny was used given the team’s previous experience
with the package and strong background in R. The R package
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provides a user-friendly environment for quickly creating,
testing, and publishing web applications. Similar web application
tools exist across multiple programming languages including
Python and Java, and as such, teams are likely to find a web
application package in a language they are familiar with.

When coding the app, modular coding practices should be
adopted to ensure flexibility and scalability. Such adoption
promotes versatility of the app to incorporate additional
statistical measures or visualizations and allows the app to be
easily translated for other monitoring use cases. Leveraging
modular coding practices at the onset of app development allows
for future additions, revisions, and ports to be made with
minimal effort. For Control Tower, modular coding practices
were primarily used to better facilitate development across
multiple team members. This practice allowed for functions to
be easily repurposed by other team members to avoid duplication
of work and to allow the app to be easily extended to other ML
models within Mayo Clinic.

The number of programming languages used in the data pipeline
plays a significant role in shaping the development process and
the overall efficiency of the monitoring. To facilitate this,
minimizing the number of programming languages used across
the various tasks can streamline development and maintenance
through ease of interpretability and integration. This can reduce
maintenance costs and overhead by reducing interoperability
concerns and decreasing the learning curve for new team
members. Minimizing these ongoing costs is a necessity when
considering the model will ideally be in production long term.
However, if the development team is proficient in multiple
languages, leveraging the strengths of each may have its
advantages, such as reducing bottlenecks in development or
data transfer, while increasing the flexibility of a system. In the
case of Control Tower, R (R Foundation for Statistical
Computing), Python (Python Software Foundation), and shell
scripts were used, favoring R for app development, Python for
data processing, and shell scripts for scheduling various model
and platform tasks.

In addition, upstream problems will inevitably manifest;
therefore, implementing a notification system for these errors
can proactively address disruptions, minimizing the downtime
of the pipeline. One method for accomplishing this is to
incorporate error logging and alerts into cron jobs, which can
immediately notify the team of any failures. Such notifications
are critical for model monitoring, as some errors may be
undetectable to the end user, resulting in the continued use of
inaccurate information. As such, it is vital for monitoring teams
to identify, communicate, and resolve errors as soon as possible.

Finally, integrating regular checking of the platform into the
team workflow allowed the team to not only stay abreast of
model performance but also maintain an intuitive sense of
potential broader complications surrounding the model. For
example, monitoring the probability distributions of the model
ultimately provided the team with a sense of whether further
investigations into the model would be necessary. However,
investigations into the distributions of the individual features
allowed for potential diagnoses as to why the model may begin
to degrade in performance, as well as alluded to data pipeline

errors that may be present. By maintaining a sense of these
wider issues, shifts in the outcome could be more easily
prevented and diagnosed

Policy: What Is the Response to Platform Feedback?

Overview
Once the monitoring platform is deployed and available, the
next stage of considerations surrounds how knowledge provided
by the platform will be used. A set of policies must be developed
to determine which actions will be taken based on monitoring
feedback, addressing such questions as “At what point is a data
shift significant enough to prompt retraining?” and “How will
errors be communicated with technical and clinical staff?”
Generally, such a policy should cover error designation and
response, when to retrain, and how to communicate failures. In
addition, a well-defined policy allows for the task of monitoring
to more easily be extended across various teams and roles.

Error Designation and Response
It is essential to establish and define a process that determines
when a specific degree of shift or drift in the model qualifies as
an error warranting a response. The question “How much drift
is necessary to take action?” represents one of the more
subjective aspects of model monitoring. In scenarios where
multiple team members are tasked with overseeing model
performance or possess limited familiarity with the model,
substantial interrater variability becomes a concern. For
example, one team member might observe a 5% shift in the
distribution of a feature and consider it inconsequential, while
another member might view it as a reason for immediate action.
To address this variability, the Control Tower team would send
email updates to other team members detailing any shifts that
were noticed; this would allow for a collective discussion on
whether to take action as well as allow for a convenient forum
to keep all team members updated on the model’s status.
Regardless of the criteria used to identify shifted covariates or
outcomes, team members must communicate and establish
agreement on the minimal drift threshold requiring action, while
ensuring that utmost priority is placed on maintaining optimal
model accuracy.

Even with consensus on the magnitude of a shift, several
contextual factors can influence the team’s risk tolerance toward
these shifts. Significant changes may occur without sustained
trends, indicating a regression to the mean. Alternatively, a
dramatic shift might happen for a variable with minimal
contribution to the risk score. While predefined cutoff points
could be considered to standardize investigations, these
benchmarks may still necessitate ongoing human review and
could vary for each feature, making it impractical to define for
every feature in large feature sets.

Even if an error is defined with a certain level of risk in mind,
there are considerations in the response to the error and the
amount of time one needs to allocate for remediation. A
deployed model is prone to errors from a variety of sources,
ranging from data shifts to IT scheme modifications. Given the
diversity of potential errors, an effective policy will include
guidelines for the categorization of errors along with the
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appropriate responses to each. The errors encountered with
Control Tower fell broadly into 4 categories.

1. Technical infrastructure: database issues, expiration of
certificates, and password updates often causing the pipeline
to fail

2. Explained shift: a significant data shift with an identified
root cause

3. Unexplained shift: a significant data shift with an
unidentified root cause

4. Performance loss: a decrease in the model’s performance
metrics, which may manifest with or without data shift

Categorizing errors for appropriate response is crucial, as it
establishes a standardized knowledge base for reporting,
ultimately enhancing the efficiency of troubleshooting.
Categorization often leads to the discovery of similar strategies
for mitigating similar error types. For instance, errors related
to database refreshing or password expiration typically do not
require immediate intervention, while performance losses in
accuracy or calibration often necessitate retraining of the model.
Appropriate categorization also offers the advantage of reducing
risk tolerance while enhancing response efficiency. Having
encountered an error previously increases the likelihood of
streamlining investigations, enabling the examination of
lower-risk shifts or drifts.

When ongoing outcomes data are available, performance loss
can be detected by looking for significant shifts across a variety
of classification performance metrics including area under the
receiver operating characteristic, area under the precision-recall
curve, calibration, subgroup differences, and so on. When such
data are absent, as in the case of Control Tower, performance
loss can only be inferred by looking for significant shifts in the
distribution of predicted probabilities of the model. To
supplement assessing predicted probabilities, potential
performance loss may also be identified by looking for
significant shifts in the features of the model. While significant
shifts may occur in these features without significant shifts in
the model’s output, drifts in feature distributions can signal
other potential problems necessary to address. While
performance loss may be resolved or mitigated through upstream
pipeline errors, some instances may require the model to be
retrained.

Model Retraining
The circumstances for when to retrain a model will vary across
teams and platforms, often dependent on the cost of retraining.
As such, it is necessary for a platform policy to clearly state
when, and when not, to retrain. For example, many errors will
not require model retraining such as simple pipeline errors or
data shifts due to changes in medical coding, requiring only a
small update to the pipeline. Therefore, it is important to first
identify and fix any upstream errors before considering
retraining. There are even instances of significant shifts that do
not warrant retraining. For example, one could have several
shifted covariates in the model with trivial importance scores,
effectively having no impact on predictive performance. From
the perspective of model importance, one may bin covariates
that have little impact and essentially treat them as nuisance
variables.

Assuming no upstream errors are present, a model should always
be retrained when significant and sustained performance loss
is encountered. Defining significant and sustained will be
specific to each scenario, depending on the algorithm and health
care delivery model. However, it is incumbent upon the team
to define an appropriate window for performance to vary, with
a lower limit triggering retraining.

It is important to note that retraining does not have to be used
sparingly, assuming the bandwidth is available. When feasible,
it may be good practice to routinely retrain the model with the
expectation that updated data are more current with clinical
practice. Such versioning of the model would allow for new
features, incremental improvements, and technical debt
management. For Control Tower, versioning allowed us to spot
potential bugs or fixes and investigate new features.

Communicating With Clinical Staff
The clinical team using the model’s outputs must be consistently
informed about the model’s status due to its significance to their
workflow and overall trust in the model. The model’s standard
operating procedure outlines how the clinical team should use
the model and details communication protocols between IT,
data science, and the clinical users. Protocols should consist of
dedicated contacts for various issues and plans for how to
operate during model performance shifts and downtime.

Discussion

Principal Findings
As ML models require consistent monitoring to ensure sustained
accuracy, a series of decisions must be made for how best to
integrate model monitoring into a team’s workflow. Problems,
considerations, and solutions that arise from this process can
vary greatly depending on the setting, nature of the model, and
available bandwidth, both from the technical team and their
computational resources. While prior work has established the
importance of monitoring and corresponding statistical solutions,
this paper provides specific considerations and solutions derived
from the real-world implementation and day-to-day use [23,24].
Throughout the integration of Control Tower, our team found
that these considerations centered around 4 phases that serve
as a road map when planning a long-term modeling strategy:
feasibility, design, implementation, and policy.

Experiences
Development and implementation of the platform faced several
obstacles, which we attribute to the inherent realities of
integrating real-world applications. First, the team was unable
to complete the platform by the time the associated clinical trial
for the Control Tower model began recruitment. This required
the team to omit crucial features from the platform, such as
monitoring for concept drift. Monitoring concept drift required
collecting ground truth outcomes, that is, whether patients
actually received palliative care. Collecting these patient
outcomes required building a separate data pipeline, which was
the team’s original intent, but as the team took on additional
tasks, the pipeline was passed over in favor of monitoring
predicted probabilities. While omitted from Control Tower in
scenarios where outcomes data are tracked, we direct the readers
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to literature providing a more comprehensive understanding of
concept drift [25-27].

The original intention for Control Tower was to have the model
run any time a patient’s laboratory values were updated,
ensuring that the patient’s risk scores were always reflective of
current data. While the model was originally deployed using
this dynamic system, it, unfortunately, proved too taxing for
the IT infrastructure in which it was hosted. To alleviate this
problem, the model and platform were switched to running on
a batch schedule, updating patient risk scores and the monitoring
platform every 4 hours. While this delivery schedule proved
more manageable, model calls made between these 4-hour
updates ran the risk of using outdated patient data, potentially
impacting performance. Given that the workload imposed by
the original schedule was infeasible, this was considered a fair
compromise. Finally, the implementation of the platform
occurred during the COVID-19 pandemic, which affected
staffing and resulted in IT furloughs. Unfortunately, this meant
that technical infrastructure problems, which could typically be
fixed by IT on the same day, instead, took up to 1 week to fix,
resulting in prolonged downtime for the model.

Despite these challenges, there were several positive experiences
to highlight. First, a significant amount of collaboration occurred
within the data science team in order to have the monitoring
platform in a usable state by the time of the model’s clinical
trial. This required analysts to tend to a variety of tasks, often
on a moment’s notice. Following deployment, there was also
sufficient bandwidth from the team members to continue
monitoring the platform as they took on additional projects.
Second, IT furloughs as a result of the pandemic were resolved
within 6 months, allowing routine technical infrastructure issues
to once again be resolved on the day of occurrence, resulting
in less model downtime. Finally, the model’s predicted
probabilities remained, for the most part, consistent, making
for a stable tool throughout the documented 2 years of use.
Using a simple linear regression model, we examined the
relationship between daily predicted probabilities (dependent
variable) and time since deployment (independent variable),
observing a slope of 0.005 at a P value of <.001, suggesting a
statistically significant, but functionally small trend, with the
mean probability increasing .005% each day.

Limitations
Despite a thorough detailing of our experiences, it is important
to note that this paper covers only a single implementation.
While we have recounted the challenges and considerations
necessary for Control Tower, this is not an exhaustive list, and
other teams and platforms may encounter challenges foreign to
ours.

Future Considerations
The Control Tower platform allowed our team to successfully
monitor performance and maintain our deployed model for 2
years. Moving forward, our team is planning to automate parts
of this task, for example, by implementing an automated email
notification system, notifying the team when the number of
model calls, predicted probabilities, and incoming data streams
shift beyond their respective significance thresholds. While this
modification is not intended to outright replace the manual
checks of the platform, it will allow the team to check the
platform at a lesser frequency. This system will serve as a
placeholder while the team develops a new model to monitoring
the performance of Control Tower, leveraging supervised
learning to detect shifts in the probability and multivariate
covariate distributions [28,29].

The team also considered an online or continuous learning model
to automatically address data drift. In continuous learning, the
algorithm would update its predictions as new data come in and
alleviates the need to manually retrain the data [30]. Although
appealing, an automated system, in this sense, would require
more policy changes and would bring with it a number of issues.
First, there are several cost and computing issues that could
make an implementation difficult, as entire systems would need
to know when to train and to do it without interrupting the
current pipeline, as well as a validation step to ensure sustained,
if not improved, accuracy. Second, the algorithm must remain
trustworthy for clinicians. Did the algorithm unlearn anything
important? Did it learn anything irrelevant or incorrect? As an
example, if a covariate shift occurred due to a missing laboratory
code, resulting in increasingly missing values of that laboratory,
we would not want the model to learn a new relationship with
the missingness; instead, we would make an update to the data
pipeline to resolve the missingness. Finally, all continuous
learning models require ready access to the gold-standard
outcome, which might not be feasible in all cases.

Conclusions
Once an ML model has been successfully developed and
deployed, it must be continuously monitored to ensure its
efficacy amidst an ever-evolving practice and stream of patients.
While a variety of methods have been proposed to statistically
monitor the performance of models, this is only one factor to
consider when implementing a long-term modeling strategy.
By disseminating the broader experiences of integrating ML
monitoring platforms into clinical practice, readers will be better
equipped for the considerations and challenges encountered
during their own implementations.
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