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Abstract

Background: A wealth of clinically relevant information is only obtainable within unstructured clinical narratives, leading to
great interest in clinical natural language processing (NLP). While a multitude of approaches to NLP exist, current algorithm
development approaches have limitations that can slow the development process. These limitations are exacerbated when the
task is emergent, as is the case currently for NLP extraction of signs and symptoms of COVID-19 and postacute sequelae of
SARS-CoV-2 infection (PASC).

Objective: This study aims to highlight the current limitations of existing NLP algorithm development approaches that are
exacerbated by NLP tasks surrounding emergent clinical concepts and to illustrate our approach to addressing these issues through
the use case of developing an NLP system for the signs and symptoms of COVID-19 and PASC.

Methods: We used 2 preexisting studies on PASC as a baseline to determine a set of concepts that should be extracted by NLP.
This concept list was then used in conjunction with the Unified Medical Language System to autonomously generate an expanded
lexicon to weakly annotate a training set, which was then reviewed by a human expert to generate a fine-tuned NLP algorithm.
The annotations from a fully human-annotated test set were then compared with NLP results from the fine-tuned algorithm. The
NLP algorithm was then deployed to 10 additional sites that were also running our NLP infrastructure. Of these 10 sites, 5 were
used to conduct a federated evaluation of the NLP algorithm.

Results: An NLP algorithm consisting of 12,234 unique normalized text strings corresponding to 2366 unique concepts was
developed to extract COVID-19 or PASC signs and symptoms. An unweighted mean dictionary coverage of 77.8% was found
for the 5 sites.

Conclusions: The evolutionary and time-critical nature of the PASC NLP task significantly complicates existing approaches
to NLP algorithm development. In this work, we present a hybrid approach using the Open Health Natural Language Processing
Toolkit aimed at addressing these needs with a dictionary-based weak labeling step that minimizes the need for additional expert
annotation while still preserving the fine-tuning capabilities of expert involvement.

(JMIR Med Inform 2024;12:e49997) doi: 10.2196/49997
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Introduction

The advent of the electronic health record (EHR) and the wealth
of longitudinal clinical data contained therein have afforded
tremendous opportunities for both clinical research and digital
health applications. Fundamental to the feasibility of both of
these applications is the availability of clinical information,
which, despite the plethora of raw data available in the EHR,
can be nontrivial to extract in a computationally accessible
format. This is particularly the case for information only
accessible within unstructured data, such as clinical narratives,
due to the intrinsic nature of human language. The same
information can be expressed in many different ways, making
the task of algorithmic extraction and standardization for
computational semantic interpretation very challenging.
Concurrently, however, as much as 80% of clinically relevant
information has been found to only be accessible in unstructured
form [1]. The need for computationally accessible information
extracted from unstructured data has been particularly
highlighted with recent research efforts surrounding the ongoing
COVID-19 pandemic, particularly with respect to its postacute
sequelae (PASC) [2-5]. PASC is defined as ongoing, relapsing,
or new symptoms or other health effects occurring after the
acute phase of the SARS-CoV-2 infection (ie, present 4 or more
weeks after the acute infection). A substantial portion of the
information of interest relevant to PASC, for instance, signs
and symptoms, is often recorded only within narrative text and
is not otherwise found within structured EHR data [6].

One proposed solution to computational extraction of the
information within unstructured text is natural language
processing (NLP). While a multitude of approaches to clinical
NLP currently exist, several existing limitations in these
approaches that slow down the development process are
magnified by the ongoing and evolving nature of the PASC
task. In previous work, we introduced the Open Health Natural
Language Processing (OHNLP) Toolkit (OHNLPTK), an NLP
framework aiming to provide NLP capabilities at scale in a
standards-compliant and consensus-driven manner. In this work,
we will highlight current limitations in NLP algorithm
development approaches and illustrate our approach to
addressing these issues by using PASC as an NLP algorithm
development use case for the OHNLPTK.

NLP-Based Clinical Information Extraction
Fundamentally, many of the current applications for clinical
NLP lie in information extraction [7]: specifically, the
identification of the presence of certain clinical concepts within
a clinical narrative, determination of whether it applies to the
patient to which the clinical document in question pertains (eg,
identification of positive or negative, subject, and other clinically
relevant contextual information), and normalization such that
named entities sharing the same semantic meaning but with
differing lexical forms are mapped to a consistent, codified,
computationally accessible definition.

In the following subsections, we will briefly discuss existing
approaches to each of these tasks as well as several resources

JMIR Med Inform 2024 | vol. 12 | e49997 | p. 2https://medinform.jmir.org/2024/1/e49997
(page number not for citation purposes)

Wen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/49997
http://www.w3.org/Style/XSL
http://www.renderx.com/


that can be used to augment each of these tasks as relating to
PASC.

Clinical Named Entity Recognition
Identification of clinical concept mentions within unstructured
text is a named entity recognition (NER) task. Broadly,
approaches to this problem can be subdivided into 3
subcategories: symbolic [8-12], statistical (including deep
neural) [13-17], and some hybrid of the 2 [18-21], alluding to
the approach used to identify the boundaries of the entities
within the text itself. Symbolic approaches are typically either
expert-driven, where symbolic rule sets are handcrafted by
clinical domain experts, or dictionary-based, where various
clinical ontologies are mined for lexical variants for matching
purposes. Statistical systems bypass such knowledge engineering
efforts by training a machine learning system to label concept
mentions given a collection of annotated text documents with
concept mentions manually annotated by domain experts.

Each of these approaches has its own benefits. Due to their
nature of being handcrafted by domain experts, expert-driven
approaches can achieve extremely high performance and can
be easily fine-tuned to meet application-specific needs and
correct any observed errors. Conversely, expert-driven systems
tend to be limited in scope to specific concepts due to their need
for expert knowledge engineering, which can be expensive both
temporally and financially. While this is sufficient for many
applications, such an approach is only suitable if sufficient
resources are present for the domain experts and the set of
concepts that are needed is known. Dictionary-based symbolic
systems aim to address this issue. The solution to the domain
expertise problem has been through the use of general clinical
ontologies and similar vocabulary resources, such as the
National Library of Medicine’s Unified Medical Language
System (UMLS), either as a basis to construct general
dictionaries that cover concepts from a much greater breadth
of the clinical domain, although without the manual curation
that is afforded to expert-driven systems, or to derive a larger
set of lexical variants for a specific set of concepts without the
need to engage domain expertise. While these systems tend to
not perform as well as expertly curated rule-based systems,
generally high performance has been shown to be achievable.
For statistical systems, the creation of a high-quality annotated
corpus is also an expensive and laborious process. The situation
becomes more complicated in cases of multisite collaboration
as clinical narratives may contain patient identifier information,
making data sharing challenging, and at the same time, the local
site may not have the necessary resources for creating annotated
corpora. Additionally, they are difficult to fine-tune as there is
very little control short of additional annotation and training
data manipulation to correct any errors. Models used for
statistical approaches include conditional random fields
[14,21-23], hidden Markov models [24-26], Bidirectional
Encoder Representations from Transformers (BERT) (after
finetuning specifically to accomplish the NER task) and
BERT-like models (which are particularly prevalent in, but not
exclusive to, multilingual use cases) [13,15,27-30], and other
neural methods such as recurrent neural networks and
convolutional neural networks [17,31-34].

Contextual Feature Detection for Clinical Named
Entities
Unlike in the general domain, certain contextual features pose
a great impact on the relevance and meaning of extracted
concepts in the clinical domain. Of particular note is a concept’s
assertion (asserted vs possible vs hypothetical), negation,
temporality, and whether or not it relates to the patient (as
opposed to, eg, a family member), as all of these drastically
change the relevance of the concept for downstream
applications.

Much like for NER, both symbolic and statistical approaches
exist for context detection, with many of the same benefits and
drawbacks for each. Among the symbolic systems [35-38], the
ConText algorithm proposed by Chapman et al [39] is a
symbolic system that is widely adopted among clinical NLP
implementations. Various statistical approaches have also been
proposed, ranging from traditional statistical machine learning
methods such as linear kernel support vector machines [40-42]
to deep neural methods [43-45]. There is no clear evidence that
statistical approaches outperform the widely adopted ConText
algorithm [42].

Concept Normalization Approaches and Available
Resources
Identification of named entities and whether they apply to the
patient is only part of the problem for clinical information
extraction tasks: to be computationally accessible, these named
entities must first be mapped to some known coding system
such that named entities with differing lexical variations but
with the same semantic meaning are grouped in some
computationally accessible manner; that is, a computationally
accessible thesaurus for the extracted named entities must be
constructed.

There are several approaches to this concept normalization (also
often referred to as entity linking) problem. One of the side
benefits of symbolic NER methods is that they will often have
this normalization built in, whether as part of the construction
process by domain experts for expert-based systems or due to
the nature of their lexical variants being derived from structured
ontologies that themselves often act as pseudothesauri, as is the
case for the UMLS for dictionary-based systems [10,11,21].

The same is not always true for NER approaches based on
statistical methods: while some systems, particularly those
trained to extract a specific set of clinical concepts, do
incorporate normalization by the very nature of their training
approach, other systems trained to perform general named entity
recognition do not incorporate such an element. A secondary
step must then be taken to perform such a normalization,
oftentimes again leveraging ontologies by doing similarity
matches against ontology entries [21]. Despite this, it is
worthwhile to note that normalization performance is typically
inferior to that of symbolic approaches.

Irrespective of the approach, a common theme in clinical NLP
is that the extracted named entities are typically mapped to some
ontology for later ease of computational access, particularly the
UMLS due to its breadth of source vocabularies.
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PASC and the Emergent Phenotyping Workflow
Problem
It is worthwhile to note that NLP-derived data often serves as
supplemental information, in that it is used to supply information
that, while needed for a particular use case, cannot be found in
structured data. This is especially true for phenotyping and
similar cohort identification tasks such as clinical trial
recruitment, which often have specific inclusion and exclusion
criteria that draw from information elements in both structured
and unstructured data.

When the inclusion or exclusion criteria and features of interest
pertain to emergent entities of interest, however, as was the case
with COVID-19, existing approaches to constructing NLP
algorithms break down. Statistical methods for NER require
data to train, which may not yet exist in sufficiently large
volumes due to the fact that the entities of interest themselves
are emergent. Additionally, it is worthwhile to note that in
certain circumstances surrounding emergent clinical entities,
drastic changes to clinical workflow and, by extension, the
contents of the documentation itself can occur, as was the case
with COVID-19.

Symbolic methods, however, may not necessarily fare better.
Ontology-derived dictionary-based approaches can fail in these
circumstances due to the fact that ontologies and similar
resources used may not yet be updated to contain these emergent
entities (or may not yet have new or updated names to refer to
existing entities as the terminology used changes over time),
and their slow update frequency (biyearly, in the case of the
UMLS) results in them being unsuitable for dealing with
emergent needs. Expert-driven systems, on the other hand, fare
better due to their relative ease of fine-tuning, but the limitations
faced by expert-based NER still apply, rendering a purely
expert-driven solution infeasible for many use cases.

It is important to note that these problems do not only occur
with the introduction of emergent diseases, as was the case with
the COVID-19 and PASC studies; rather, attempts to construct
NLP systems to address these use cases magnify existing
limitations that typically only slow down the development
process.

Irrespective of whether these limitations merely slow down or
completely hinder NLP development for a particular use case,
such limitations are undesirable given the increasing demand

for NLP to fulfill a variety of information needs. It thus becomes
evident that an approach capable of prototyping and developing
NLP systems in a more rapid manner is needed that can combine
the fine-grained control and rapid prototyping ability of
expert-driven systems with the general applicability afforded
by dictionary systems. It is this need that motivates the work
presented here.

Usage of NLP for PASC-Related Tasks
With regard to NLP usage in the context of PASC, rather than
a focus on NLP algorithm development, NLP has primarily
been used indirectly for other tasks within the PASC context.
For instance, Bhavnani et al [46] extracted 20 signs or symptoms
defined by the CDC as being PASC-related from clinical
narratives to identify symptom-based phenotypes for patients
with PASC, while Zhu et al [47] fine-tuned various BERT-based
models to classify documents pertaining to patients with PASC
signs or symptoms. More applicable to this work is work
primarily focused on identifying what specific NLP-derived
signs or symptoms are appropriate for inclusion in a PASC signs
or symptoms extraction task. For instance, Wang et al [48] used
MTerms [49] to mine existing UMLS concepts from clinical
narratives associated with COVID-19 positivity to build a
lexicon of 355 long COVID-19 symptoms. We use their
developed lexicon as one of the bases for further development
in this study.

Clinical NLP to Empower Clinical Research and
Translation
We developed the OHNLPTK as part of previous work to enable
the rapid development and dissemination of NLP algorithms
for empowering clinical research and translation [50]. We follow
the RITE-FAIR (reproducible, implementable, transparent,
explainable-findable, accessible, interoperable, and reusable)
principles [51] to ensure scientific rigor and fairness for
resources developed, demonstrated, and disseminated for clinical
NLP for health. We have released the OHNLPTK to encourage
collaboration across the clinical NLP community to address
real-world data problems. The toolkit consists of the following
components: (1) a federated NLP deployment framework for
privacy-preserving clinical NLP enabled by clinical common
data models, (2) a clinical text retrieval and use process toward
scientific rigor and transparent (TRUST) process, and (3) an
open science collaboration toward real-world clinical NLP
(Figure 1).
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Figure 1. An overview of the Open Health Natural Language Processing ecosystem. FAIR: findable, accessible, interoperable, and explainable; NLP:
natural language processing; OHNLP: Open Health Natural Language Processing; RITE: reproducible, implementable, transparent, and explainable.

Methods

Overview
In this study, we report on the use of the OHNLPTK to rapidly
develop and prototype an NLP system using a case study on

PASC signs and symptoms based on PASC resources available
in 2 studies. In the ensuing subsections, we will detail each of
the steps associated with the creation and evaluation of the final
NLP algorithm. For an overview of the entire process, please
refer to Figure 2.

Figure 2. An overview of dictionary construction and federated refinement workflows. PASC: postacute sequelae of SARS CoV-2 infection; UMLS:
Unified Medical Language System.
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PASC Resources
As PASC has been recognized nationally, some useful language
resources have been developed. Deer et al [52] identified 303
articles published before April 29, 2021, curated 59 relevant
manuscripts that described clinical manifestations in 81 cohorts
of individuals 3 weeks or more following acute COVID-19, and
mapped 287 unique clinical findings to Human Phenotype
Ontology (HPO) terms. Wang et al [48] identified 355 long
COVID-19 symptoms corresponding to 1520 UMLS concepts,
which in turn resulted in 16,466 synonyms identified from
328,879 clinical notes of 26,117 COVID-19 positive patients
from their postacute infection period (days 51-110 from the first
positive COVID-19 test).

Dictionary Construction
An initial phenotype definition consisting of textual descriptions,
International Classification of Diseases, and HPO codes
corresponding to clinical entities of interest to PASC was
obtained from the aforementioned PASC resources. These
entities, where possible, were cross-referenced against the
UMLS 2021AB version to obtain an algorithmically derived
base dictionary for further refinement. Entities that could not
be cross-referenced for enhancement were noted for manual
annotation in our second step.

Dictionary Enhancement and Rule Creation
We collected 128 clinical notes from the post–COVID-19 care
clinic at Mayo Clinic and split them into a training set (98 notes)
and a testing set (30 notes). For the training set, the
algorithmically derived base dictionary was run on the document
set to generate a weakly labeled data set that was then loaded
into the MedTator web annotation tool [53] for manual review
and dictionary refinement. Deficiencies (ie, mentions and
concepts that were not identified or contained within the
algorithmically defined base dictionary) were identified by
domain expert review on the training set. Identified missed
lexical variants were then manually linked to an appropriate
concept ID and added to the base dictionary. Additionally, any
concepts missed during base dictionary generation (ie, a clinical
concept that was identified as PASC-relevant in the training set
but was not part of those concepts identified in the 2 PASC
resources used as a baseline) were manually added. To capture
complex contextual information, additional rules were created.
For example, for “learning difficulty,” a rule was created to
combine a set of terms meaning difficulty with learning, that
is, “(%reDIFFICULTY) to (learn, retain, and gain) new
information.” The testing set was manually annotated by a single
human annotator blindly using the NLP system.

Concept Normalization
Due to the fact that the base dictionary was derived from a
structured metathesaurus, the UMLS concept normalizations
to UMLS concept unique identifiers (CUIs) were already
present. To be compatible with standardization and
cross-compatibility, we opted to further map the UMLS CUIs
to associated Observational Health Data Sciences and
Informatics (OHDSI) Athena concept IDs [54], which are used
as part of the OHDSI Observational Medical Outcomes
Partnership (OMOP) common data model. This was done

algorithmically using text string matching for concept names,
followed by manual linking when an exact text match could not
be found. For PASC terms that could not be mapped, we
manually reviewed and aligned them with the closest Athena
concept identifiers, if available, or mapped them to the HPO
identifiers. Concept IDs that could not be mapped to either an
Athena concept ID or an HPO identifier (due to emergent
entities not being yet present in the source vocabularies) were
encoded with custom IDs, and these IDs were recorded for later
updates once associated ontologies were updated.

Lift Analysis and Local Evaluation
Dictionary coverage was compared before and after refinement
to evaluate the effect of our weakly supervised refinement
approach, specifically with respect to the number of relevant
mentions missed by an ontology-based dictionary-only approach.

Beyond being used in the multisite evaluation phase described
later in this study, Mayo Clinic’s 30-note testing set was also
separately compared against the results from the refined NLP
algorithm for in-depth evaluation of NLP and manual annotation
mismatches.

Multisite Evaluation
The resulting NLP algorithm was distributed to 5 sites
(University of Minnesota, University of Kentucky, University
of Michigan, Stony Brook Medicine, and Columbia University)
for evaluation to evaluate the federated evaluation component
of the OHNLPTK. Each site manually annotated 10 notes for
long COVID-19 signs or symptoms using 2 annotators with an
independent adjudicator for disagreements. The resulting text
annotations (medical concepts that do not contain PHI) were
then returned to the Mayo Clinic for dictionary coverage analysis
through comparison against the NLP algorithm.

Ethical Considerations
Human subject ethics review and informed consent were handled
through the individual institution review boards of participating
institutions, which gave final approval for this research on the
participating patient cohort. The N3C data transfer to National
Center for Advancing Translational Sciences is performed under
a Johns Hopkins University Reliance Protocol (IRB00249128)
or individual site agreements with the National Institutes of
Health. All data transmitted to the coordinating site was either
manually deidentified or did not contain PII by definition before
transmission. No specific compensation was provided to
participants as part of this research.

Results

Dictionary Construction, Lift Analysis, and Local
Evaluation
The final dictionary created from previous PASC resources
consists of 12,145 unique text strings, mapped to 2343 HPO or
OMOP concept identifiers. Within the Mayo Clinic training or
development set, the baseline system detected 8090 PASC
concept mentions. After manual verification, we identified that
338 PASC concept mentions were missed, rendering the total
number of annotated mentions within the training set to be 8428.
The final refined dictionary includes 12,234 unique text strings,
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mapped to 2366 HPO or OMOP concept identifiers (ie, 23
additional concepts and 89 additional text strings were added).
A total of 4 PASC concepts present in the UMLS were captured
that could be mapped to neither the OMOP vocabulary nor the
HPO (eg, teeth chatter and unrefreshed sleep).

For the local evaluation portion of this study, only the PASC
sign and symptom sections of the 30 Mayo Clinic test set notes
were compared. In the following report of the results, to
facilitate reader understanding, we will use the traditional true
positive, false positive, or false negative terminology common
to NLP evaluations, despite them not being fully applicable due
to varying definitions of what is a true positive depending on
what the resulting NLP artifacts are being used for or how
PASC-related should be defined for the use case (eg, is it
PASC-related if the patient had severe COVID-19 in the past
or only if it is explicitly written out as “...consequent to previous
COVID-19 infection?”). For more details on this, please refer
to the “Discussion” section “On Gaps in the NLP Clinical
Information Extraction Subtask.” A total of 1560 annotations
were produced by the NLP algorithm, while manual annotation
produced 1067 annotations. Of these, 1061 (236 unique text
strings ignoring capitalization) would be considered true
positives in a traditional NLP evaluation, 489 (445 unique text
strings ignoring capitalization) false positives, and 6 (4 unique
text strings ignoring capitalization) false negatives. It is

important, however, to note that due to certain features of this
task, a traditional NLP evaluation is not necessarily fully
accurate. For instance, among a substantial portion of the “false
positives,” the NLP algorithm made accurate extraction of a
sign or symptom that is PASC-related, but human annotation
did not occur as the sign or symptom is preexisting and not
resulting due to acute COVID-19 infection. For example, the
patient has a previous medical history of some of those signs
or symptoms, like a headache or migraine, before COVID-19.
Similarly, false negatives may not necessarily be attributed to
issues with the NLP algorithm. For instance, of the 4 unique
text strings composing the false negatives (sexsomnia, taste or
smell changes, burning mouth, and sensitivities to noise and
light), one (sexsomnia) was not recorded as a PASC-related
concept in either of the source articles from which the NLP
concepts to extract were defined, but was suggested to be
PASC-related within the textual narrative itself and was
therefore annotated as such by the human annotator. The other
3 were either caused by a span mismatch or were lexical variants
that were neither in the ontologies used to generate the baseline
dictionary nor in the training set for manual expert refinement.

Multisite Evaluation
In Table 1, we present the results from manual annotation after
adjudication as well as the dictionary coverage for these
annotations.

Table 1. Dictionary coverage statistics.

Site 5Site 4  Site 3Site 2  Site 1  Results 

73 118 171 23 126Number of annotations, n

65 84 138 20 77Number in dictionary, n

65/73 (89)84/118 (71.2)138/171 (80.7)20/23 (87)77/126 (61.1)Coverage ratio, n/n (%)

In Table 2, we present an analysis of the annotations not covered
by the NLP algorithm. Here, we define a new concept as an
annotation that was not included as a concept in the original
dictionary or rule set, a new variant as an annotation that is an
additional lexical variant of a concept existing in the original

dictionary or rule set, and an annotation error as an annotation
that falls outside of our task definition: for example, COVID-19
or long COVID-19 is not a sign or symptom of COVID-19 or
PASC. For a detailed listing of missed terms, please refer to
Multimedia Appendix 1.

Table 2. Statistics of annotations not covered by dictionary.

Site 5Site 4Site 3Site 2Site 1Results

8 34 33 3 49 Number of annotations not covered by nat-
ural language processing, n 

1/8 (12.5)4/34 (11.8)9/33 (27.3)2/3 (66.7)23/49 (46.9)New concept, n/n (%)

4/8 (50)26/34 (76.5)17/33 (51.5)1/3 (33.3)26/49 (53.1)New variant, n/n (%)

3/8 (37.5)4/34 (11.8)7/33 (21.2)0 (0)0 (0)Annotation error, n/n (%)

Discussion

Overview
The COVID-19 pandemic and the associated PASC problem
highlighted the importance of having a framework for NLP
development that is sufficiently flexible to both provide general
concept detection capabilities without requiring extensive
domain expertise to craft rule sets or annotate extensive data
sets, but also with sufficient flexibility for fine-tuning and

addition of concepts that are not present in the base ontologies
from which the dictionaries are derived. Additionally, it has
highlighted the need for such an NLP development process to
be agile in iteration, as the rapidly changing concepts and
definitions associated with these emergent concepts are
inherently incompatible with the relatively slow process
associated with traditional NLP or information extraction (IE)
algorithm development (as by the time the algorithm is
developed, the definition will have changed). Here, we have
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presented an approach to NLP algorithm development that
allows us to achieve reasonable results on limited data sets with
a rapid turnaround time (the entire process was accomplished
over a month) by leveraging federated algorithm development
and common infrastructure. The resulting NLP algorithm has
been published as part of the open-sourced MedTagger NLP
framework [9] and is being executed at 10 academic medical
centers as part of their NLP data submissions to the National
COVID-19 Cohort Collaborative (N3C) data set [55]. In this
section, we will first discuss several gaps in the current NLP
development process that were suspected and the degree to
which the OHNLPTK was able to address them, and, finally,
we will discuss several of this study’s limitations and key
takeaways.

On Gaps in the NLP Development Process
Our execution of the PASC use case using the OHNLPTK
confirmed many of the suspected gaps in the current NLP
ecosystem pertaining to emergent diseases.

First, the potential coverage gap of a purely ontology-derived
dictionary-based approach to NLP is highlighted: of the 8428
PASC-related concept mentions within our corpus, the baseline
ontology-derived dictionary only identified 8090 mentions,
missing 338. These 338 mentions span 167 concepts,
highlighting the need for secondary expert-based refinement.

Additionally, this case study highlighted the infeasibility of a
purely expert-based approach: there were 1018 unique lexical
variants covering PASC-related clinical concepts within our
training corpus after dictionary-based weak labeling and expert
enhancement. Based on this lexicon size, an expert-based
approach to implementing an acceptable NLP system would
either be prohibitively expensive resource-wise (by horizontally
scaling through adding additional experts) or unreasonably
time-consuming, to the point of rendering the approach
completely infeasible depending on the study’s time constraints.

While it is difficult to draw conclusions about the viability of
statistical approaches based solely on what was done in this
case study, it is worthwhile to note that of the 8428 PASC
mentions in our training corpus, the vast majority were weakly
labeled through dictionary lookups, while the remainder were
manually derived through an expert review. It is very likely that
the manual effort required to fully annotate the train data set
for a fully supervised approach would have been prohibitively
expensive for many studies, given these statistics. Additionally,
as these 8428 PASC mentions are split in turn across many
concepts, there are very few unique mentions or lexical
examples per concept. By extension, there is an insufficient
number of examples to support training high-performing models
for all concepts, and annotation of further training data would
be required. In fact, this data problem is further exacerbated.

It is thus evident that a hybrid approach that integrates each of
the three approaches of statistical, symbolic expert-driven, and
symbolic dictionary-based would be ideal. Based on the results
of the execution of our PASC use case, we believe that we have
demonstrated that expert refinement of a rule set on top of a
data set already weakly labeled by an ontology-derived
dictionary is one such viable hybrid approach.

With our use case demonstration, we also show that the
OHNLPTK can be leveraged to execute an NLP development
process following this approach. An initial dictionary derived
from the UMLS can be directly loaded into deployed instances
of the OHNLPTK without any additional software modification.
Weakly labeled NLP output can be directly piped to
OHNLPTK’s MedTator component for expert review, and
additional finetuning is autonomously translated into refinement
rules that can, in turn, be executed on top of the base dictionary.

On Gaps in the NLP Clinical Information Extraction
Subtask
In this case study, we have strictly focused on clinical
information extraction, which has thus far been the core focus
for a significant portion of clinical NLP applications. It is
important, however, to note that even with a clinical information
extraction algorithm, the output may not be wholly applicable
and/or useful to the use case. There were multiple instances
where our NLP system correctly extracted mentions of some
PASC-related terms that were marked as false negatives upon
comparison against the gold standard.

Upon further investigation, we discovered that the NLP system
correctly identified mentions of the entities in question, but they
were not annotated by the annotator as they were not specific
to PASC. For instance, while headaches are a valid symptom
that is associated with PASC, they may also occur independently
due to unrelated reasons. While human annotators have the
capability to make this distinction, our NLP system cannot
currently make such a distinction and simply naively extracts
all valid mentions. Strictly speaking, from the perspective of
the NLP-based named entity recognition and linkage subtask
(ie, “identify mentions of headaches, and annotate them as
such”), the algorithm output is correct. Conversely, however,
for real-world use cases such as the PASC investigation use
case presented here, not making such a distinction has a
significant impact on the practical usability of the NLP artifacts
produced. While such contextual differentiation would fall under
a different subtask and is not strictly information extraction, the
ability to perform this differentiation is crucial for many use
cases and is an existing gap in current clinical NLP offerings.
We aim to further explore approaches to this differentiation task
as part of our future work.

On Federated Evaluation and Associated Benefits
Before federated evaluation can be done, a common working
definition or annotation guideline must be defined. The addition
of other data and sites, however, also introduces its own
complexity, specifically with respect to the aforementioned
issue of how to define a concept mentioned as being
“PASC-related,” on which sites had a very broad spectrum of
definitions. We concluded as a group that differentiating whether
a mention of, for example, a headache is PASC-related ought
to be considered a separate task from the clinical information
extraction task and that such filtering, if needed, would be done
as a separate, post-IE step.

We opted to evaluate the dictionary-based NLP system using
dictionary coverage as opposed to a more traditional precision,
recall, and F1-score. This was done because we wished to
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evaluate the ability of a generic NLP algorithm to meet the
needs of multiple institutions in a cost-effective manner. Due
to the recency and evolutionary nature of long COVID-19, it
follows that each site’s definition (or at least those of the
participating annotators) of “PASC or long COVID-19” may
differ, thus rendering it difficult to construct a gold standard
with a consistent set of concepts. Instead, by allowing individual
sites to determine what constitutes a long COVID-19 for their
needs, we can evaluate the coverage—that is, to what extent
said need is met by the NLP algorithm.

While the initial Mayo-developed NLP system performs
reasonably well across the participating sites that returned
evaluation results, not all information needs are met in terms
of dictionary coverage. We note that site 1 only had 61.1%
(77/126) dictionary coverage; of those annotations not covered,
46.9% (23/49) were new concepts. Manual review indicated
some of these new concepts were lung-related (pneumothorax,
hydropneumothorax, and ground glass attenuation), which
suggests site 1’s PASC-related symptoms are slightly different
than other sites. A total of 9 of these new concepts (9/23, 39.1%)
were the result of a very detailed note (32,000 characters in
length) of a complex PASC case where other poor-health and
pain-related concepts (gallstones and cholelithiasis) were
intermixed with chest pain, lung pain, and difficulty breathing.
For all sites, more than a third of the missing annotations were
categorized as missing lexical variations of included concepts
that did not appear within either the autonomously generated
ontology-sourced dictionary or the Mayo documentation set
used for dictionary refinement.

Such results illustrate the importance of multisite NLP
development, particularly in the latter case, which is one of the
pitfalls that would be commonly found in traditional NLP tasks.
Our results therefore fundamentally demonstrate the advantage
of the high degree of portability resulting from a common NLP
infrastructure when discussing generalizable NLP solutions. As
gaps in data coverage are assessed across a variety of health
care institutions, NLP algorithm refinement is vastly simplified,
thus granting greater confidence in the wide-range
generalizability of the final solution. Similarly, the addition of
these additional sites with their own respective annotators also
helps mitigate potential bias associated with single-site or
single-annotator definitions of the PASC sign or symptom
extraction task.

Beyond the issue of what clinical concepts to include is another
issue less addressed in this study: a definition of what sorts of
data to include. This is a challenge exacerbated by the fact that,
much like how emergent diseases will constantly have an
evolving associated concept set, the way they are documented
(and their extent) is also constantly changing and subject to high
levels of disagreement. This phenomenon can be seen in the
wildly different annotated concept counts within the evaluation
sites despite sharing the same concept set to annotate: certain
sites only considered a specific section of a clinical note
explicitly dedicated to documented PASC complications to be
appropriate as input data, while others used the entire clinical
note for any patient that had visited their long COVID-19 clinic.
This wide variance in data inclusion definition further supports

the need for federated development and evaluation efforts as
outlined in this study to further expose the developed algorithm
to this wide variety of data types. Furthermore, the fact that the
condition is emergent inherently limits data set sizes; at the time
this study was conducted, long COVID-19 clinics were still a
relatively novel concept in their initial stages of implementation.
A key benefit of such a federated evaluation and iterative
refinement process would be to help mitigate the limited amount
of data available inherently associated with an emergent
condition by spreading out the data set to multiple sources and
making it available for the development of a wider variety of
documentation types.

Limitations
Several limitations exist in this study. First, we compared
dictionary coverage as an evaluation, rather than doing a
traditional NLP system evaluation. This is primarily due to the
lack of a fully annotated gold standard to evaluate against, driven
primarily by the ongoing evolutionary nature of the pandemic,
causing associated documentation to continuously change. This
renders a truly scientifically rigorous gold standard difficult to
construct, as annotation guidelines must be constantly updated
and there will be very little consensus due to a lack of clear
clinical guidelines. Instead, we note that this limitation
highlights the need for iterative development, which further
emphasizes the need for an agile NLP development, evaluation,
and refinement process such as the one we present here.

Additionally, one of the emphases of the OHNLP consortium
is the organization of multi-institutional, federated evaluation
for NLP algorithm development, enabled by a common NLP
system deployment (the OHNLPTK). As such, we are currently
in the process of disseminating the algorithm presented here to
multiple member sites, who will all conduct a formal evaluation
of this algorithm.

Finally, it was previously noted that in order to codify and
normalize concepts that do not yet exist in controlled ontologies,
we introduced our own coding scheme for several concepts. It
is important for standardization’s sake, however, to loop back
to the original ontologies used and have these concepts
incorporated into these source ontologies. This process is
ongoing as of the writing of this article.

Conclusion
The PASC NLP problem has highlighted many of the limitations
present with current NLP development approaches. The
evolutionary and time-critical nature of the PASC NLP task
exacerbates many of these limitations, which previously only
presented a slowdown of the development process, into
limitations that cause many approaches to be outright infeasible.
The need for agile and iterative NLP development is thus made
evident. Fundamentally, this can be observed as an
amalgamation of wanting the benefits of expert-driven systems
while minimizing the time and resource expenditure of expert
involvement. Here we have presented a hybrid approach that
we believe presents such benefits, with a dictionary-based weak
labeling step minimizing the need for additional expert
annotation while still preserving the fine-tuning capabilities of
expert involvement.
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