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Abstract
Background: With the increasing availability of data, computing resources, and easier-to-use software libraries, machine
learning (ML) is increasingly used in disease detection and prediction, including for Parkinson disease (PD). Despite the large
number of studies published every year, very few ML systems have been adopted for real-world use. In particular, a lack of
external validity may result in poor performance of these systems in clinical practice. Additional methodological issues in ML
design and reporting can also hinder clinical adoption, even for applications that would benefit from such data-driven systems.
Objective: To sample the current ML practices in PD applications, we conducted a systematic review of studies published in
2020 and 2021 that used ML models to diagnose PD or track PD progression.
Methods: We conducted a systematic literature review in accordance with PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) guidelines in PubMed between January 2020 and April 2021, using the following exact
string: “Parkinson’s” AND (“ML” OR “prediction” OR “classification” OR “detection” or “artificial intelligence” OR “AI”).
The search resulted in 1085 publications. After a search query and review, we found 113 publications that used ML for the
classification or regression-based prediction of PD or PD-related symptoms.
Results: Only 65.5% (74/113) of studies used a holdout test set to avoid potentially inflated accuracies, and approximately
half (25/46, 54%) of the studies without a holdout test set did not state this as a potential concern. Surprisingly, 38.9% (44/113)
of studies did not report on how or if models were tuned, and an additional 27.4% (31/113) used ad hoc model tuning, which is
generally frowned upon in ML model optimization. Only 15% (17/113) of studies performed direct comparisons of results with
other models, severely limiting the interpretation of results.
Conclusions: This review highlights the notable limitations of current ML systems and techniques that may contribute to
a gap between reported performance in research and the real-life applicability of ML models aiming to detect and predict
diseases such as PD.
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Introduction
Parkinson disease (PD) is a progressive neurodegenerative
disease that results in a loss of motor function with muscle

weakness, tremors, and rigidity. Secondary symptoms include
speech difficulties, sleep disorders, and cognitive changes.
Research suggests that pathophysiological symptoms can be
used to detect PD before the onset of the motor features [1].
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For these reasons, multiple clinical assessments and analyses
are required to diagnose PD and allow for early detection.
However, clinical diagnosis of PD is an error-prone process
[2]. A UK autopsy study found that the misdiagnosis rate
of PD is 24% [3]. Early detection is especially important
for PD since early neuroprotective treatment slows down the
progression of the disease and lessens the symptoms, which
improves the patient’s quality of life [4]. From diagnosis to
treatment, each case of PD is unique [5,6]. Precision medicine
using machine learning (ML) has the potential to better use
the varied data of individuals. Therefore, ML-based solutions
can play an important role in PD diagnosis [7,8].

Here, ML refers to the branch of artificial intelligence
that uses computational methods to perform a specific task
without being explicitly programmed, by learning from
previous examples of data and making predictions about
new data [9]. ML includes a broad range of standard
learning algorithms, such as decision trees, support vector
machines, and linear or logistic regression, as well as the
subfield of deep learning that uses sophisticated, biologi-
cally inspired learning algorithms called neural networks.
Generally, supervised algorithms learn from labeled data (eg,
classification or regression), whereas unsupervised algorithms
learn from hidden patterns in the unlabeled data (eg,
clustering).

In the medical field, ML is becoming an increasingly
central technique. For example, ML-based prediction models
are being developed to detect early signs of diseases,
improve decision-making processes, and track rehabilitation
efficacy. Fueled by advances in data-recording technology,
the increasing availability of patient data, and more accessible
databases and code libraries, these models can generate more
accurate insights about patients from large, existing health
data sets. Contreras and Vehi [10] showed that within a
decade, the number of articles proposing artificial intelligence
models in diabetes research grew by 500%. Despite the large
number of promising studies reported in the literature, the
adoption of ML models in real-life clinical practice is low
[11]. A wide range of ML models have been proposed for
the automatic detection of PD [12]. Searching with only 1
query related to ML and PD results in over 1000 publications
in 1 year alone. Despite the rising popularity of ML in PD
research, models are rarely deployed in the field due to their
irreproducibility and are limited for research purposes [13].
Although there may be many explanations, one possibility is
a disconnect between the models developed in research and
real-life implementation.

In contrast to previous systematic reviews that primar-
ily explored data types and model variations, the emphasis
of this review lies in the critical context of model valida-
tion approaches to provide a comprehensive understanding
of the strengths and limitations of ML models in the PD
field. Previous reviews emphasized data types; for instance,
Ramdhani et al [14] reviewed sensor-based ML algorithms
for PD predictions, and Mei et al [15] provided a compre-
hensive overview of outcomes associated with the type and
source of data for 209 studies that applied ML models for
PD diagnosis. Mei et al [15] also noted concerns about

insufficient descriptions of methods, results, and valida-
tion techniques. We focused on the critical evaluation of
validation techniques that are instrumental for the clinical
integration of ML.

In this review, we examined a cross-section of recent ML
prediction models related to PD detection and progression.
Our goal was to summarize the different ML practices in
PD research and identify areas for improvement related to
model design, training, validation, tuning, and evaluation.
Implementing best ML practices would help researchers
develop PD prediction models that are more reproducible and
generalizable, which in turn would improve their impact on
the entire landscape of patient care and outcomes.

Methods
Search Strategy
We conducted a systematic literature review in accord-
ance with PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses; Checklist 1) guidelines
in PubMed between January 2020 and April 2021, using
the following exact string: “Parkinson’s” AND (“ML” OR
“prediction” OR “classification” OR “detection” or “artifi-
cial intelligence” OR “AI”). The search resulted in 1085
publications.
Inclusion and Exclusion
Inclusion criteria were studies (1) on ML applied for
predicting PD, PD subscores or PD severity, and PD
symptoms; (2) published between January 2020 and April
2021; (3) written in English; and (4) with an available title
and abstract.
Questionnaire Design
We designed a customized questionnaire to easily parse
the literature and extract characteristics of the different
ML approaches. Textbox 1 summarizes the model details
extracted from the questionnaire, and the exact questionnaire
is provided in Multimedia Appendix 1. This questionnaire
was not intended to extract exhaustive details about these
models, but rather to target specific concepts that seem to
be inconsistently reported in the PD modeling literature. Our
rationale for each question, and how they were designed
specifically for PD, is provided below.

PD is a progressive neurological disorder, and symptoms
can vary widely for each individual. To categorize PD
progression and assess patient status, clinicians use stand-
ardized metrics such as the Unified Parkinson’s Disease
Rating Scale [16] and Hoehn and Yahr (H&Y) scores [17].
The first question is related to clearly defining the research
objectives or target outcomes of a particular study. The
challenge of classifying PD versus non-PD may depend
on symptom severity, which can be more readily assessed
when severity metrics are available. In certain stages of
PD, symptoms can be controlled or lessened through careful
medication regimens, such as levodopa. This medication’s on
and off periods are essential components for clinicians and
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researchers to consider. On and off episodes can create a
substantially different effect on symptoms [18,19], and these
symptoms are being used in ML algorithms to classify or
assess PD. For example, Jahanshahi et al [20] investigated the
levodopa medication’s effect on PD probabilistic classifica-
tion learning and demonstrated that learning is associated
with the patient with PD being in an on or off state. War-
merdam et al [21] showed that the patient’s state relative
to dopaminergic medication correlated with the arm-swing
task during PD walking. PD characteristics are important
while researching PD, and the application of the models

might play different roles depending on the data. As a
result, the questions regarding the severity and medication
state of patients can play a crucial role. In addition, class
imbalance, cross-validation techniques, and hyperparameter
tuning are critical concepts in ML. Class imbalance can lead
to biased models or misinterpretation of results. Cross-valida-
tion and hyperparameter tuning allow systematic exploring
of models and are essential for assessing models’ generaliza-
tion performance. Lastly, comparing model performance to
benchmark data can be valuable for research goals, but this
process is not always applicable or possible.

Textbox 1. Model details obtained during data extraction (n=113).
1. What have the authors classified using machine learning?
2. Was there any information about the participants being on or off medication prior to the experiment?
3. Of the study participants, how many were (1) individuals with Parkinson disease, (2) controls, and (3) individuals

with other diseases?
4. Did the study mention the distribution of the Unified Parkinson’s Disease Rating Scale and Hoehn and Yahr scores?
5. What class imbalance mitigation techniques did the authors perform?
6. How did the authors split or cross-validate the data set while training the model? If cross-validation was applied,

which particular strategies were applied?
7. If applicable, have the authors made the reader aware of the potential overinflated performance results (eg, the model

overfitting the training data)? If so, how?
8. How was the hyperparameter tuning done?
9. Did the authors analyze and discuss the models’ errors or misclassifications?

10. How did they compare their model to other modeling approaches by themselves or other authors, directly or
indirectly?

11. Did the authors use multiple evaluation metrics to measure the performance of the model(s)?

Data Extraction
Two authors assessed the inclusion criteria of 1085 studies
based on the title and abstract. During the initial manual
screening of the title and abstract, 155 studies that met the
initial inclusion criteria were identified. A total of 42 studies
were excluded after assessing the full text for eligibility.
These authors also extracted data from the studies using the
questionnaire described above. Ultimately, 113 studies and
the corresponding questionnaire responses were rechecked
independently by both reviewers, and disagreements were
resolved through discussion to reach a consensus. Question-
naire data from each study are provided in in Multimedia
Appendix 2.

For the multiple-choice and checkbox questions (ie,
questions 1, 7, 8, 9, 10, 11, 13, 14, and 15), we counted the
number of times each response occurred in the results.

Results
First, we provide a general overview of the study charac-
teristics in each publication. Then, we examine specific
results evaluating the ML modeling practices using the
following categories: PD characteristics, class imbalance, data
set splitting, overfitting, hyperparameter tuning, and model
comparisons.

General Overview of Studies

Methods Applied
The most prevalent ML classification algorithms were
support vector machines (53/113, 46.9%), boosting ensem-
ble learning (48/113, 42.5%; eg, gradient boosting, extreme
gradient boosting, and random forest), naive Bayes (4/113,
3.5%), decision tree (13/113, 11.5%), and k-nearest neighbor
(22/113, 19.5%). In regression models, the most preva-
lent methods included multiple linear or logistic regression
(32/113, 28.3%), regression trees, k-means clustering, and
Bayesian regression (3/113, 2.6%). Deep learning methods
included convolutional neural networks (10/113, 8.8%),
variants of recurrent neural networks (4/113, 3.5%; eg, long
short-term memory [LSTM] and bidirectional-LSTM), and
fully connected neural networks (22/113, 19.5%).

Data Modalities and Sources
More than half of the studies (65/113, 57.5%) used data
collected by the authors, whereas 38.9% (44/113) used a
public data set and 3.6% (4/113) used a mixture of public
and private data sets. The most common data modalities
were magnetic resonance imaging, single-photon emission
computerized tomography imaging, voice recordings or
features, gait movements, handwriting movements, surveys,
and cerebrospinal fluid features.
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ML Modeling Practices

PD Prediction Target
We categorized the studies based on 5 ML outcomes
for PD models: PD versus non-PD classification, PD
severity prediction, PD versus non-PD versus other diseases
classification, PD symptoms quantification, and PD progres-
sion prediction. A total of 10 studies fell into more than 1
category; among them, 8 (80%) studies examined both PD
versus non-PD classification and PD severity regression, and
2 (20%) studies examined PD versus non-PD classification
and PD symptoms quantification.

1. PD versus non-PD classification (59/113, 52.2%):
studies that proposed ML methods to distinguish
between individuals with PD from controls without PD

2. PD severity prediction (30/113, 26.5%): studies that
proposed ML methods to predict the stages of Unified
Parkinson’s Disease Rating Scale scores or H&Y scores
of PD

3. PD versus non-PD versus other diseases classification
(24/113, 21.2%): studies that proposed ML methods
to distinguish between PD, non-PD, and other diseases
(eg, Alzheimer disease)

4. PD symptoms quantification (9/113, 8%): studies that
proposed ML methods to distinguish between PD
symptoms (eg, tremor and bradykinesia) from no
symptoms or non-PD symptoms

5. PD progression prediction (1/113, 0.9%): studies that
proposed ML methods to predict PD progression

PD versus non-PD classification and PD versus non-PD
versus other diseases classification have target settings that
are binary variable predictions, as these targets are mostly
for predicting the presence or absence of PD. PD severity
prediction can be categorical (multilabel classification) or
continuous (regression), such as predicting the H&Y score.
PD symptoms quantification can also be categorical, such
as predicting the presence of resting tremors, rigidity, and
bradykinesia, or continuous, such as predicting the degree
of tremor intensity. PD progression prediction measures the
changes in overall disease severity at multiple time points.
We found that most studies (107/113, 94.6%) indicated PD
severity. However, fewer than half (53/113, 46.9%) of the
studies reported the patient medication status directly, with
38.9% (44/113) using public data sets.

Class Imbalance
Class imbalance occurs when 1 training class contains
significantly fewer samples than another class. In this case,
the learners tend to focus on the better performance of the
majority group, making it difficult to interpret the evaluation

metrics, such as accuracy, for groups with less representa-
tion. Prediction models can be significantly affected by the
imbalance problem. ML models can be highly unstable with
different imbalance ratios [22]. On predicting PD versus
non-PD classification, performance can suffer significantly
from an imbalanced data set and generate impaired results
[23]. Class imbalance can impact model external validity, and
either mitigating or at least reporting the potential concerns in
the interpretability of outcomes due to imbalances would help
the reader interpret the model’s power for predicting each
class.

There are multiple ways to handle a class imbalance
in the training phase, such as using resampling techni-
ques or weighted evaluation metrics. Resampling creates
a more balanced training data set, such as by oversam-
pling the minority class or undersampling the majority class
[24,25]. Moreover, there are alternative evaluation metrics,
for example, balanced accuracy and F-measure, but these
improvements on the standard evaluation metrics are also
affected by class imbalance [26]. We observed that among
the studies that attempted to mitigate class imbalance,
many of them adopted under- or oversampling methods and
then applied class weights to the evaluation metrics. Other
techniques were data augmentation and grouping data to use
the same ratio of minority and majority classes. In the case
of extreme class imbalance, Megahed et al [27] were not able
to mitigate overfitting. Overall, there is no perfect solution
to tackle this critical issue in ML; however, recognizing that
the problem exists and investigating appropriate mitigation
strategies should be standard practice. Our results found
at least moderate class imbalance in more than two-thirds
(77/113, 68.1%) of the studies, and only 18% (5/27), 31%
(5/16), 27% (8/30), and 25% (1/4) of studies for the PD
versus non-PD classification, PD versus non-PD versus
other diseases classification, PD severity prediction, and PD
symptoms quantification and progression prediction target
categories applied strategies to mitigate the effects of class
imbalance, respectively. In Figure 1, we illustrate the number
of studies with more than 30% class imbalance and how many
of them applied imbalance mitigation strategies.

In some cases, authors applied class imbalance strat-
egies but found no significant improvement in their model
performance. Reporting these cases still provides valuable
perspectives. For instance, van den Goorbergh et al [28]
illustrated that correcting for imbalance resulted in the
model exhibiting strong miscalibration and did not improve
the model’s capability to distinguish between patients and
controls. A total of 4 studies compared results when using
imbalanced data compared to imbalance-mitigated data.
Details of these studies are provided in Table 1.
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Figure 1. Number of studies with more than 30% class imbalance and the percentage of studies that applied the class imbalance strategies, separated
by PD prediction target. In the PD versus non-PD classification, PD versus non-PD versus other diseases classification, PD severity prediction, and
PD symptoms quantification and progression prediction categories, 46% (27/59), 67% (16/24), 100% (30/30), and 40% (4/10) had class imbalance,
but only 8% (5/59), 21% (8/30), 27% (8/30), and 10% (1/10) applied mitigation strategies, respectively. PD: Parkinson disease.

Table 1. Comparison between imbalanced data versus imbalance mitigation strategies.
Studies Participant distribution Techniques Conclusion
Moon et al [29] 524 patients with PDa and 43 patients with

essential tremor
• SMOTEb • F1-score improved

Veeraragavan et al [30] 93 patients with idiopathic PD and 73
controls; 10 patients with H&Yc 3; 28
patients with H&Y 2.5; and 55 patients with
H&Y 2

• SMOTE • Test accuracy improved

Falchetti et al [31] 388 patients with idiopathic PD and 323
controls

• Oversampling
• Undersampling
• Combination of

oversampling and
undersampling

• Without any sampling, the
combination of oversampling
and undersampling methods is
comparable

Jeancolas et al [32] 115 patients with PD and 152 controls • Data augmentation • Performed better for free speech
task

• No consistent improvement in the
sentence repetition task

aPD: Parkinson disease.
bSMOTE: synthetic minority oversampling technique.
cH&Y: Hoehn and Yahr.

Data Set Splitting
It is universally acknowledged that ML models can perform
arbitrarily well on data that were used to create the model—
that is, the training data set. This is why standard procedure
in training models uses separate data sets to try different
model variations and select the better variants. The confu-
sion that sometimes occurs is when these separate data sets
are used to select from a large number of model variants
(validation set) or only used for the evaluation of selected
variants (test set). The distinction in these 2 use cases of
separate data is sometimes not clear and depends on the
number of model variants tested. Critically, with modern ML

practice, many model variants are often tested on provided
data, which readily leads to overfitting on both the origi-
nal training data and validation set used for evaluation. A
separate holdout test set would be needed to properly evaluate
model performance [33]. A single split can be error prone in
estimating performance [34]. It is critical to have a holdout
test set to provide better performance estimation. Addition-
ally, cross-validation is a technique largely used to estimate
and compare model performance or to optimize the hyper-
parameters [35]. Cross-validation divides the data into folds
and iterates on these folds to test and train the models using
different partitions of the data set. We found that 78.8%
(89/113) of the studies used cross-validation; however, 5.3%
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(6/113) of the studies either did not mention the details of
the validation procedure or did not do any splitting. A total
of 9.7% (11/113) of the studies split the data set into only 2
sets, but it was not clear if the separate set was a validation

set or a test set. Only 19.5% (22/113) of the studies applied
cross-validation without a holdout test set (Table 2 and Figure
S1 in Multimedia Appendix 3).

Table 2. Distribution of studies according to data set splitting techniques.
Data set splitting techniques Studies (n=113), n (%)
Not mentioned 6 (5.3)
Split into 2 sets (training, test, or validation sets) 11 (9.7)
Only cross-validation 22 (19.5)
Split into 3 sets 7 (6.2)
Cross-validation and holdout test set 67 (59.3)

Cross-Validation
There are multiple types of cross-validation techniques. In
k-fold cross-validation, the data set is divided into k equal
folds randomly, and the model is trained and evaluated k
times. Each time, the model is trained using k–1 folds and
evaluated in the remaining fold. When the observations are
independent and identically distributed, k-fold cross-valida-
tion works well. When the data are not identically distributed,
k-fold cross-validation makes the model prone to overfitting
and not generalize well [36]. For instance, multiple data
samples from the same patient should generally not be present
in both training and testing data sets. Subject-wise cross-val-
idation separates folds according to the subject. Although
Saeb et al [37] concluded that subject-wise methods are more
clinically relevant compared to record-wise methods, Little
et al [38] argued that subject-wise methods might not be
the best in all use cases. However, Westerhuis et al [39]
demonstrated that cross-validation can be overoptimistic and
suggested that it is good practice to include a separate test
set at the end to properly evaluate a model. To reduce bias in

model evaluation, nested cross-validation is another technique
that involves 2 cross-validation loops [40]. The outer loop
generates k-folds and iterates through them, so each fold is
eventually used as a holdout test fold for a model developed
using the remaining data. The inner loop uses a similar k-fold
procedure to create a holdout validation fold that is used to
select the best model during model tuning. Nested cross-vali-
dation is a more robust way to evaluate models than k-fold
cross-validation alone, since using all available data to select
the model architecture can lead to biased, overfitted results
[40]. However, nested cross-validation is more computation-
ally intensive, and these models can be difficult to interpret
or implement (since they actually result in k-best models, so
performance is usually averaged over all k-best models). In
our analysis, we found that the most common cross-validation
technique is k-fold cross-validation (68/113, 60.2%), whereas
only 4.4% (5/113) of the studies adopted nested cross-valida-
tion (Table 3 and Figure S2 in Multimedia Appendix 3). Of
the 113 studies, 20 (17.7%) adopted 2 types of cross-valida-
tion techniques, and 5 (4.4%) adopted 3 types of techniques.

Table 3. Distribution of studies that adopted cross-validation techniques.
Cross-validation techniques Studies (n=113), n (%)
k-fold cross-validation 68 (60.2)
Leave-p-out cross-validation 25 (22.1)
Stratified or subject-wise cross-validation 21 (18.6)
Nested cross-validation 5 (4.4)
No cross-validation 24 (21.2)

Overfitting
We selected publications that did not evaluate their models
with a holdout test set and then we analyzed if they men-
tioned that the proposed models could possibly be overfitting.
Models can be overfitted for multiple reasons, such as an
imbalanced data set or the lack of proper model selection and
validation technique. Even with cross-validation, if a separate
holdout set is not used, then the results can be inflated. Rao et
al [41] demonstrated that leave-one-out cross-validation can
achieve 100% sensitivity, but performance on a holdout test
set can be significantly lower. Cross-validation alone is not
sufficient model validation when the dimensionality of the
data is high [41]. However, there are multiple ways to address
or prevent overfitting, such as the examples provided by
Ying [42]. Making the reader aware of overfitting concerns

in the interpretability of results should be standard practice.
Therefore, we searched to see if the authors mentioned that
their model can suffer from overfitting. For this analysis, we
excluded studies that applied the cross-validation technique
with a holdout test set. We found that just over 54% (25/46)
of the studies that likely suffer from overfitting did not
mention it as a concern. Although 45% (21/46) of studies
mentioned overfitting as a potential limitation, many of them
did not have any detailed discussion about this.

Hyperparameters
While training a model, hyperparameters are selected to
define the architecture of the model. These hyperparameters
are often tuned so that the model gives the best performance.
A common method of finding the best hyperparameters is by
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defining a range of parameters to test, then applying a grid
search or random search on the fixed search space, and finally
selecting parameters to minimize the model error [43]. These
methods can be extremely computationally expensive and
time-consuming depending on data complexity and available
computation power [44]. Regardless of the method applied,
it is considered good practice to make clear statements
about the tuning process of hyperparameters to improve

reproducibility [45]. This practice ensures parameters are
properly selected and models are ready for direct comparison.
Our results demonstrated that 38.9% (44/113) of studies did
not report on hyperparameter tuning (Table 4 and Figure
S3 in Multimedia Appendix 3). Of these, 2 adopted least
absolute shrinkage and selection operator logistic regression,
and 3 used a variant of logistic regression or linear regression,
which typically have few or no hyperparameters to adjust.

Table 4. Distribution of studies according to hyperparameter tuning methods.
Hyperparameter tuning methods Studies (n=113), n (%)
Not reported 44 (38.9)
Ad hoc 31 (27.4)
Random search 1 (0.9)
Grid search 27 (23.9)
Others 10 (8.8)

For many other models, there are inherently only a few
hyperparameters that are usually adjusted; for instance, the
major hyperparameter for the neighbor model is the num-
ber of neighbors, k. On the other hand, more complex
models such as convolutional neural networks and LSTM
require thorough tuning to achieve meaningful performance.
Regardless of the number of hyperparameters in a model,
proper tuning would likely still contribute to achieving
optimal performance. The choice of hyperparameters will
impact model generalization, so it is worthwhile to examine
changes in performance with different settings [46].

Model Comparison
In research domains that require complex deep learning
models to achieve state-of-the-art performance, such as

computer vision and natural language processing, it has
become a regular practice to compare models with numeric
benchmark data sets to contextualize their proposed model
and provide insight into the model’s relative performance
to peers. Although such rigorous benchmarking and compari-
son is not possible given the heterogeneous data sets in PD
research, it is important to contextualize a model’s perform-
ance relative to other models, strategies, and data sets. We
found that 66.4% (75/113) of studies compared results from
multiple alternative models in their work, and 15% (17/113)
of studies compared their results with previously published
models. However, 18.6% (21/113) of studies only reported
their single model performance and made no comparison to
any other models or benchmarks (Table 5 and Figure S4 in
Multimedia Appendix 3).

Table 5. Distribution of studies according to model comparison methods; 18.6% (21/113) of studies did not compare their model results to any
alternative models or previously published models or benchmarks.
Model comparison methods Studies (n=113), n (%)
Compared with their own multiple models 75 (66.4)
Compared with previous models or benchmarks 4 (3.5)
Compared with previous models and their own multiple models 13 (11.5)
No comparisons 21 (18.6)

Discussion
Principal Findings
In summary, we have comprehensively reviewed the general
practices of ML research applied to PD in a recent cross-
section of publications. We have identified several impor-
tant areas of improvement for model building to reduce the
disparity between in-the-lab research and real-world clinical
applications. Standardizing the model reporting techniques
and implementing best ML practices would increase the
acceptability and reliability of these models to improve
patient evaluation and care [47].

For the interoperability and usability of the models,
clinicians need detailed information about the patients

included in the model’s training data, such as their medication
state and PD progression stage. This information determines
the predictive validity of a model to new patients and settings.
We found that 94.7% (107/113) of the studies explained the
PD severity of their patients, whereas only 46.9% (53/113)
of studies reported the medication state of the patients. To
incorporate data-driven algorithms in real life, the description
of medication is significantly relevant to PD [48,49]. The
overall representation of demographic samples in the training
set should be accounted for as well. Our results show that
68.1% (77/113) of the studies had a class imbalance greater
than 30% difference in their data set, and less than one-third
(from 5/27, 18% to 5/16, 31%) of the studies addressed
imbalance as a potential issue or considered its impact on
the model results.
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Another major finding is the lack of a standard report-
ing framework for a model’s hyperparameter search and
tuning. Hyperparameter tuning has a major impact on the
model configuration and, by extension, its performance [50].
For example, Wong et al [51] demonstrated that a model
using tuned (grid-searched) hyperparameters outperformed
a model using default hyperparameters. Addressing hyper-
parameters is also essential for reproducibility, including a
report on the final model configuration and how the authors
made the decision. Although this is a considerably impor-
tant aspect of ML model reporting, our study showed that
44 (38.9%) of the 113 studies did not report the hyperpara-
meter tuning approach. Of these, 5 studies adopted logis-
tic regression or linear regression. Traditional regression
models are not expected to undergo significant hyperparame-
ter tuning; however, variants that involve hyperparameters
would likely still benefit from tuning. Consistent reporting of
hyperparameter tuning practices will enhance the robustness
and reliability of these models.

Moreover, to provide context to the results of model
performance, comparisons of different models or with
previously published models give a general idea of the quality
of the proposed models. We found that 18.6% (21/113) of the
studies only reported their proposed models; on the contrary,
the reporting standard of proposed models in the computer
vision and natural language processing fields is extensive.
For instance, Wang et al [52] and Liu et al [53] proposed
methods for visual recognition, and they reported large-scale
experiment results with different data sets and compared
their results with more than 10 previously proposed meth-
ods. Similarly, in natural language processing, to propose a
task such as emotion cause extraction, Xia and Ding [54]
compared around 8 methods with different evaluation metrics.
These are a few cases to demonstrate that such compari-
sons are widely executed in the computer vision and natural
language processing communities to propose a method. This
systematic practice of comparison with previously published
approaches results in reproducibility. Unfortunately, we found
that only 15% (17/113) of the studies compared with
previously proposed methods. However, in the medical field,
due to the challenges of data availability, proper comparisons
might not be possible.

There are several factors in ML and deep learning research
that can create misleading results. One major factor is proper
model validation, particularly in how the training and test
data are separated. We found that 5.3% (6/113) of studies
either did not provide the details about data set splitting
or did not do any splitting, and 15.9% (18/113) of studies
performed static training, validation, and test set separation,
which provides limited stability of scores. Cross-validation is
a more stable validation method conducted while training the

model and reduces the risk of overfitting [55]. The majority
(89/113, 78.8%) of studies adopted some form of cross-val-
idation, and the most common cross-validation technique
adopted was k-fold (68/113, 60.2%). Nevertheless, the use
case of different validation techniques depends on the data
set and is problem specific. As powerful as cross-validation is
in creating reliable models, applying simple cross-validation
does not guarantee that the model is not overfitted [41]. For
the studies that did not evaluate their results with a holdout
test set in a cross-validation manner, we extracted information
from their discussion sections. To be precise, we checked if
they made their reader aware of how the study results might
be overfitting. We found that 46% (21/46) of the studies that
are potentially reporting overfitted scores did not mention this
concern. The developed models should be reported with their
limitations for transparency to allow for further improvement
and real-world adoption.

In this systematic review, we sampled 113 recent studies
on PD to summarize the standard ML practices and addressed
broader concerns on reporting strategies. It is challenging for
authors to always implement the best practices considering
the practical realities of health care data, including limited
sample sizes, noisy data, medical data privacy, etc. However,
whenever possible, authors should consider these reporting
practices, especially to acknowledge limitations in their data,
model design, and performance. This will help to determine
reasonable use cases for these models or to identify areas of
improvement before they are ready for clinical translation.
These considerations can also extend to other health care
applications of ML.
Conclusion
Despite the increasing number of studies, our results
demonstrate there are still many opportunities for improve-
ment in reporting and implementing ML for applications in
PD detection and progression. Studies should report detailed,
standardized patient characteristics; use robust validation
techniques to ensure the model’s reliability; and justify
choices of evaluation as well as hyperparameters. We found
that 75% (58/77) of the studies sampled from 2020 to
2021 did not address class imbalance, and one-third (44/113,
38.9%) of studies did not report hyperparameter tuning.
Reporting is the first step to understanding the usability
and interpretation of models. By shifting the focus to the
critical evaluation of these methods, we aim to improve the
reporting and review of ML to strengthen the connection
between research and real-world clinical applications. Ideally,
the processes can be standardized, and clinical measurements
can be leveraged more effectively for prediction models to
improve the real-world impact on individuals with PD or
other health conditions.
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