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Abstract

Background: Diagnostic errors pose significant health risks and contribute to patient mortality. With the growing accessibility
of electronic health records, machine learning models offer a promising avenue for enhancing diagnosis quality. Current research
has primarily focused on a limited set of diseases with ample training data, neglecting diagnostic scenarios with limited data
availability.

Objective: This study aims to develop an information retrieval (IR)–based framework that accommodates data sparsity to
facilitate broader diagnostic decision support.

Methods: We introduced an IR-based diagnostic decision support framework called CliniqIR. It uses clinical text records, the
Unified Medical Language System Metathesaurus, and 33 million PubMed abstracts to classify a broad spectrum of diagnoses
independent of training data availability. CliniqIR is designed to be compatible with any IR framework. Therefore, we implemented
it using both dense and sparse retrieval approaches. We compared CliniqIR’s performance to that of pretrained clinical transformer
models such as Clinical Bidirectional Encoder Representations from Transformers (ClinicalBERT) in supervised and zero-shot
settings. Subsequently, we combined the strength of supervised fine-tuned ClinicalBERT and CliniqIR to build an ensemble
framework that delivers state-of-the-art diagnostic predictions.

Results: On a complex diagnosis data set (DC3) without any training data, CliniqIR models returned the correct diagnosis within
their top 3 predictions. On the Medical Information Mart for Intensive Care III data set, CliniqIR models surpassed ClinicalBERT
in predicting diagnoses with <5 training samples by an average difference in mean reciprocal rank of 0.10. In a zero-shot setting
where models received no disease-specific training, CliniqIR still outperformed the pretrained transformer models with a greater
mean reciprocal rank of at least 0.10. Furthermore, in most conditions, our ensemble framework surpassed the performance of
its individual components, demonstrating its enhanced ability to make precise diagnostic predictions.

Conclusions: Our experiments highlight the importance of IR in leveraging unstructured knowledge resources to identify
infrequently encountered diagnoses. In addition, our ensemble framework benefits from combining the complementary strengths
of the supervised and retrieval-based models to diagnose a broad spectrum of diseases.

(JMIR Med Inform 2024;12:e50209) doi: 10.2196/50209

KEYWORDS

clinical decision support; rare diseases; ensemble learning; retrieval-augmented learning; machine learning; electronic health
records; natural language processing; retrieval augmented generation; RAG; electronic health record; EHR; data sparsity;
information retrieval

JMIR Med Inform 2024 | vol. 12 | e50209 | p. 1https://medinform.jmir.org/2024/1/e50209
(page number not for citation purposes)

Abdullahi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:carsten.eickhoff@uni-tuebingen.de
http://dx.doi.org/10.2196/50209
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Identifying an accurate and timely cause for a patient’s health
problem represents a challenging and complex cognitive task.
A clinician must consider a complex range of composite
information sources, including the patient’s medical history,
current state, imaging, laboratory test results, and other clinical
observations, to formulate an accurate diagnosis. Diagnostic
errors are a leading cause of delayed treatment, potentially
affecting millions of patients each year. Research suggests that
these errors contribute to 6% to 17% of adverse events [1].

Studies [2,3] have shown that, rather than relying on a single
physician for a final diagnosis, obtaining recommendations
from multiple physicians increases diagnostic accuracy. To
improve the diagnostic process while maintaining economic
feasibility, different variants of automated assistants, also known
as diagnostic decision support systems (DDSSs) and symptom
checkers, have been introduced [4]. Early DDSSs [1,5] were
driven by structured databases that maintain information about
diseases and other medical information in a structured form.
Although promising, these systems have yet to be highly
successful for several reasons, including limited accessibility,
poor flexibility, and scalability issues [6,7]. Hence, the
traditional DDSS is gradually being replaced by machine
learning and deep learning models.

Recent studies [8-13] highlight the importance of electronic
health records for supervised machine learning algorithms in
health care. These algorithms use the electronic health record
of a patient as input to predict their diagnosis. However,
supervised model development has been limited to a select
number of diseases with higher prevalence and extensive
documentation due to the availability of large amounts of labeled
data. As a result, infrequently occurring diagnoses remain poorly
studied. In real-world diagnostic scenarios, physicians are faced
with the challenge of identifying the correct diagnosis from a
plethora of possibilities. Therefore, a system that considers a
broad range of diagnoses, including rare conditions, is desirable
for improved diagnostic accuracy. However, recent studies
[14,15] demonstrate that traditional supervised learning models
are challenging to use in such scenarios due to their reliance on
large, labeled data sets with many examples per diagnosis.
However, most clinical cohorts exhibit imbalanced class
distributions, characterized by a long-tailed pattern [15,16] in
which certain diagnostic classes represent most training samples
whereas others exhibit few or even 0 data points. In such
scenarios, most traditional supervised models overfit the
majority class, resulting in poor performance for the minority
classes. As such, large labeled data sets may not be a
straightforward solution for achieving an efficient supervised
classifier that supports diverse diagnoses.

In response, researchers have leveraged a technique called
transfer learning, which is a widely used method for building
classifiers that enables generalization to classes with limited
labeled data. A common transfer learning technique involves
fine-tuning pretrained models—models trained on large and
diverse data sets—on a smaller, domain-specific corpus to

enhance model performance. However, the effectiveness of this
approach still relies on the size of the data set available for
fine-tuning. Zero-shot learning and few-shot learning [17,18]
represent promising alternatives for fine-tuning large models
with limited labeled data. In zero-shot learning, the model can
classify samples from classes without labeled training data.
Few-shot learning requires at least one labeled example per
class to enable the model to make accurate predictions. Although
some studies [19,20] have shown that pretrained language
models have zero-shot and few-shot learning capabilities, their
performance remains inferior to that of models trained on
extensive labeled data. While zero-shot and few-shot approaches
have demonstrated success in the vision domain [21,22], their
application to language models remains an ongoing area of
research.

Leveraging external knowledge resources can improve
predictive performance, especially with a limited training sample
size, as shown in previous work by Prakash et al [7] and Müller
et al [6]. Classical information retrieval (IR) systems can use a
vast collection of resources for various applications with low
computational complexity and no need for labeled data. In the
medical setting, studies [23-25] and competitions such as the
text retrieval conference (TREC) clinical decision support track
[26] have focused on developing and evaluating IR systems to
support clinician decision-making. Typically, these IR systems
have been applied to biomedical literature retrieval to aid in
clinical decision support. However, these systems can also be
adapted for other downstream clinical tasks. For example, Naik
et al [27] trained a model to predict patient admission outcomes
(ventilation need, mortality, and length of stay) by integrating
relevant medical literature with patient notes, leaving an open
question of how IR systems would fare in directly predicting
the underlying diagnosis. Therefore, our study applied IR
techniques to perform literature-guided diagnostic prediction.

Objectives
We introduce “CliniqIR,” a novel clinical decision support
algorithm that uses an IR system to match a patient’s medical
record to a specific diagnosis from a large pool of possible
diagnoses. Our study aimed to improve the current state of
predictive modeling and diagnostic decision support for a broad
range of diagnoses regardless of their training data availability.
By using clinical text records and external knowledge sources,
including the Unified Medical Language System (UMLS)
Metathesaurus [28] and PubMed abstracts [29], we demonstrated
that “CliniqIR” successfully generalizes to less common
diagnostic categories with heavily skewed data distributions.
Our work also shows CliniqIR to be highly adaptable, allowing
for easy integration with any IR system. This flexibility ensures
the model’s ability to adapt to available resources and work
across various retrieval methods.

To assess CliniqIR’s ability to predict diagnoses with no
available training samples, we evaluated its performance on the
DC3 data set [30]. We compared its performance to that of
pretrained clinical models in a zero-shot setting, and our results
showed that CliniqIR has the capability to recognize a broad
spectrum of rare and complex diseases without relying on
labeled training data. We also compared the performance of
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CliniqIR with that of supervised fine-tuned pretrained
biomedical large language models and found that supervised
models have limitations when used on highly imbalanced data,
especially for diagnoses with limited training samples. Then,
we leveraged an ensemble strategy combining CliniqIR and a
fine-tuned Clinical Bidirectional Encoder Representations from
Transformers (ClinicalBERT) to make predictions for a wide
range of diagnoses that include frequent and infrequent
conditions, summarized in Figure 1.

Our study highlights the valuable synergy between
retrieval-based systems and supervised learning models,
showcasing how their combination can achieve state-of-the-art
performance, particularly in data sets characterized by a
long-tailed distribution. This finding holds significant promise
and offers new avenues to address the challenges of imbalanced
data in various domains.

Figure 1. CliniqIR and Clinical Bidirectional Encoder Representations from Transformers (ClinicalBERT), classify patient notes and generate ranked
lists of potential diagnoses. The reciprocal rank fusion (RRF) ensemble reranks the lists from both models to provide clinicians with a more accurate
final ranking of differential diagnoses to aid the diagnostic process. MIMIC-III: Medical Information Mart for Intensive Care III; PMID: PubMed ID.

Methods

CliniqIR: The Retrieval-Based Model

Overview
We present CliniqIR, a novel literature-guided system that maps
a patient’s note to a specific diagnosis. By leveraging unlabeled
external knowledge sources, CliniqIR uses an IR system to
classify a wide range of diagnoses without relying on the
availability of notes for each individual diagnosis (labeled
training data). As a result, CliniqIR represents a valuable disease
classification tool when labeled training data are limited or
unavailable.

An overview of our method is shown in Figure 2. The backbone
of CliniqIR is its knowledge base. Once the knowledge base is
built, we can query the system to provide a list of probable
diagnoses. In this study, a clinical narrative with a patient’s

medical history or summary was preprocessed and treated as a
query. To make inferences given a patient’s clinical note, as a
preprocessing step, we first used QuickUMLS (Soldani and
Goharian [31]) explained in the Knowledge Extraction Using
QuickUMLS section, to extract medical keywords from the note
to obtain a query. Next, we fed the query (preprocessed note)
to the retrieval system, which returned a list of matching relevant
PubMed abstracts alongside the medical conditions mentioned
in each abstract. Afterward, we selected the top 100 items from
the list and then computed the frequency of each concept across
the list of abstracts. Finally, the model returned a list of concepts
ranked according to their term frequency–inverse document
frequency (TF-IDF) defined in equation 1. The list returned was
similar to a medical differential diagnosis (a ranked list of
possible diagnoses that could cause a patient’s illness). The
medical condition with the highest TF-IDF score was predicted
as the most likely diagnosis. We provide a detailed description
of the individual processing steps in the following sections.

JMIR Med Inform 2024 | vol. 12 | e50209 | p. 3https://medinform.jmir.org/2024/1/e50209
(page number not for citation purposes)

Abdullahi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Overview of CliniqIR, the retrieval-based clinical decision support system. PMID: PubMed ID.

Concept Extraction and Indexing
We extracted unique medical concepts (conditions) from each
PubMed abstract using QuickUMLS, described in the
Knowledge Extraction Using QuickUMLS section. Medical
concepts included diseases, symptoms, or any information about
a medical procedure. Subsequently, we built the knowledge
base of the retrieval system by indexing each abstract and its
corresponding article title, article ID, and a concept dictionary
that contained all the unique concepts mentioned in that abstract.
Indexing involves storing and organizing data to enable efficient
IR at search time. Using the index of PubMed abstracts, the
model inputs a patient’s notes as a query and returns relevant
information from the indexed abstracts as an output. Figure 2
provides visual details.

Querying and Retrieval
Once the index was built, we submitted queries to the retrieval
system. The Retrieval System Implementation section provides
more details. After we submitted a query, the system returned
a list of abstracts and their corresponding attributes (dictionary
of concepts, article title, and article ID number) ranked
according to query relevance. For each query, we selected the
top 100 abstracts because the top few documents are most likely
to contain relevant query information.

Label Generation
After the querying operation, we focused on the extracted
concepts of the top 100 abstracts. The previous retrieval phase

can potentially return multiple abstracts that contain similar
information in response to a given query, resulting in concept
dictionaries of ≥2 abstracts containing similar concepts. Multiple
occurrences could indicate the relevance of a concept across
abstracts. To account for such duplication, we calculated each
unique concept’s recurrence, or term frequency (TF), across the
list. The TF of a concept across a list of abstracts would be 1 if
it appeared in only 1 abstract. If it appeared in 2 abstracts, its
TF would become 2, and so on. Calculating the recurrence of
concepts across the top-100 list resulted in a new list that
contained medical concepts and their TFs. These medical
concepts were regarded as labels and used for classification
purposes. Thus, each unique concept became a potential
diagnosis, and the TF of each concept is subsequently used for
ranking purposes in equation 1. Textbox 1 describes the concepts
the model returned (in no order of importance) after the retrieval
stage given a set of queries processed using QuickUMLS. The
list was filtered for a simple illustration. As mentioned
previously, concepts are biomedical terms that include
symptoms, signs, and diseases, among other things. On the other
hand, a diagnosis could represent a disease, an injury, a
neoplastic process, or a medical term describing a condition a
patient is experiencing. Therefore, to account for a wide range
of possible diagnoses, we kept all concepts in the label
generation phase, and we considered a concept as a diagnosis
when it matched the ground truth. Therefore, in this paper, we
use concepts and diagnoses interchangeably.
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Textbox 1. The output returned by the retrieval-based model (CliniqIR) given a query.

Query and concepts retrieved (labels)

• Abdominal pain, bloating, rectal bleeding, weight loss, anxiety, disruptive thoughts, and suicidality: “generalized anxiety disorder,” “panniculitis,”
“chronic abdominal pain,” “Burkitt’s lymphoma,” and “Whipple’s disease”

• Chest pain, radiation to neck, dyslipidemia, lung crackles, bradycardia, and ST elevation: “acute myocardial infarction,” “acute coronary syndrome,”
“coronary artery disease,” “myocardial ischemia,” “myopericarditis,” and “myocardial infarctions”

• Night sweats, abdominal pain (pleuritic), nausea, loose stools, lymphadenopathy (inguinal), plaques, leucopenia, neutrophilia, and elevated
(Angiotensin converting enzyme) ACE: “sarcoidosis,” “lymphomas,” “lymph node,” “tuberculosis,” “lupus erythematosus,” “Rosai-Dorfman
disease,” and “Kikuchi-Fujimoto disease”

Ranking and Predictions
It is important to note that our model differs from traditional
classification schemes. In our case, the observed mappings
between patients’ notes and ground-truth diagnoses are not
provided for learning purposes. Therefore, a list of relevant
diagnoses (a subset of the retrieved concepts) must be generated
independently for each query. However, as the diagnosis list is
not generated based on ground truth, it may contain information
that is not relevant to the data set to be evaluated. For example,
given a data set with 3 possible ground-truth
diagnoses—lymphoma, coronary artery disease, and
gastroenteritis—the model might return concepts such as
coronary artery disease, myocardial infarction, and chest pain
in the label retrieval phase for a query whose ground truth is
coronary artery disease. To address this and ensure a fair
comparison with other classification models, we filtered the
retrieved concepts during the evaluation and only kept diagnoses
that were part of the ground truth. Therefore, in the
aforementioned example, we filtered out myocardial infarction
and chest pain. Then, we assigned ranks to the remainder of the
diagnoses in the list using the TF-IDF function shown in
equation 1:

TFIDF(c,a,d) = TF(c,a).IDF(c,d) (1)

Knowledge Resources: PubMed Abstracts
Over the years, research in predictive modeling for diagnostic
decision support has witnessed enormous success in transfer
learning, particularly where a model leverages an auxiliary data
source (often a knowledge base) to perform several predictive
tasks. Some studies [7,22,32] have used resources such as
Wikipedia and PubMed [29] to create systems that perform
classification tasks or retrieve useful articles with specific
information. In contrast, most early DDSSs [1,33] were built

on structured knowledge bases; however, most computable
knowledge bases are not freely accessible.

Inspired by previous research, we used abstracts from PubMed
articles as an unstructured collection of knowledge resources
to guide the prediction of diagnoses for all our experiments. An
abstract may contain information about a specific condition, its
signs, or its symptoms. Some abstracts include medical case
reports, whereas others may contain information about a medical
device. To build a retrieval system grounded in reliable
information, we leveraged the vast collection of abstracts in the
PubMed database. PubMed, maintained by the National Library
of Medicine, houses >33 million citations for biomedical
literature, encompassing life science journals and books dating
back to 1946. However, the number of abstracts available per
condition varies considerably. Therefore, for our core
experiments, we implemented a 100-abstract inclusion threshold
for diagnoses (Multimedia Appendix 1).

Knowledge Extraction Using QuickUMLS

Overview

QuickUMLS [31] is an unsupervised medical concept extraction
tool that detects mentions of medical entities such as diseases,
symptoms, and other medical concepts from unstructured text.
Given a document, QuickUMLS matches each possible token
in the document against concepts in the UMLS [28]. In this
study, we used QuickUMLS for 2 different purposes.

Extraction

We used QuickUMLS to extract unique biomedical concepts
from each PubMed abstract. A concept can be any medical term,
including a diagnosis or symptom. As shown in Figure 3, each
biomedical term in a text is a concept with a corresponding
unique alphanumeric identifier (concept ID) in the UMLS
vocabulary. We kept all the concepts associated with each
abstract in a dictionary.
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Figure 3. Outputs from the QuickUMLS tool developed by Soldani and Goharian [33] showing: (A) a graph of extracted concepts and their concept
unique identifier (CUI) for a specific input text; the underlined texts are considered important words, and their corresponding Unified Medical Language
System terms and CUIs are returned, (B) a query processing pipeline. Each text marked with a strike-through is filtered out to obtain a query.

Filtering

We also used QuickUMLS as a data preprocessor to filter out
noisy, uninformative, and nonclinical terms, such as stop words,
from a patient’s clinical note, resulting in a query that contained
only medical terms. Citing the input text example in Figure 3,
the outcome of the filtering operation was “rashes fever hand
skin Kikuchi-Fujimoto disease symptoms.” This filtering step
is equivalent to keeping only the QuickUMLS-recognized
medical terms and concepts.

Retrieval System Implementation

Overview
CliniqIR is designed to be highly adaptable to arbitrary IR
systems. This flexibility ensures the model’s ability to work
across various retrieval methods, adapting to the resources
available. In this study, we performed experiments on a sparse
and a dense retriever.

Sparse Retriever
We built our knowledge base by indexing PubMed abstracts
and their concepts using Apache Lucene (Apache Software
Foundation [34]), which enables users to search this index with
queries ranging from single words to sentences. The relevance
of an abstract to a query is determined by a similarity score,
with Lucene’s default “BM25” [35] function estimating the
best-matching abstract.

Dense Retriever
Unlike sparse retrievers, which represent queries as word
frequencies, dense retrievers capture the semantic meaning and
relationships within the text using dense embedding vectors.
This allows for retrieval based on similarity, usually calculated
through maximum inner-product search. To implement this
a p p r o a c h ,  w e  l e v e r a g e d  t h e
Medical Contrastive Pre-trained Transformers (MedCPT) [36],
a state-of-the-art biomedical retrieval system in a zero-shot
setting using its default parameters. Section S1 and Figure S1
in the Multimedia Appendix 1 provides details on the parameter
settings for both retrieval systems.

Pretrained Transformer Models
In this study, we used 2 well-known methods, namely,
supervised fine-tuning and zero-shot learning, to harness the
benefits of transfer learning from 6 pretrained clinical and
biomedical language models. The models we used are
ClinicalBERT, PubMed Bidirectional Encoder Representations
from Transformers (PubMedBERT), Scientific Bidirectional
Encoder Representations from Transformers (SciBERT),
Self-alignment Pretrained Bidirectional Encoder Representations
from Transformers (SapBERT), cross-lingual knowledge-infused
medical term embedding (CODER) and MedCPT. We describe
them briefly in the follows:

ClinicalBERT Model
The ClinicalBERT [37] is an extension of Biomedical
Bidirectional Encoder Representations from Transformers [38]
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trained further on discharge summary notes from the Medical
Information Mart for Intensive Care III (MIMIC-III) database
[39]. It was designed to handle the complexity and nuances of
clinical text.

PubMedBERT Model
PubMedBERT [40] was specifically designed to capture
domain-specific knowledge present in biomedical literature. It
was initialized from Bidirectional Encoder Representations
From Transformers (BERT) and trained further on the collection
of PubMed abstracts.

SciBERT Model
SciBERT [41] is a BERT-based language model pretrained on
1.14 million full-text papers from Semantic Scholar. The corpus
domain cuts across the field of computer science and the
biomedical space.

SapBERT Model
SapBERT [42] is also a BERT-based model initialized from
PubMedBERT. SapBERT was further pretrained on UMLS
[28], which consists of a wide range of biomedical ontologies
for >4 million concepts.

CODER Model
CODER [43] is another BERT-based model formulated to
generate biomedical embeddings. It was also initialized from
PubMedBERT. CODER was further pretrained using the
concepts from the UMLS [28] and optimized to increase the
embedding similarities between terms with the same concept
unique identifier.

MedCPT Model
MedCPT [36] is a contrastive pretrained PubMedBERT-based
model also formulated to generate biomedical text embeddings
for multiple tasks.

Supervised Fine-Tuning
Given a set of patients’ notes (hereinafter also referred to as
notes) as inputs and their corresponding diagnoses as outputs,
we fine-tuned the pretrained models in a supervised fashion to
classify diagnoses by feeding in a series of notes and their
corresponding ground-truth diagnoses. Each note was a textual
document describing a patient’s health condition and medical
history. The ground-truth diagnosis of a note was the
corresponding health condition of the patient. Multimedia
Appendix 1 provides details of the models’ parameter settings.
After fine-tuning, given a test set of notes, a model assigned
probabilities to each ground-truth diagnosis for each note. The
diagnosis with the highest probability corresponded to the
model’s most confident prediction. We assigned ranks to each
diagnosis in the order of their decreasing probability score for
all our predictions. These ranks were further used to compute
the mean reciprocal rank (MRR) for model evaluation (refer to
the Evaluation Metrics section for details). We justify the use
of ranking output probabilities across classes to compute the
MRR because the probabilities generated by the classifier
represent the classifier’s confidence in predicting each incidence.
Supervised fine-tuning requires diagnosis-specific training data
(availability of historic patient notes for each diagnosis) to

deliver state-of-the-art performance. Unfortunately, labeled data
are expensive to generate. This requirement makes it impractical
to use a supervised fine-tuned model to diagnose those diseases
without (many) notes for training. Hence, we used this method
to make predictions only when training data were available.

Zero-Shot Learning
Given our focus on predicting diagnoses with few or 0 training
samples, we included zero-shot learning methods as baselines.
Leveraging the high quality of the aforementioned pretrained
transformer embeddings, we adopted a zero-shot strategy by
classifying patients’ notes based on their semantic similarity to
potential diagnoses. This can be achieved by using pretrained
models as biencoders [18,44]. Using this approach, we
accounted for the diagnosis classes (classes without training
samples) that the supervised fine-tuned models could not handle.

Given a patient’s note (our query) and the list of candidate
diagnoses as labels, we used different variants of BERT as
biencoders to encode queries and the full names of all
ground-truth diagnoses to produce their respective representation
vectors separately. Next, we computed their cosine similarity
score and ranked each diagnosis for each query according to
this score. The diagnosis with the highest cosine similarity
became the model’s most confident diagnostic prediction (refer
to Multimedia Appendix 1 for more details).

Model Ensemble: Reciprocal Rank Fusion
The label retrieval process allowed the CliniqIR (retrieval-based
model) to diagnose unseen conditions regardless of training
data availability. This property is beneficial for diagnoses with
little or no training data. On the other hand, a supervised
fine-tuned model can draw much deeper insights from available
historical case data. We adopted an ensemble strategy to
combine the advantages of both paradigms.

In IR and general machine learning, ensemble strategies combine
results from multiple models to produce a single joint output.
Ideally, the ensemble model should produce a new output whose
performance is superior to that of the individual constituent
models. Several studies [32,45,46] have shown that
high-performance gains can be achieved through model
ensembling. One of the simplest ways to build such a model is
to focus on applying a reranking heuristic to the ranks of each
item in a model’s output list. Hence, we collected the ranked
list of diagnoses from a CliniqIR model and that of the
best-performing supervised fine-tuned model, ClinicalBERT,
and combined the 2 lists. We then applied a modified version
of the reciprocal rank fusion (RRF) [45] algorithm using
equation 2 to merge their results and produce a single, final
output list. Given a set Cof concepts(diagnoses) to be ranked
and a set of rankings Rfor all concepts obtained from each
ensemble member (CliniqIR and ClinicalBERT), we computed
the RRF score for each concept (c∈ C) as follows:

(2)

In the aforementioned equation, “r ∈ R” is the rank of concept
caccording to an ensemble member. We summed up the
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individual ranks of a concept from each ensemble member “r(c)”
with k and computed the inverse. Previous work by Cormack
et al [45] reported that setting kto 60 was the near-optimal choice
for most of their experiments. Hence, we set k to 60 for all
experiments. When concepts (diagnoses) had more than one
training sample, we selected their individual ranks rfrom each
ensemble member to compute the RRF score; otherwise, we
selected ranks from the CliniqIR model. We used the RRF
algorithm due to some key advantages: (1) it is a simple
unsupervised method that eliminates the need for training
samples, and (2) it effectively combines the results from various
models without reliance on a weighting or voting mechanism.

Experimental Setup

Data Sources

DC3 Data Set

The DC3 data set [30] was designed specifically for the
evaluation of diagnostic support systems. The data set comprises
30 rare and difficult-to-diagnose cases compiled and solved by
clinical experts in the New England Journal of Medicine Case
Challenges. This data set lacks large, labeled training data, but
it covers a wide range of diagnostic cases for various specialties.
Therefore, we used this data set to determine the applicability
of CliniqIR for diagnostic inference when the underlying patient
condition is rare. Each case is a patient’s note and its
corresponding true diagnosis written as free text. We mapped
the true diagnoses to their UMLS concept IDs to produce test
labels for evaluation consistency. When we did not find an exact
matching term for a diagnosis, we considered the closest match
returned by the UMLS browser. During the preprocessing step,
we found that some cases in the DC3 data set had multiple terms
representing a ground-truth diagnosis, making it difficult to find
a single UMLS concept ID for such cases. To ensure an accurate
mapping with the UMLS concept IDs, we split such cases into
separate terms. For example, the case “Acute and chronic
cholecystitis and extensive cholelithiasis with transmural
gallbladder inflammation” was split into 2 separate terms:
“Acute and chronic cholecystitis” and “Extensive cholelithiasis
with transmural gallbladder inflammation.” Then, we mapped
each case to its corresponding UMLS concept ID. Next, we
computed the document frequency of all the true diagnoses
(now represented as concepts) across all PubMed abstracts. In
these cases, either of the concepts could be considered as the
ground truth. As the data did not contain sufficient notes to train
a model, we formulated this task as a zero-shot
multiclassification problem. Specifically, we expected a model
to predict the underlying condition given a patient’s note without
labeled training data.

MIMIC-III Data Set

The MIMIC-III [39] is a freely accessible medical database that
contains information on >50,000 intensive care unit patients.
The data include laboratory events, vital sign measurements,
clinical observations, notes, and diagnoses structured as

ICD-9-CM (International Classification of Diseases, Ninth
Revision, Clinical Modification), codes. We worked with the
discharge notes for all experiments because they document a
free-text synopsis of a patient’s hospital stay from admission
to discharge. In MIMIC-III, each discharge note is mapped to
multiple diagnoses ranked according to priority. We considered
the highest-priority diagnosis to be the admission’s ground-truth
diagnosis (and prediction target). We excluded admissions
primarily for birth and pregnancy as they did not represent a
primary pathological diagnosis. After preprocessing, the
discharge notes contained 2634 unique ICD-9-CM diagnoses.
We mapped these ICD-9-CM diagnoses to their corresponding
UMLS concept IDs to calculate their TF across the knowledge
resource (PubMed abstracts). The resulting unique diagnoses
were associated with notes ranging from thousands of
occurrences of frequent conditions, such as coronary
atherosclerosis and aortic valve disorders, to rare ones, such as
Evans syndrome and ehrlichiosis, with just a single instance
forming a long-tailed distribution. A total of 902 diagnoses fell
into the singleton category. One discharge note representing a
specific diagnosis is insufficient to train and test a model. Thus,
we reserved all diagnoses with only 1 available note for model
testing. For diagnoses with <5 note samples, we reserved 1
sample for testing, and the rest were included in model training.
We split the remainder of the data set (instances of diagnoses
with ≥5 associated notes) into training, validation, and testing
sets in the ratio 70:15:15; this split resulted in the training set
containing notes representing 1732 unique diagnoses and the
test set containing notes representing a total of 2634 unique
diagnoses (refer to Multimedia Appendix 1 for more details).
For models that did not require training (eg, the retrieval model),
we used the validation and training sets for hyperparameter
tuning purposes and the test set for final model evaluations.

Baselines
Previous studies and competitions, such as the TREC clinical
decision support track, have emphasized the development and
evaluation of IR systems to aid clinical decision-making. While
these systems are commonly used for evidence-based literature
searches, our study explored their adaptation for direct
literature-guided diagnosis prediction. Although a direct
comparison to the systems in the TREC clinical decision support
track was not possible, insights gained from these competitions
informed the engineering of our retrieval system. To evaluate
our model, we used 2 transfer learning techniques—supervised
fine-tuning and zero-shot classification methods (refer to the
Pretrained Transformer Models section)—because of their
performance in scenarios where labeled data are limited or
unavailable. In addition, some studies [47-49] have shown
pretrained language models to attain superior performance to
that of count vector–based models and traditional supervised
methods in various medical tasks. We used “Z” to identify when
models were used in a zero-shot classification setting, an “S”
for supervised fine-tuning, and “CliniqIR” when models were
used in a retrieval setting. Table 1 provides details.
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Table 1. Overview of the experiments conducted using the different models and their task description.

Task descriptionModels usedExperiment

Models retrieved relevant abstracts to inform diagnostic
predictions.

BM25a and MedCPTbRetrieval-based experiments
(CliniqIR)

Models classified diseases in a zero-shot setting without
previous task-specific training.

ClinicalBERTc, PubMedBERTd, CODERe, SapBERTf,
and MedCPT

Zero-shot experiments (Z)

Models were fine-tuned using labeled data for enhanced
disease prediction accuracy.

ClinicalBERTSupervised experiments (S)

aBM25: Best Match 25.
bMedCPT: Medical Contrastive Pretrained Transformers.
cClinicalBERT: Clinical Bidirectional Encoder Representations from Transformers.
dPubMedBERT: PubMed Bidirectional Encoder Representations from Transformers.
eCODER: cross-lingual knowledge-infused medical term embedding.
fSapBERT: Self-alignment Pretrained Bidirectional Encoder Representations from Transformers.

Evaluation Metrics
In our experiments, each model returned a ranked list of
diagnoses analogous to a ranked list of differential diagnoses
formulated by a medical expert. Given a query and a list of
ranked items produced by a model, a simple classification
accuracy metric tracks whether the model made the correct
prediction at the top of the list. Instead, we used the MRR [50]
because it told us where the true diagnosis was placed in the
list in equation 3. If a model returned the reference diagnosis
at rank 1 (ie, at the top of the list), the reciprocal rank (RR) was
1; if the most appropriate item was at rank 2, then the RR was
0.5. The RR decreases as the relevant item moves farther down
the list. We calculated the MRR by computing the average RR
across admissions. An MRR of 1 meant that the model returned
the correct diagnosis at the top of its list for every patient, and
an MRR of 0 implied that the model never produced a correct
diagnosis. Mathematically, the MRR can be represented as
follows:

(3)

where |Q| denotes the total number of queries and denotes the
rank of the correct diagnosis. We also calculated the mean
average precision (MAP) to evaluate the balance between
precision and recall of the retrieval systems (for details, refer
to Multimedia Appendix 1).

Ethical Considerations
No ethics approval was pursued for this research, given that the
data were publicly accessible and deidentified.This aligns with
the guidelines outlined by the US Department of Health and
Human Services, Office for Human Research Protections,
§46.101 (b)(4) [51].

Results

CliniqIR Models Retrieved Useful Literature and
Meaningful Concepts
Table 2 showcases qualitative results for 3 selected queries,
displaying the top 3 documents retrieved by the CliniqIR model.
Notably, the retrieved articles and their corresponding concepts
demonstrated clear relevance to the ground-truth diagnoses of
the respective queries.
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Table 2. Qualitative overview of the top documents and concepts retrieved for 3 selected queries along with their respective correct concepts. This
table illustrates the types of results our system generates for each query, showing the alignment with the ground-truth concepts.

Retrieved conceptsGround-truth diagnosis, and top 3 documents

1. Viral pneumonia

{“C1956415”: [“paroxysmal nocturnal dyspnea”], “C0239295”: [“esophageal candidi-
asis”], “C0236053”: [“mucosal ulcers”], “C1535939”: [“Pneumocystis”], “C0031256”:
[“petechiae”], “C0006849”: [“thrush”], “C0011168”: [“dysphagia”]}

Relevant article 1—PMIDa 15336585: Cases from the
Osler Medical Service at Johns Hopkins University. Di-
agnosis: P. carinii pneumonia and primary pulmonary
sporotrichosis

{“C0746102”: [“chronic lung disease”], “C0004096”: [“asthma”], “C0009443”:
[“cold”], “C0206750”: [“Coronavirus”], “C0018609”: [“h disease”]}

Relevant article 2—PMID 32788269: A 16-Year-Old
Boy with Cough and Fever in the Era of COVID-19

{“C3714636”: [“pneumonias”], C1535950”: [“GI inflammation”]}Relevant article 3—PMID 30225154: Meningococcal
Pneumonia in a Young Healthy Male

2. Hypoparathyroidism

{“C0220983”: [“metabolic alkalosis”], “C0151723”: [“hypomagnesemia”],
“C0020599”: [“hypocalciuria”], “C0014335”: [“enteritis”], “C0012634”: [“Diagnosis”],
“C0235394”: [“wasting”], “C0271728”: [“Hyperreninemic hyperaldosteronism”],
“C0268450”: [“gitelman syndrome”], “C3552462”: [“Tubulopathy”]}

Relevant article 1—PMID 34765380: A Challenging Case
of Persisting Hypokalemia Secondary to Gitelman Syn-
drome

{“C0151723”: [“hypomagnesemia”], “C0030554”: [“paresthesias”], “C0020598”:
[“hypocalcemias”], “C0020626”: [“Low parathyroid hormone”], “C0030517”:
[“Parathyroid”], “C0033806”: [“pseudo hypoparathyroidism”]}

Relevant article 2—PMID 27190662: Suppression of
Parathyroid Hormone in a Patient with Severe Magnesium
Depletion

{“C0020626”: [“Hypoparathyroidism”], “C0012236”: [“DiGeorge syndrome”],
“C0863106”: [“afebrile seizures”], “C0030353”: [“papilledema”], “C0020598”:
[“Hypocalcemias”], “C0012634”: [“Diagnosis”], “C0042870”: [“Vitamin D deficien-
cy”]}

Relevant article 3—PMID 28163524: Afebrile Seizures
as Initial Symptom of Hypocalcemia Secondary to Hy-
poparathyroidism

3. Intracerebral hemorrhage

{“C0020564”: [“enlargement”], “C0019080”: [“hemorrhage”]}Relevant article 1—PMID 9125737: A 36-year-old
woman with acute onset left hemiplegia and anosognosia

{“C2937358”: [“Intracerebral hemorrhage”], “C0151699”: [“intracranial hemorrhage”],
“C0019080”: [“hemorrhages”], “C0020564”: [“enlargement”], “C0021308”: [“infarct”],
“C0022116”: [“ischemia”]}

Relevant article 2—PMID 25830084: Multiple extra-is-
chemic hemorrhages following intravenous thrombolysis
in a patient with Trousseau syndrome: case study.

{“C0472376”: [“thalamic hemorrhage”], “C2937358”: [“cerebral hemorrhage”],
“C0019080”: [“bleeding”], “C0023182”: [“cerebrospinal fluid leak”]}

Relevant article 3—PMID 1434057: A case of recurrent
cerebral hemorrhage considered to be cerebral amyloid
angiopathy by cerebrospinal fluid examination.

aPMID: PubMed ID.

CliniqIR Models Yielded State-of-the-Art Performance
for Rare and Complex Diagnoses
We examined the retrieval-based models’ (CliniqIR)
performance on the DC3 data set to show their applicability for
rare and complex diagnostic cases. The absence of training data
for this data set implied that supervised learning would not be
applicable and the models could only make predictions in an
unsupervised or zero-shot setting. Hence, on this data set, we
compared the CliniqIR models’performance to that of pretrained
transformers in a zero-shot setting. In contrast to the CliniqIR
model, which creates its own set of labels, we supplied the
pretrained transformers with a range of potential diagnoses for
each query to enable zero-shot predictions. This gave the models
a significant advantage over their use in a real-world setting,
where such information would not be readily available. Table

3 shows the MRR of the chosen models on the DC3 data set.
Even with the supporting assumption that the range of possible
diagnoses was known to the pretrained models, the CliniqIR
models outperformed them with an MRR of 0.35 and 0.32 for
CliniqIR_BM25 and CliniqIR_MedCPT, respectively. This
means that, on average, CliniqIR_BM25 and CliniqIR_MedCPT
were more likely to return the correct diagnosis within the top
3 predictions for a case.

The MRR scores of the pretrained zero-shot methods were
similar to one another but markedly lower; the scores were 0.15,
0.22, 0.25, 0.25, 0.24, and 0.18 for ClinicalBERT,
PubMedBERT, SciBERT, CODER, SapBERT, and MedCPT,
respectively. Our results show that the CliniqIR models are
capable of making useful predictions in the case of rare and
complex diagnoses with limited or no training data availability.
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Table 3. Performance evaluation of the models on the DC3 data sets across all case. The retrieval-based models, denoted using “CliniqIR” gave the
best overall performance compared to the zero-shot models, denoted using “Z.”

Mean reciprocal rankModel used

0.15ClinicalBERTa (Z)

0.22PubMedMERTb (Z)

0.25SciBERTc (Z)

0.25CODERd (Z)

0.24SapBERTe (Z)

0.35 fCliniqIR_BM25

0.18MedCPTg (Z)

0.32CliniqIR_MedCPT

aClinicalBERT: Clinical Bidirectional Encoder Representations from Transformers.
bPubMedBERT: PubMed Bidirectional Encoder Representations from Transformers.
cSciBERT: Scientific Bidirectional Encoder Representations from Transformers.
dCODER: cross-lingual knowledge-infused medical term embedding.
eSapBERT: Self-alignment Pretrained Bidirectional Encoder Representations from Transformers.
fHighest mean reciprocal rank is italicized.
gMedCPT: Medical Contrastive Pre-trained Transformers.

Performance on MIMIC-III

Supervised Prediction Models Failed at Making Rare
Diagnoses
When training data are available, supervised models are
preferred. Thus, we investigated the effectiveness of a
supervised learning approach for a highly imbalanced data set
such as MIMIC-III. We fine-tuned the pretrained models to
predict diagnoses using available clinical notes. Diagnoses were
categorized based on the frequency of associated notes to show
how training data availability affects a supervised model’s
predictive capacity. A total of 902 diagnoses had no training
data (only 1 note representative in MIMIC-III), whereas 1732
had at least one training sample (≥2 note representatives in
MIMIC-III). Predictions were made only for the 1732 diagnoses,
excluding those without training data. We introduced sample
weights in the loss function to handle the enormous data
imbalance. This approach weighs the loss computed for samples
differently depending on their class training size. Our results in
Figure S2 in Multimedia Appendix 1 show that ClinicalBERT
performed best among all pretrained models. Hence, we used

ClinicalBERT as our supervised baseline for the remainder of
our experiments.

After training ClincalBERT, we tested it on different clinical
note frequency–based categories (Table 4). In Table 4, we
observed that the MRR score of the ClinicalBERT model was
higher for diagnosis categories with many training examples
(>10 notes). In addition, in the data set category with 1 to 10
notes available per diagnosis (1<notes≤10), ClinicalBERT
obtained a low MRR score of 0.07. An MRR of 0.08 indicates
that, on average, ClinicalBERT returned the correct diagnosis
for a case among its top 13 predictions for these diagnoses.
While the model could not perform predictions for 902
diagnoses due to the lack of training data, the drastic decline in
ClinicalBERT’s performance also indicates that the model is
not suitable for making predictions for diagnoses with <10
clinical notes available for training. We also noticed a decline
in performance for diagnoses with training samples between
500 and 750. This was likely due to many diagnoses having
similar symptoms and manifestations. Therefore, the supervised
learning approaches struggle to find a fine delineation of
boundaries between similar classes without sufficient training
data.
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Table 4. Performance of the best-performing fine-tuned supervised model, Clinical Bidirectional Encoder Representations from Transformers on the
Medical Information Mart for Intensive Care III data set. We categorized the results by the frequency of training note representation per diagnosis.

Mean reciprocal rankData set category

—a0 note

0.081≤Notes≤10

0.3310<Notes≤50

0.4950<Notes≤100

0.52100<Notes≤250

0.57250<Notes≤500

0.44500<Notes≤750

0.41750<Notes

0.370<Notes

aNot applicable.

CliniqIR Models Outperformed ClinicalBERT for Rare
Diagnoses
The objective of this experiment was to determine to what extent
the CliniqIR models can be used in place of a supervised model
when the training sample size is small. Results in Figure 4 show
that CliniqIR-based models performed better than ClinicalBERT
for diagnoses with up to 3 training samples. In addition,
CliniqIR_BM25 and ClinicalBERT had similar MRR scores
for diagnoses with 5 training samples. The average MRR score
for the CliniqIR-based models was approximately 0.1 across

most categories except for diagnoses with at least 7 training
samples. This result indicates that, on average, their correct
prediction for a query was ranked 10th on the list. The disease
count bars in Figure 4 (in gray) also show that the number of
diseases with <5 training samples was more than twice the
number of diseases with >5 training samples. Thus, CliniqIR
allows for more disease coverage and also generalizes well for
cases with low note availability. This result confirms that, while
supervised models may perform well with sufficient labeled
training data, CliniqIR-based models’ performance stands out
as remarkable for diagnoses in the low-data regime.

Figure 4. Mean reciprocal rank (MRR) results for CliniqIR-based models and Clinical Bidirectional Encoder Representations from Transformers
(ClinicalBERT) when predicting diagnoses with training sample sizes of 0, 1, 2, 3, 5, 6, and 7. Results indicate that the CliniqIR-based models perform
best when the training sample size is between 0 and 5. However, ClinicalBERT performs best as training data size increases. “S” denotes that the
ClinicalBERT model was used in a supervised setting.
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CliniqIR Models Outperformed Zero-Shot Baselines for
Rare Diagnoses
To further demonstrate the utility of CliniqIR models for
diagnoses with little or no training samples, we compared its
performance to that of the pretrained models in a zero-shot
setting. As mentioned previously, the MIMIC-III data set
comprises >2634 diagnoses, but the supervised fine-tuned
models were effective only for a subset of diagnoses with

training data; 902 diagnoses had no training samples at all. In
zero-shot settings, pretrained models can make predictions
without reliance on training data. In Figure 5, we observe that
CliniqIR models outperformed the zero-shot pretrained models
across most data set categories, especially when diagnoses had
a low number of associated training notes. The highest and
lowest MRR scores obtained by CliniqIR_BM25 were 0.44 and
0.12, respectively, whereas CliniqIR_MedCPT’s highest and
lowest scores were 0.35 and 0.11.

Figure 5. Performance evaluation of CliniqIR models and each pretrained zero-shot baseline on the Medical Information Mart for Intensive Care III
data set. We categorized the results by the frequency of note representative per diagnosis. “Z” represents models used in a zero-shot setting. The CliniqIR
models performed best across data set categories in the low-resource regime. ClinicalBERT: Clinical Bidirectional Encoder Representations from
Transformers; CODER: cross-lingual knowledge-infused medical term embeddin; MedCPT: Medical Contrastive Pre-trained Transformers; MRR:
mean reciprocal rank; PubMedBERT: PubMed Bidirectional Encoder Representations from Transformers; SapBERT: Self-alignment Pretrained
Bidirectional Encoder Representations from Transformers; SciBERT: Scientific Bidirectional Encoder Representations from Transformers.

Among the zero-shot baseline, CODER and SapBERT’s
performances were better across most data set categories.
However, in the category in which all diagnoses were considered
(diagnoses with >0 notes), CODER outperformed SapBERT,
obtaining a maximum and minimum MRR score of 0.16 and
0.02, respectively. These MRR scores indicate that, on average,
both CliniqIR models returned the correct diagnosis for a case
among their top 5 predictions. In contrast, the best-performing
pretrained zero-shot baselines, CODER and SapBERT, returned
an accurate diagnosis for a query among their top 15 and 12
predictions, respectively.

Ensemble Models Yielded State-of-the-Art
Performance
We have shown that CliniqIR models deliver valuable diagnostic
decision support in the setting of limited or unavailable training
data. On the other hand, a supervised pretrained model such as
ClinicalBERT is an efficient alternative when training data are

abundant. To combine the strengths of both models, we used
the RRF algorithm as an ensemble strategy. The RRF algorithm
combines the ranks of all the ensemble members (a CliniqIR
model and a supervised model) to produce a new ranked list of
diagnoses for a given patient’s clinical note. We hypothesized
that creating an ensemble with both models would boost
predictive performance across various diagnoses regardless of
the availability of associated clinical notes.

To implement the RRF algorithm introduced in the Model
Ensemble: Reciprocal Rank Fusion section, we used
ClinicalBERT and a CliniqIR model to obtain separate ranked
lists for each diagnosis and concept across queries. We
compared the predictive performance of each individual model
to that of the ensemble in terms of MRR for each note
availability category. Figure 6 shows the output of the
experiments before and after fusing the predicted ranks from
both models.
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Figure 6. Performance evaluation of the models on the Medical Information Mart for Intensive Care III data set before and after the ensemble. Adopting
the reciprocal rank fusion (RRF) algorithm as an ensemble strategy boosted predictive performance across the data set. The Clinical Bidirectional
Encoder Representations from Transformer (ClinicalBERT) model cannot directly make predictions for diagnoses with no training samples. Hence, we
used “*” to mark such data set categories. The letter “S” denotes that ClinicalBERT was used as a supervised model. MedCPT: Medical Contrastive
Pre-trained Transformers; MRR: mean reciprocal rank.

Interestingly, for either of the CliniqIR models used, the
ensemble model improved the overall average performance for
predicting a wide range of diagnoses (>0 notes) in the
MIMIC-III data set. We also found that the RRF ensemble
successfully boosted performance across diagnosis categories
with both high and low note availability. On average, the RRF
ensemble model performed better than either of its constituent
models. Notable exceptions include the categories in which the
individual mean average precision of both CliniqIR_BM25 and
CliniqIR_MedCPT was <0.50 (refer to Multimedia Appendix
1 for details) and in the 100 to 250 training example range, in
which the ensemble was slightly worse than the supervised
model. In all other conditions, the interaction between both
models (the ensemble) led to better performance.

Discussion

Principal Findings
With thousands of known diseases potentially causing a patient’s
condition, it is often difficult—even for experienced
clinicians—to accurately diagnose every disease. Unlike the
pretrained models that require user input of possible diagnoses
before predictions can be made, CliniqIR represents a potential
decision support tool that takes advantage of the wealth of
medical literature in PubMed to generate a differential diagnosis.
Our study evaluated CliniqIR’s ability to formulate differentials
and predict uncommon diagnoses with few or no training
examples, reflecting conditions easily missed in real-life
practice. Results comparing CliniqIR’s performance to those
of pretrained biomedical transformers in supervised and
zero-shot settings highlight CliniqIR’s ability to operate
successfully as an unsupervised model. Therefore, our model’s
strength is not limited to rare and infrequent diagnosis
prediction, and our model is also a useful tool for generating a
first-stage differential diagnosis list. As such, a diagnostic

decision support tool such as CliniqIR can enhance physician
differential diagnoses and facilitate more efficient diagnoses by
providing literature-guided suggestions. Beyond disease
prediction, CliniqIR also demonstrates relevance in medical
education as a patient-centric literature search tool. Our study
demonstrated its ability to accurately cultivate a list of PubMed
literature relevant to a patient’s clinical narrative. This
functionality could greatly improve physician researcher
efficiency in performing dedicated literature reviews on behalf
of their patients.

In the era of large complex neural models, it is critically
important that diagnostic support tools remain simple and
interpretable. In health care, where decision-making is critical
and patient outcomes are at stake, clinicians’ ability to
understand and trust the inner workings of a diagnostic tool is
paramount. In response, CliniqIR is built on retrieval systems
that use simple and transparent weighting schemes to retrieve
and rank important terms in a collection of documents. This
transparency fosters trust in the tool’s accuracy and facilitates
collaboration between the tool and the health care professionals,
leading to ongoing model refinement as well as enhanced
clinical decision-making.

Limitations
The medical field is witnessing a growing trend in applications
built on generative large language models [52]. While our work
used a simpler approach, it remains valuable in scenarios with
limited access to significant computing resources. In addition,
it serves as a proof of concept for a retrieval-augmented medical
model, potentially leading to enhanced explainability and
accuracy for large language models in the health care domain.

Our study has 3 potential limitations. First, CliniqIR’s
knowledge source is limited to abstracts in PubMed, which has
well-known publication biases toward certain diagnoses [53,54].
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Therefore, the use of a single knowledge resource limits
CliniqIR’s generalizability to diseases and conditions not
represented in the PubMed corpus. For instance, conditions
such as COVID-19 and Alzheimer disease or rare diseases such
as sarcoidosis and cholangitis are covered in thousands of
published literature entries, whereas other conditions such as
“cellulitis and abscess of the leg” or “closed fracture of the
sternum” may receive less attention. Future studies will involve
a review of seemingly unrepresented diagnostic codes by linking
them back to their parent diagnostic codes to ensure appropriate
mapping between diagnosis codes and PubMed.

Second, our main experimental results were restricted to
diagnoses with at least 100 PubMed abstract representatives.
We identified a significant number of ICD-9-CM codes in
MIMIC-III with no associated medical literature among the 33
million PubMed abstracts (an overview of MIMIC-III diagnosis
distribution classes can be found in Multimedia Appendix 1).
We also found that CliniqIR’s predictive performance improved
with increasing PubMed coverage of the diagnosis, guiding our
decision to establish the 100-abstract inclusion criterion for
diagnoses (Multimedia Appendix 1). Future work will combine
information from biomedical journals, medical textbooks, and
Wikipedia for wider disease coverage.

Third, our MIMIC-III experiments limited the input to patient
discharge summaries containing a succinct synopsis of a
patient’s hospital stay, including symptoms, diagnostic

evaluation, clinical progression, and treatment information. In
real-world clinical situations, such complete retrospective
information would not be available during the initial diagnostic
process. Therefore, the results presented in this paper represent
a first feasibility study of CliniqIR and highlight some of the
difficulties involved in developing diagnostic support tools.

Conclusions
In this study, we presented CliniqIR, an unsupervised
retrieval-based model that leverages unstructured knowledge
resources to aid in the diagnostic process. We showed that the
CliniqIR models outperformed a supervised fine-tuned
pretrained clinical transformer model in predicting diagnoses
with <5 training samples. We also demonstrated that CliniqIR
outperformed pretrained clinical transformers in making
predictions for rare and complex conditions in a zero-shot
setting. While many existing research studies on diagnostic
prediction have focused on one disease at a time or only on
highly prevalent conditions, we combined the strengths of
CliniqIR and supervised learning to build a single ensemble
model that aids in diagnosing a broad spectrum of conditions
regardless of training data availability. Overall, our study reveals
the potential of IR-based models in aiding diagnostic
decision-making in an efficient, transparent, and educational
manner. This work will direct future studies to facilitate
successful application of machine learning and IR to building
robust and accurate clinical diagnostic decision support tools.
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