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Abstract

Background: Transformer-based language models have shown great potential to revolutionize health care by advancing clinical
decision support, patient interaction, and disease prediction. However, despite their rapid development, the implementation of
transformer-based language models in health care settings remains limited. This is partly due to the lack of a comprehensive
review, which hinders a systematic understanding of their applications and limitations. Without clear guidelines and consolidated
information, both researchers and physicians face difficulties in using these models effectively, resulting in inefficient research
efforts and slow integration into clinical workflows.

Objective: This scoping review addresses this gap by examining studies on medical transformer-based language models and
categorizing them into 6 tasks: dialogue generation, question answering, summarization, text classification, sentiment analysis,
and named entity recognition.

Methods: We conducted a scoping review following the Cochrane scoping review protocol. A comprehensive literature search
was performed across databases, including Google Scholar and PubMed, covering publications from January 2017 to September
2024. Studies involving transformer-derived models in medical tasks were included. Data were categorized into 6 key tasks.

Results: Our key findings revealed both advancements and critical challenges in applying transformer-based models to health
care tasks. For example, models like MedPIR involving dialogue generation show promise but face privacy and ethical concerns,
while question-answering models like BioBERT improve accuracy but struggle with the complexity of medical terminology. The
BioBERTSum summarization model aids clinicians by condensing medical texts but needs better handling of long sequences.

Conclusions: This review attempted to provide a consolidated understanding of the role of transformer-based language models
in health care and to guide future research directions. By addressing current challenges and exploring the potential for real-world
applications, we envision significant improvements in health care informatics. Addressing the identified challenges and
implementing proposed solutions can enable transformer-based language models to significantly improve health care delivery

JMIR Med Inform 2024 | vol. 12 | e49724 | p. 1https://medinform.jmir.org/2024/1/e49724
(page number not for citation purposes)

Cho et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:saigram89@gmail.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


and patient outcomes. Our review provides valuable insights for future research and practical applications, setting the stage for
transformative advancements in medical informatics.

(JMIR Med Inform 2024;12:e49724) doi: 10.2196/49724
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Introduction

Background
Transformer models have revolutionized natural language
processing (NLP) with their exceptional state-of-the-art
performance in various applications such as conversation,
translation, text classification, and text generation. A transformer
model is a type of deep learning model designed to process and
generate sequences of data, such as text. The key innovation of
transformer models is the self-attention mechanism, which
allows the model to weigh the importance of different words in
the input sequence, regardless of their position. Self-attention
allows the model to focus on different parts of an input sequence
simultaneously, rather than processing the sequence in a fixed
order. This mechanism enables the model to capture complex
patterns and relationships within the context more effectively
than previous models, which is particularly useful for
understanding and generating natural language. These models
hold significant promise for the health care sector, addressing
clinical challenges and unlocking new opportunities in medical
informatics (eg, disease prediction, clinical decision support,
and patient interaction).

Since the introduction of the transformer model by Google [1]
in 2017, it has become the foundation for various pretrained
language models (PLMs). PLMs are transformer models that
have been initially trained on a large text corpus before being
fine-tuned for specific tasks. This pretraining allows the models
to leverage vast amounts of unstructured data to improve their
performance in various NLP tasks. Two of the most widely used
PLM architectures in medical research are Generative
Pre-trained Transformer (GPT) and Bidirectional Encoder
Representations from Transformers (BERT). GPT is designed
to generate coherent text based on a given input, making it useful
for tasks like dialogue generation [2]. BERT, on the other hand,
is designed to understand the context of words in a sentence
from both directions, making it highly effective for tasks like
question answering and text classification [3].
Transformer-based language models have revolutionized the
field of NLP and continued to advance the state-of-the-art in
NLP with their impressive performance.

Despite the success of transformer-based language models in
many domains, there is a significant gap in comprehensive
reviews specifically focused on their application in the health
care domain. In health care, transformer-based language models
have been used for crucial tasks such as disease prediction,
decision-making, and image analysis [4]. With the abundance
of free text sources, such as medical documentation in free text,
including social media, electronic medical records (EMRs),
physician-patient conversations, and online encyclopedias, more
significant challenges to language models are needed. The

application of NLP in health care is not without controversy,
particularly concerning data privacy, ethical implications, and
the integration of artificial intelligence (AI) systems into clinical
practices. Debates continue about the extent to which AI can
replace human judgment, the transparency of AI
decision-making processes, and the potential biases in AI models
trained on unbalanced datasets. By addressing these concerns,
our paper contributes to the timely and critical discourse on the
responsible deployment of transformer-based language models
in health care, emphasizing the need for transparency, fairness,
and ethical considerations in AI development.

Objective
The objective of this paper is to provide a comprehensive
scoping review of task-specific transformer-based language
models in health care. By focusing on models pretrained on
medical corpora, we aim to address the gap in existing literature
where detailed surveys specifically tailored to health care
applications are lacking. We seek to highlight the strengths,
limitations, and potential of these models, offering valuable
insights for future research and practical applications in medical
informatics.

Related Work
While many review studies of NLP have been conducted in the
medical field [5-13], on transformer-based language models
[14-20], and in health-related domains [21-25], comprehensive
surveys and broader and up-to-date transformer-based language
models in health care are lacking, leaving a gap in understanding
their full potential and limitations. Pandey et al [5] introduced
RedBERT, a model focusing on topic discovery and deep
sentiment classification of COVID-19 online discussions,
demonstrating the application of NLP in understanding public
health concerns. Iroju and Olaleke [6] conducted a systematic
review of NLP applications, identifying key areas where NLP
can enhance clinical decision-making and patient care. Similarly,
Locke et al [7] provided a comprehensive overview of NLP in
medicine, emphasizing the potential of NLP technologies in
transforming medical practice. Adyashreem et al [8] surveyed
various NLP techniques in the biomedical field, shedding light
on how these techniques can be applied to biomedical text for
improved information extraction and analysis. Wang et al [9]
reviewed the application of NLP in clinical medicine,
highlighting the advancements and challenges in integrating
NLP with clinical workflows.

Khanbhai et al [11] applied NLP and machine learning
techniques to patient experience feedback, providing insights
into patient satisfaction and areas for improvement in health
care services. Casey et al [12] focused on NLP applications in
radiology reports, identifying how NLP can streamline the
interpretation and reporting of radiological findings. Zhou et al
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[13] discussed the broader applications of NLP for smart health
care, envisioning a future where NLP-driven systems enhance
patient care and operational efficiency.

In the realm of transformer-based language models, Zhang et
al [14] surveyed their applications in bioinformatics,
highlighting how these models have advanced the analysis of
biological data. Yang [15] and Lin et al [16] explored the
progress and applications of transformer models in Korean and
general NLP tasks, respectively, highlighting their growing
importance and versatility. Chitty-Venkata et al [17] reviewed
neural architecture search for transformers, underscoring the
potential of these models in optimizing NLP tasks. Gillioz et al
[18] provided an overview of transformer-based models for
various NLP tasks, illustrating their adaptability and efficiency.
Han et al [19] focused on multimodal pretrained models,
emphasizing their capability to handle diverse data types,
including text, image, and audio. Greco et al [20] and Albalawi
et al [21] discussed transformer models’ applications in mental
health and Arabic social media, respectively, highlighting their
potential in understanding and addressing specific health-related
issues. Kalyan et al [22] and Shamshad et al [23] provided
comprehensive surveys on biomedical PLMs and their
applications in medical imaging, respectively, showcasing the
transformative impact of transformers in these fields.

Our review categorizes these models into 6 key tasks: dialogue
generation, question answering, summarization, text
classification, sentiment analysis, and named entity recognition
(NER). Ultimately, advancements in transformer-based language
models hold the promise of significantly transforming health
care delivery and improving patient outcomes. By enabling
more accurate disease prediction, enhancing clinical decision
support, and facilitating better patient-provider communication,
these models can lead to more efficient, effective, and
personalized health care. Our review underscores the broader
implications of these technologies, advocating for continued
research and development to harness their full potential in
revolutionizing medical informatics and patient care.

Methods

Information Source and Search Strategy
We followed the Cochrane scoping review protocol to conduct
and map the available literature in an efficient and systematic
approach. This method involves defining the research question,
identifying relevant studies, selecting studies based on
predefined criteria, charting data, and summarizing the results
to clarify key concepts and identify research gaps [24].

Our research team (mainly HNC and TJJ) conducted a
comprehensive literature review for identifying studies in the
field that met the inclusion and exclusion criteria. The screening
and selection of papers were conducted by 2 independent
reviewers (HNC and TJJ). Initially, titles and abstracts were
screened to identify relevant studies. Full texts of potentially
eligible studies were then reviewed to ensure they met the
inclusion criteria. Disagreements between reviewers were
resolved through discussion and consensus, with a third reviewer
(YHK) consulted if necessary. Our literature search was
conducted across several scientific databases, including Google
Scholar and PubMed, which were selected for their
comprehensive coverage of relevant journals and peer-reviewed
studies in the medical and academic fields. We covered
publications from January 01, 2017, to September 30, 2024,
and used specific combinations of keywords and Boolean
operators, such as “transformer-based AND language models
AND medical domain,” “health care AND language models,”
“NLP AND medicine AND survey,” and “GPT AND BERT
AND health care.” Data extraction involved summarizing key
findings, model names, and training datasets. The extracted data
were cross-verified by both reviewers to ensure accuracy and
consistency. Any discrepancies were resolved through
discussion.

We included studies that involved transformer-derived models
applied to medical tasks, were published in peer-reviewed
journals, and were written in English. The exclusion criteria
involved studies focusing solely on non-text data (eg, audio,
image, and video) or those not meeting the inclusion
requirements. The selection of tasks (dialogue generation,
question answering, summarization, text classification, sentiment
analysis, and NER) was based on their critical role in advancing
health care applications of transformer models. The specific
process is illustrated in Figure 1, with details of each stage of
filtering from the initial identification of articles to the final
selection. The inclusion criteria were rigorously applied at each
step, beginning with the screening of titles and abstracts,
followed by a full-text review, and culminating in the inclusion
of studies that met all predefined criteria. This methodical
approach allowed us to compile a comprehensive and focused
set of articles for our scoping review, ensuring that our findings
are both robust and reliable.

These tasks cover a wide range of functionalities essential for
improving clinical workflows, enhancing patient interactions,
and facilitating efficient information retrieval and analysis,
making them vital for the advancement of transformer-based
language models in the medical domain. Languages and model
types were chosen to represent a diverse range of medical
contexts and applications.
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Figure 1. Article filtering process with inclusion criteria.

In this section, studies that have used language models in health
care applications were examined. Based on the literature review,
Table 1 provides a comprehensive list of transformer-based
models applied in the medical domain, comparing each task
based on the authors, model name, training dataset, PLM model,
key metric, score, and purpose or findings of the study. These
English-written PLMs in the health care domain were
categorized into 6 distinct tasks, namely dialogue generation,
question answering, summarization, text classification, sentiment
analysis, and NER. The articles within each task are listed in
no sequential order. In Figure 2, the evolution timeline of

transformer-based language models provides an overview of
significant models that have been developed for use in medicine.
It illustrates key milestones and the deployment criteria used
to guide the inclusion of studies in our review. This historical
context provides a foundation for understanding the
methodological choices made in our scoping review. This visual
representation highlights the emergence of models over time
and their increasing significance in health care applications. We
provide insights into the progress made in this field and
anticipate future advancements by tracking the development of
these models.
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Table 1. Summary of the applications of pretrained language models subdivided into tasks.

Key findingsScore (%)Key metricPLMa

model

Training datasetModel nameTask and author
(year)

Conversation

Integrated triples from knowledge graphs to enhance
medical predictions using a large pretrained model.

85AccuracyBERTUMLSMedical Enti-
ty Prediction
(MEP)

Varshney et
al [26], 2023

Adapted and improved biomedical context understand-
ing through advanced generative techniques.

65Rouge-2BARTPubMedBioBARTYuan et al
[27], 2022

Used a knowledge-aware dialogue graph encoder
(KDGE) and recall-enhanced generator (REG) to
improve clinical responses.

82F1BERT,
GPT

MedDG, MedDia-
log

MedPIRZhao et al
[28], 2022

Tailored for task-oriented medical dialogues by in-
corporating domain-specific ontologies.

21.5BLEUBARTWikipedia, WOZ,
CamRest676

OPALChen et al
[29], 2023

First scalable model to integrate a medical knowledge
graph into a large pretrained model, enhancing
biomedical understanding.

15Relevance im-
provement

BERT,
GPT

MedDG, MedDia-
log-CN

MKA-
BERT-GPT

Liang et al
[30], 2021

Generated diverse, emotive, and empathetic sentences
for health care interactions.

90Emotive accura-
cy

GPT-3KB, doctor editsMEDCODCompton et
al [31], 2021

Fine-tuned LLaMa model using tailored doctor-pa-

tient dialogues for medical NLPb tasks.

83.7,
84.5, 84.1

Precision, re-
call, F1

LlaMA5000 doctor-pa-
tient conversations

ChatDoctorLi et al [32],
2023

Automated large-scale medical conversation text
annotation with terminology extraction.

87Annotation ac-
curacy

BARTMedDialog-w
terms+AL

Tang et al
[33], 2023

Proposed a transformer-based framework using a flat
encoder-decoder architecture for dialogue state
tracking in medical contexts.

54.6DST accuracyBERTMultiWOZTrans-
former-DST

Zeng et al
[34], 2020

Employed a hierarchical approach to medical dia-
logue analysis, including multiple-choice question
answering.

64.3AccuracyBERTMeDiaQAMeDia-
BERT

Suri et al
[35], 2021

A medical T5 text-to-text model effective for various
clinical downstream tasks.

86.6AccuracyT5PubMedSciFivePhan et al
[36], 2021

Transitioned a general-purpose model to a high-per-
forming medical language model via comprehensive

64.43AccuracyLlaMAPubMed, 30K
Medical Books

PMC-LLa-
MA

Wu et al
[37], 2023

fine-tuning, achieving state-of-the-art performance
in medical question answering.

Chinese health care LLM: Tailored for the Chinese
medical domain, providing state-of-the-art results in
medical consultation tasks.

25.6,
27.76, 93

BLEU,
ROUGE, dis-
tinct

GPTHuatuo26MHuatuoGPTZhang et al
[38], 2023

Question answering

First domain-specific BERT-based model for
biomedical text mining, outperforming standard
BERT in medical tasks.

12.24MRR improve-
ment

BERTPubMed, EHRc,
clinical notes,
patents

BioBERTLee et al
[39], 2019

Pretrained on a 15M PubMed corpus, this model
outperforms GPT-2 in biomedical text generation.

78.2AccuracyGPTPubMedBioGPTLuo et al
[40], 2023

Enhanced the representation of biomedical entities
across a large corpus for better entity understanding.

40BiasMega-
tron-
LM

Wikipedia, news,
OpenWebtext

BioMega-
tron

Shin et al
[41], 2020

First proof-of-concept BERT model for integrating
electronic health records.

20 boostsAUCdBERTCerner Health
Facts, Truven

MED-BERTRasmy et al
[42], 2020

Effective in multi-hot reasoning and few-shot ques-
tion answering by linking documents.

5ImprovementBERTWikipediaLinkBERTYasunaga et
al [43], 2022

Learned the association of clinical terms within the
UMLS metathesaurus.

86F1BERTMIMIC-IIIUmlsBERTMichalopou-
los et al [44],
2020
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Key findingsScore (%)Key metricPLMa

model

Training datasetModel nameTask and author
(year)

Introduced a mention-neighbor hybrid attention
model for heterogeneous medical entity information.

78AccuracyBERTChineseBLUESMedBERTZhang et al
[45], 2021

A specialized model focused on renal transplant-
pathology integration.

95.8AccuracyBERTEMReExKidney-
BERT

Yang et al
[46], 2022

An automatic system for extracting tumor sites and
histology information.

85AccuracyBERTPathology reportsCaBERTnetMitchell et
al [47], 2021

First large-scale pretrained language model using the
OPTIMUS framework in the biomedical domain.

72.9VAESciB-
ERT,
GPT2

PubMedBioVAETrieu et al
[48], 2021

Proposed masked language modeling for radiology
text representations.

72AccuracyBERTCOntext (ROCO)MMBERTKhare et al
[49], 2021

A novel linking method for predicting document re-
lations in pretraining models.

84BLURBBERTWikipedia, Book
Corpus

Bi-
oLinkBERT

Yasunaga et
al [43], 2022

A 2-step question answering system addressing lin-
guistic disparities with BM25 and Sentence BERT.

69.5Mean average
precision

SBERTViHealthQASPBERTQANguyen et al
[50], 2022

First multimodal GPT capable of aligning biological
modalities with human language for medical text
analysis.

76.1AccuracyGPTPubMedBioMEDG-
PT

Luo et al
[51], 2023

A model that outperforms GPT-3.5 by using efficient
fine-tuning techniques.

74.3,
54.3, 47.0

Five-shot accu-
racy

LlaMA-
2

PubMed, USMLE,
MedMCQA

Clinical
Camel

Toma et al
[52], 2023

Highlighted privacy protection in medical artificial
intelligence and demonstrated significant perfor-
mance enhancements in medical certification exams
through fine-tuning.

21.1-24.1AccuracyAlpacaMedical flash
cards, Wikidoc

MedAlpacaHan et al
[53], 2023

Instruction prompt tuning undergoes rigorous human
evaluation to assess harm avoidance, comprehension,
and factual accuracy.

67.6AccuracyPaLMMedMCQA,
MedQA, Pub-
MedQA, MMLU

MedPaLM-2Singhal et al
[54], 2023

Achieved 6% improvement over the best public
baseline and 3% gain over fine-tuned Llama-2 mod-
els.

79.8AccuracyLlaMA-
2

PubMEDMEDITRONChen et al
[55], 2023

Summarization

Adapted a bidirectional encoder representation for
radiology text.

97.5, 95Accuracy, F1BERTOpen-I chest radio-
graph report

RadBERTYan et al
[56], 2022

Introduced the first transformer-based model for ex-
tractive summarization in the biomedical domain.

68ROUGE-LBERTPubMedBioBERT-
Sum

Du et al
[57], 2020

Reduced memory usage through sparse attention in
a long-sequence transformer.

97F1Long-
former,
Big
Bird

MIMIC-IIIClinical-
Longformer
& Clinical-
Big Bird

Li et al [58],
2022

Developed a multi-document summarization method
using token probability.

75AccuracyBERT,
BART

MS2DAMENMoro et al
[59], 2022

Designed a diagnoses summarization model based
on character-level tokens.

69.3AccuracyBERTHER (NTUH-
iMD)

AlphaBERTChen et al
[60], 2020

Released the first BERT-based model specifically
for clinical text.

11 im-
prove-
ments

F1BERTMIMIC-IIIBio+Clinical
BERT

Alsentzer et
al [61], 2019

Automatically generates abstractive summarization
of radiology reports.

73AccuracyBERTMIMICChestXRay-
BERT

Cai et al
[62], 2021

Developed a neural abstractive model for summariz-
ing long medical texts.

67, 56.4,
64.5

ROUGE-1 F1,
ROUGE-2 F1,
ROUGE-L F1

BERTUMLS, EHRLF2BERTYalunin et al
[63], 2022

Efficiently reduced fine-tuning time and improved
vocabulary adaptation for medical texts.

51.49,
47.54,
19.51

ROUGEGPTPubMed, BioASQ,
EBM

MEDVOCBalde et al
[64], 2024
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Key findingsScore (%)Key metricPLMa

model

Training datasetModel nameTask and author
(year)

Text classification

Outperformed previous biomedical and clinical do-
main models.

89Pearson correla-
tion

GPTClinical notes, UF
Health clinical cor-
pus MIMIC-III,
PubMed,
Wikipedia

GatorTronYang et al
[65], 2022

Established a leaderboard for biomedical NLP, with
robustness against noisy and incomplete biomedical
text.

81.2BLURBBERTPubMedPubMED-
BERT

Gu et al
[66], 2021

Introduced “catastrophic forgetting prevention” and
generated visualized interpretable embeddings.

72.7,
37.6,
54.2,
74.2, 42.0

Accuracy, preci-
sion, recall,

AUROCf,

AUPRCg

BERTEHR (clinical
notes)

Clinical-
BERT

Huang et al
[67], 2020

Effective transformer model for scientific text analy-
sis.

81.5F1BERTWikipedia, clinical
database, Book
Corpus

MatSciB-
ERT

Gupta et al
[68], 2022

Reduced model size by 60% for biomedical text
mining.

60 re-
duced
model
size, 2-3×
speed

Performance,
speed

BERTPubMed, PMCBioformerFang et al
[69], 2023

Proposed domain and task-adaptive pretraining with
a data selection strategy.

83.4F1RoBER-
Ta

CHEMPROT,
PubMed

BioMed-
RoBERTa

Gururangan
et al [70],
2020

Improved a BERT-based model for multiple tasks
with masked input text.

91.8,
89.6, 93.1

Accuracy, F1,

PR-AUCh
BERTPubMed, NICTA-

PIBOSO, symp-
toms

Mask-BERTLiao et al
[71], 2023

Developed a model for multi-type medical tests using
a knowledge graph.

82AccuracyBERTEHRKG-MTT-
BERT

He et al [72],
2022

Set a new standard in clinical disease prediction using
longitudinal EHRs.

81.95,
78.64

AUROC,
AUPRC

BERTEHRTrans-
formEHR

Yang et al
[73], 2023

Tailored embeddings for Danish medical text process-
ing.

86.7-97.1AccuracyBERTEMRMeDa-
BERT

Pedersen et
al [74], 2023

Leveraged a public resource-driven dataset for scien-
tific NLP.

85.49F1BERTPublic resourceSCHOLAR-
BERT

Hong et al
[75], 2023

Improved medical text classification tasks showing
performance gains up to 22.3% compared to tradition-
al methods.

90.0, 88.7Accuracy, F1GPTIllness datasetMediGPTAbu Tareq
Rony et al
[76], 2024

Sentiment analysis

A pretrained masked model designed for mental
health detection.

81.76,
81.82

F1, recallBERT,
RoBER-
Ta

RedditMental-
BERT/Men-
talRoBERTa

Ji et al [77],
2021

Developed a pretrained language model for the Per-
sian medical domain.

94.91,
94.63,
94.77,
96.14

Precision, re-
call, macro F1,
accuracy

BERTSelf-gathered col-
lection of texts
from online
sources

SINA-BERTTaghizadeh
et al [78],
2021

Proposed the first sentiment analysis model using a
transformer-based graph algorithm.

80AccuracyBERTSemEval, SST2,
IMDB, Yelp

SGTNAlBadani et
al [79], 2022

Introduced a sentiment classification method from
web-scraped data.

86.05AccuracyBERTRedditRedBERTPandey et al
[80], 2021

Designed a sentiment classification method for mi-
croblogging platforms.

90.81AccuracyBERTTwitterT-BERTPalani et al
[81], 2021
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Key findingsScore (%)Key metricPLMa

model

Training datasetModel nameTask and author
(year)

Created a BERT model for predicting acute kidney
injury.

74.7,
35.6,
61.9,
45.2,
76.8, 90.7

AUC, precision,
recall/sensitivi-
ty, F1, specifici-
ty, negative pre-
dictive value

BERTMIMIC-IIIAKI-BERTMao et al
[82], 2022

Improved computational efficiency by combining
topic and language models for fine-tuning.

70Cost optimiza-
tion

BERTOhsumedTopicBERTChaudhary
et al [83],
2020

Achieved state-of-the-art performance on biomedical
datasets using Twitter data for pretraining.

87.1F1BERTNCBI, BC5CDR,
BIOSSES,
MedNLI,
Chemprot, GAD,
JNLPBA

TweetBERTQudar et al
[84], 2020

Developed a Dutch language model for psychiatric
disease classification.

95.9AccuracyRoBERTDBRDBelabBERTWouts et al
[85], 2021

Named entity recognition

Interpretable model for multi-heterogeneous medical
concepts.

81AccuracyBERTEHRBEHRTLi et al [86],
2020

The first pretraining method for medication recom-
mendation in the medical domain.

45.7,
69.6, 61.5

Jaccard, PR-
AUC, F1

BERTEHRG-BERTShang et al
[87], 2019

Introduced the first transformer model for German
medical texts.

78AccuracyRoBER-
Ta, Got-
tBERT

Wikipedia, drug
leaflets from AM-
Ice, LIVIVO

BioGot-
tBERT

Lentzen et al
[88], 2022

Developed a BERT-based model for automated to-
ponym identification.

90.5,
91.2, 90.9

Precision, re-
call, F1

BERTPubMedTIMBERTDavari et al
[89], 2020

Demonstrated strong generalization ability across
biomedical texts and cross-lingual tasks.

77.3Masked token
score

BERTPubMed, MIMIC-
III

BlueBERTPeng et al
[90], 2019

The first ELECTRA-based model for the biomedical
domain.

85.9,
89.3, 87.5

Precision, re-
call, F1

BERTNCBIELEC-
TRAMed

Miolo et al
[91], 2021

A multi-task transformer model for slot tagging in
the biomedical domain.

88.4,
90.52,
89.5

Precision, re-
call, F1

BERTBC2GM,
BC5CDR, NCBI-
Disease

MT-BioNERKhan et al
[92], 2020

Trained on large biomedical corpora using ALBERT
for biomedical text mining.

97.4,
94.4, 95.9

Precision, re-
call, F1

BERTPubMed, PMCBioAL-
BERT

Naseem et al
[93], 2020

Designed a new architecture for processing long text
inputs in diabetes literature.

78AccuracyBERTTextbooks, re-
search papers, clin-
ical guidelines

BIBCYang et al
[94], 2021

Developed the first monolingual RoBERTa model
for French medical text.

85.7AccuracyRoBER-
Ta

WikipediaCamem-
BERT

Martin et al
[95], 2020

Efficiently handled noise in EHR data using NER
and MedCAT.

64PrecisionGPTEHRMedGPTKraljevic et
al [96], 2021

Proposed an entity normalization technique for 1.5
million EHR notes.

93.8F1BERTEHREhrBERTLi et al [97],
2019

Emphasized the importance of department-specific
language models, with a focus on cardiology.

74AccuracyBERTEMRHeartBERTGwon et al
[98], 2024

Introduced a graph-based learning method with
masked-language pretraining for clinical text extrac-
tion.

85.05PrecisionBERTUMLSUMLS-KGI-
BERT

Mannion et
al [99], 2023

Specialized in extracting Portuguese cardiology
terms, demonstrating that data volume and represen-
tation improve NER performance.

83FL-scoreBERTEHRCar-
dioBERTpt

Schneider et
al [100],
2023
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Key findingsScore (%)Key metricPLMa

model

Training datasetModel nameTask and author
(year)

Outperformed a rule-based solution in differentiating
titles and subtitles for a discharge summary dataset.

84.6F1BERTMIMIC-IIITocBERTSaleh et al
[101], 2024

aPLM: pretrained language model.
bNLP: natural language processing.
cEHR: electronic health record.
dAUC: area under the curve.
eEMR: electronic medical record.
fAUROC: area under the receiver operating characteristic curve.
gAUPRC: area under the precision-recall curve.
hPR-AUC: precision-area under curve.

Figure 2. Timeline of significant transformer-based models in health care. EHR: electronic health record; NER: named entity recognition; NLP: natural
language processing.

Results

Selected Studies
A total of 75 models were identified through our comprehensive
review. The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) flowchart is presented in Figure

3. The PRISMA checklist is presented in Multimedia Appendix
1. These papers encompass various research areas related to
transformer-based models and their applications in the medical
domain. The selection of these papers was based on predefined
inclusion criteria, ensuring the relevance of each study to the
scope of our review.
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Figure 3. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for the review process.

Applications of Language Models in Health Care:
Task-Specific

Dialogue Generation
Conversation generation generates responses to a given dialogue.
GPT models, including DialoGPT and DialogBERT, can
effectively generate human-like dialogues based on large corpora
and contextualized representations of text [25,102-105]. In the
medical domain, conversation generation focuses on developing
conversations related to medical information [106]. Chatbots
in health care can be classified into 6 types: screening and
diagnosis, treatment, monitoring, support, workflow efficiency,
and health promotion. These tasks involve aiding patient
consultation, acting as a physician’s decision support system,
collaborating with interdisciplinary research, and providing care
instructions and medical education [107,108].

The key models are MEP, BioBART, MedPIR, MEDCOD,
Transformer-DST, MeDiaBERT, ChatDoctor, and SciFive.

Research efforts on conversation generation in medicine have
also incorporated knowledge graphs. MKA-BERT-GPT was
the first scalable work to integrate a medical knowledge graph
mechanism into a large pretrained model. Meanwhile, MedPIR
proposed a recall-enhanced generator framework by using a
knowledge-aware dialogue graph encoder to strengthen the
relationship between the user input and the response via past
conversation information [28,30]. They achieved an F1 score
of 82% and a bilingual evaluation understudy (BLEU) score of
21.5. Varshney et al [26] proposed the Masked Entity Dialogue
(MED) model to train smaller corpora texts, addressing a 10%
improvement in entity prediction accuracy for the problem of
local embeddings in entity embeddings by incorporating
conversation history into triples in the graphs, resulting in an
automatic prediction of the medical entities model.

On the other hand, MEDCOD [31] used the GPT pretrained
model to integrate emotive and empathetic aspects into the
output sentences, which further imitates a human physician–like
feature to better communicate with patients. The
Transformer-DST [34] model addresses dialogue state tracking,
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optimizing state operation prediction, and value generation with
high accuracy by suggesting to ask the DST model to consider
the whole dialogue and the previous state. Moreover,
MeDiaBERT [35], using a hierarchical approach, achieves
63.8% accuracy in multiple choice medical queries by building
a transformer encoder contained within another in a hierarchical
manner.

BioBART [27], a BART-based model, used patient descriptions
and conversation histories as input for the model to
autoregressively generate replies to user inputs. The model
outperformed the BART model by 1.71 on Rouge-2 with a
BLEU score of 4.45, and pretraining on PubMed abstracts
supported the model’s performance. OPAL [29] and -w
terms+AL models also used BART for pretraining. OPAL’s
proposed method involves 2 phases: pretraining on large-scale
contextual texts with structured information extracted using an
information-extracting tool and fine-tuning the pretrained model
on task-oriented dialogues. The results showed a significant
performance boost, overcoming the problems created by
annotated data with large structured dialogue data. Recently,
the -w terms+AL model proposed a framework for improving
dialogue generation by incorporating domain-specific
terminology through an automatic terminology annotation
framework using a self-attention mechanism [33].

While other models are based on BERT, GPT, or BART,
ChatDoctor [32], SciFive [36], and PMC-LLaMA [37] use
LLaMA or T5 PLMs. To improve accuracy and provide
informed advice in medical consultations, ChatDoctor used
Meta’s open-source LLaMA [109], which was fine-tuned using
real-world patient-physician conversations and autonomous
knowledge retrieval capabilities, achieving 91.25% accuracy.
SciFive, a Text-To-Text Transfer Transformer–based model,
was pretrained on large biomedical corpora, indicating its
significant potential for learning large and extended outputs.
The SciFive model was trained using a maximum likelihood
objective with “teacher forcing” [110] for multi-task learning
by leveraging task-specific tokens in the input sequence. Both
models outperformed previous baseline methods.

More recently, the HuatuoGPT model [38], specifically tailored
for the Chinese medical domain, provided state-of-the-art results
in medical consultation tasks.

Question Answering
The question-answering task involves answering questions
posed by users based on the texts in documents. It aims to
generate an accurate response that directly answers the question
input, contributing to clinical decision-making, medical
education, and patient communication. Allowing physicians
and researchers to obtain valuable answers quickly from
electronic health records (EHRs) and various medical literature
will effectively reduce the time and effort required when the
procedure is done manually. While the dialogue generation and
question-answering tasks both involve providing answers, the
former focuses on generating responses within a conversation,
whereas the latter focuses on developing specific answers to
user questions.

The key models are BioBERT, BioGPT, BioMegatron,
Med-BERT, UmlsBERT, SMedBERT, and BioVAE.

BERT-based language models have become increasingly popular
in biomedical text mining as they can understand the context
and generate accurate predictions. BioBERT [39], the first
domain-specific BERT-derived transformer language model
for biomedical text mining applications, achieved 89% accuracy
on the MedQA dataset and outperformed BERT in medical text
applications. A BioMegatron model [41], based on
Megatron-LM [111], was also experimented on a
question-answering task, and it was found that the domain and
task-specific language model affected the overall performance
rather than the model size. Shin et al [41] found that model size
is not closely related to the performance rate, but rather the
domain and task-specific language model affects the overall
performance. Med-BERT [42], another BERT-inspired model,
improved the prediction accuracy by 20% in disease prediction
studies by pretraining on EHR datasets.

More recently, researchers have built BERT-based models for
specific domains and tasks [112]. UmlsBERT [44] first built a
semantic embedding linking concepts with the words in the
UMLS Metathesaurus and proposed multi-label loss
function–masked modeling. SMedBERT [45] also presented a
similar approach with the knowledge semantic representation
but structured the neighboring entities to learn heterogeneous
information. UmlsBERT and SMedBERT enhanced
performance, with F1 scores of 84% and 86%, respectively.
Similarly, LinkBERT and BioLinkBERT [43] incorporated
ontological knowledge to better understand a linking system
between entities in the corpus. LinkBERT used a multi-task
learning framework on several related tasks simultaneously to
extract relations between entities in the corpus more effectively.
ExKidneyBERT, CaBERTnet, and MMBERT extracted more
precise answers from individual departmental reports [46,47,49].

On the other hand, BioVAE [48] used the OPTIMUS framework
pretrained with SciBERT [113] and GPT-2 [114,115] and
outperformed the baseline models on biomedical text mining.
To address the issues on linguistic disparity, SPBERTQA [50]
proposed a 2-stage multilingual language model pretrained on
the SBERT model [116] to reply to user questions using multiple
negative ranking losses with Bert multilingual 25.

However, previous studies using the BERT structure are a better
fit for understanding the context, rather than generating texts.
To this end, BioMedLM, a GPT architecture model, was built
mainly for biomedical question-answering tasks [117] in recent
studies of question-answering benchmarks and achieved 50%
accuracy on summarizations of the patient’s quest even in real
situations with fewer data. BioGPT [40] applied a 2-step
fine-tuning method to remove the noise in data and achieved
6.0% improved results compared with BioLinkBERT in the
medical domain for question-answering tasks.

Recent studies have introduced significant advancements, such
as BioMEDGPT [51], the first multimodal GPT for aligning
biological data with human language, achieving 76.1% accuracy.
Clinical Camel [52], using LLaMA-2, demonstrated superior
performance with 5-shot accuracy ranging from 47.0% to 74.3%,
outperforming GPT-3.5. MedAlpaca [53] focused on privacy
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and medical certifications, attaining 21.1%-24.1% accuracy.
MedPaLM-2 [54] reached 67.6% accuracy through instruction
prompt tuning, and MEDITRON [55] achieved 79.8% accuracy,
marking a 6% improvement upon existing models and setting
a new benchmark.

Summarization
For many years, the medical field has suffered from the
challenge of finding efficient and rapid access to understanding
the fast-growing and immensely increasing amount of data
formation. The key to timely and efficient clinical workflow is
providing automatic summarization in clinical text.
Summarization in health care is an important technique in NLP
as it automatically summarizes the medical contexts into a
concise summary of text. Summarization can be applied to
medical records, literature, clinical trial reports, and other types
of medical texts that aim to provide clinical providers with quick
access to relevant information, without the need to skim through
lengthy documents. Overall summarization can aid clinicians
with decision-making through effective and prompt
communication during the physician-patient meeting, as well
as knowledge discovery for medical research [57].

The key models are BioBERTSum, AlphaBERT,
ClinicalBertSum, ChestXRayBERT, RadBERT, LF2BERT,
and DAMEN.

To alleviate the problems of biomedical literature
summarization, which can have difficulties in learning sentence
and document-level features, Du et al [57] proposed the first
PLM for medical extractive summarization application called
BioBERTSum. BioBERTSum captures a domain-aware token
and sentence-level context by using a sentence position
embedding mechanism that inserts structural information into
a vector representation. It achieved a ROUGE-L score of 0.68,
outperforming standard BERT models. AlphaBERT [60]
proposed a diagnostic summary extractive model using a
character-level token to reduce the model size and achieved a
ROUGE-L score of 0.693, reducing the burden of physicians
in the emergency department regarding reading complex
discharge notes of patients.

To better use clinical notes, ClinicalBertSum [118] used the
ClinicalBERT, SciBERT, and BertSum models during the
fine-tuning and summarization process to automatically extract
summaries from clinical abstracts. Similarly, ChestXRayBERT
used BERT to perform an automatic abstractive summarization
on radiology reports [62], with ROUGE-1 scores of 0.70 and
0.73, respectively. RadBERT [56], which was fine-tuned for
radiology report summarization, achieved 10% fewer annotated
sentences during the training, demonstrating the benefit of
domain-specific pretraining to increase the overall performance.

LF2BERT [63] applied a Longformer neural network and BERT
in an encoder-decoder framework to process longer sequence
inputs and performed better than human summarization,
according to doctors’ evaluations. DAMEN [59] used BERT
together with BART to discriminate important topic-related
sentences in summarization, outperforming previous methods
to summarize multiple medical literature via the token
probability distribution method. The proposed probabilistic

method selected only related significant chunks of information
and then provided the probabilities of the tokens within the
chunk, rather than the sentence level, to effectively reduce
redundancy. Moreover, to overcome the long sequence issue,
Li et al [58] comparably proposed Clinical-Longformer and
Clinical-Big Bird pretrained on the Longformer [58] and Big
Bird [119] models, respectively. Both proposed models used
sparse attention mechanisms and linear level sequence lengths
to mitigate memory consumption, thus increasing long-term
dependency to train extensive clinical notes.

Recent development has also introduced MEDVOC [64], which
uses GPT architecture to improve the adaptation of vocabulary
in medical texts. By efficiently reducing fine-tuning
time, MEDVOC achieves competitive performance, with
ROUGE scores of 51.49, 47.54, and 19.51 across different
datasets, such as PubMed, BioASQ, and EBM, respectively.

Text Classification
The medical text classification task categorizes medical text
datasets into predefined categories based on the content and
context within the text [120]. Disease classification, medical
image classification, drug classification, and sentiment analysis
are some of the standard text classification applications in health
care.

The key models are jpCR+jpW, BioMed-RoBERTa,
ClinicalBERT, Mask-BERT, KG-MTT-BERT, EduDistilBERT,
PathologyBERT, KD distilledBERT, MatSciBERT, and
Bioformer.

Wada et al [120] proposed a BERT model, jpCR+jpW, that uses
a classification method. The method pretrains the medical BERT
model once following the up-sampling step of domain-specific
word amplification. This is done to achieve better performance
on a smaller medical corpus. Similarly, BioMed-RoBERTa [70]
used the RoBERTA model and applied a domain and
task-adaptive pretraining strategy with a simple data selection
approach for domain-specific classification. By pretraining on
domain-specific and unlabeled data, the model achieved 87%
accuracy. ClinicalBERT [67] represents clinical notes
effectively, with a word similarity accuracy of 90% to generate
visualized and interpretable embeddings for capturing semantic
associations between clinical texts.

Yogarajan et al [121] suggested applying multi-labels (eg, using
more than 300 labels for longer documents) to enhance the
performance of medical classification tasks. Furthermore, to
solve the imbalance class problems, Rodrawangpai et al [122]
demonstrated a framework of adding normalization layers and
dropout to BERT-based models, which improved the
classification performance by 4% on data that included
imbalance target labels. Similar efforts have been made by
Nguyen [50] to address label-abandoning problems in medical
abstract classification. The author proposed that a BERT model
with label attention in the fine-tuning process raised the F1 score
by 0.3 and supported the explainability of the prediction results.
Learning is difficult with insufficient labeled data in a
low-resource experiment setting. To alleviate this problem,
Mask-BERT [71] proposed a framework for few-shot learning,
where the mask is applied to the input text and enables the
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gathering of more definitive tokens. Masked learning leads to
filtered results on anchored samples from the data being used
for representation, increasing the robustness of the output
features.

Several language-specific models have been developed,
including RuBioBERT and RuBioRoBERTa [123] for Russian
text, BERTurk [124] for Turkish text, BioGottBERT for German
text [88], and a Spanish text model [125], demonstrating the
applicability of BERT-based models beyond English. Moreover,
various disease-specific classification models have been
developed. For example, PathologyBERT [126] is a pretrained
masked language model used for classifying the severity of
breast cancer diagnoses, raising the importance of applying
domain-specific tokenization. KD distilled_BERT [127] is a
response-embedded knowledge distillation framework that used
pretrained BERT for depression classification and achieved a
high accuracy of 97%. MatSciBERT [68] presents a biomedical
domain-specific classification model on abstracts of the literature
with binary classification application. The model extracted the
context of the embeddings alongside the topic and had 2.75%
higher accuracy than SciBERT.

To overcome the over-fitting and dimensionality problems for
extracting numerous features in the text classification task,
AFKF [128] proposed a fusion block with Kalman filters onto
features of EMRs. This led to a 20% increase in accuracy
compared with previous models. Likewise, to classify the
features in EMRs, BERT-MSA [129] showed that a multilayered
self-attention mechanism improved accuracy in obtaining
relevant features. EduDistilBERT [130] demonstrated that
adapting a smaller BERT model with limited parameter usage
increases overall performance by 95% while reducing the
computation cost. Another BERT-based fusion approach by
Al-Garadi et al [131] explored architecture to fuse BERT,
ALBERT, and RoBERTa model probabilities using a naive
Bayes classifier, achieving an F1 score of 0.67 in classifying
medication abuse texts.

Recently, the Bioformer [69] model demonstrated a 60%
reduced model size and a 2- to 3-fold increase in performance
speed. The model used a whole-word masking approach with
15% masking, which provided contextual information. However,
KG-MTT-BERT [72] raised a question on limitations for
multi-type clinical text classification. Concatenating numerous
texts may be more efficient in developing relevant contextual
information, and using only BERT may misplace crucial details.
Therefore, the model extended the BERT model with a
knowledge graph during fine-tuning, demonstrating effective
handling in classifying patients into diagnosis-related groups.

Although the models were pretrained on the BERT model, Gao
et al [132] showed that BERT-structured models did not gain
better accuracy on clinical classification tasks, such as
classifying discharge summaries or pathology reports, compared
with nontransformer language models. Gao et al asserted that,
in addition to the knowledge obtained through the entities,
grammar patterns should also play a role in the model’s
mechanism. Furthermore, beyond the applications mentioned
above, text classification can be used with other tasks. For
example, Wang et al [133] applied a question-answering task

along with the classification task by using the BERT model to
classify texts in question inputs from patient inquiries regarding
their symptoms.

Recent advancements in text classification models include
TransformEHR [73], which uses BERT and longitudinal EHR
data for clinical disease prediction, achieving area under the
receiver operating characteristic curve and area under the
precision-recall curve scores of 81.95 and 78.64,
respectively. MeDa-BERT [74] tailored embeddings for Danish
medical text, with accuracy ranging from 86.7% to
97.1%. SCHOLARBERT [75] leveraged public resource-driven
datasets for scientific NLP, obtaining an F1 score of
85.49%. MediGPT [76] improved medical text classification
tasks, with accuracy and F1 scores of 90.0% and 88.7%,
respectively, showing a 22.3% performance gain over traditional
methods.

Sentiment Analysis
The sentiment analysis task captures and identifies expressions
and opinions [134] in medical contexts, including clinical notes,
social media posts related to medicine, or patient feedback. For
instance, sentiment analysis can capture the perception of people
expressed in social media during the COVID-19 outbreak
[135-137]. Emotions, such as positive, neutral, and negative
sentiments, expressed by the public dominated during the
pandemic [138]. Additionally, multi-label sentiment
classification proved that the BERT model provided better
performance compared with the LSTM model [139]. Moreover,
the opinions of patients and physicians can be used to describe
the symptoms and diagnosis to facilitate the decision-making
process and support the decisions in clinical patterns [77]. The
primary goal of sentiment analysis in health care is to provide
insights into patient experiences, such as attitudes toward health
care services and overall medical experience satisfaction. It not
only assists patients but also supports clinicians to identify any
underlying issues in patient care.

The key models are MentalBERT, MeentalRoBERTa,
SINA-BERT, SGTN, RedBERT, T-BERT, AKI-BERT,
TopicBERT, TweetBERT, and BelabBERT.

In mental health, patients’ written texts have become a valuable
source for supporting hypotheses and providing insights into
the emotions expressed by patients [85,140]. While more
research using PLMs needs to be conducted in this field,
MentalBERT, MentalRoBERTa [77], PsychBERT [140], and
belabBERT [85] applied mental health texts and achieved
sentiment classification accuracies of 75%, 86%, and 90%,
respectively. Additionally, transformer language models have
been studied for sentiment analysis in languages other than
English. Some language models are being developed to
accommodate the unique structure and characteristics of
different languages.

To achieve an effective model adaptation, researchers have
explored HeBERT and HebEMO [141] for Hebrew, AraBERT
and MARBERT [142] for Arabic, SINA-BERT [78] for Persian,
and Fine-tuned BERT [143] for Chinese. However, few studies
have conducted disease-specific sentiment analysis. RedBERT
[80] involved a sentiment model for COVID-19, where BERT
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was used for classifying sentiments of Reddit comments to grasp
insights into the pandemic. Mao et al [82] proposed AKI-BERT,
where the model was developed to support the early prediction
of acute kidney injury.

Social media data are often used as a source for medical
sentiment analysis as they are more informal and conversational,
making them useful for modeling the nuances of language
models. The COVID-TWITTER-BERT model [144], which
was pretrained on Twitter messages regarding COVID-19,
showed improved performance on COVID-19–related datasets.
In particular, TweetBERT [84] exhibited improved performance
on COVID-19–related and biomedical datasets. TwitterBERT
was evaluated on 12 different biomedical datasets and
outperformed previous BERT models, such as SciBERT [113]
and BERT [145].

Comparably, TopicBERT [83], a memory-efficient BERT
model, fine-tuned and enhanced sentimental analysis
performance, and a complementary topic framework was applied
to improve its performance. Beyond the proposed frameworks
presented above, AlBadani et al [79] proposed a graph
transformer model, SGTN, which used BERT to pretrain node
embeddings and aggregated neighboring information to
efficiently learn sentiments. It showed 5% improvement over
baseline models.

Named Entity Recognition
The NER task identifies the named entities in unstructured text
data. In health care, NER is used to automatically extract and
define relevant medical entities, including diseases, medications,
procedures, and other clinical concepts, from medical texts in
research papers or EMRs [146,147]. The common applications
of NER in medicine are as follows: (1) identify and analyze
medical entities and relationships in medical literature to support
biomedical findings [148]; (2) extract patient data, such as
diagnosis, medication, laboratory results, and physical
measurements, from EMRs to improve the decision-making for
clinicians and the overall care [149]; and (3) extract and
categorize data from medical claims and hospital admission and
discharge data to improve health care management and resource
allocation [150,151].

The key models are Bio+ClinicalBERT, Med-BERT, G-BERT,
BioALBERT, GatorTron, ELECTRAMed, CamemBERT,
BioGottBERT, Ra-RC, and RG-FLAT-CRF.

Numerous language models have been developed to implement
EMR or EHR data for NER tasks in the clinical field.
Bio+Clinical BERT [61] achieved superior results in clinical
texts, with an F1 score of 83%. While the ClinicalBERT and
Clinical BioBERT models were trained on EHRs, the
Bio+Clinical BERT model did not perform well on
deidentification text. Other models, such as G-BERT, also used
EHR data to propose a language model that combined graph
neural networks and BERT for representing medication
information and predicting drug recommendations [87].
MedGPT [96] effectively processed noises by organizing
medical text in multi-step procedures. In the first stage of the
proposed model, unstructured data were converted into a

standardized ontology using NER+L. Then, GPT was used for
forecasting diagnosis events.

Moreover, studies attempted to tackle problems regarding
representing and learning long medical entities [94,152]. Liu
et al [152] proposed Med-BERT, using a Span-FLAT method
for longer medical entities, and it achieved an F1 score of 84%.
By contrast, the BIBC model built by Yang et al [94] captured
both local and global sequence features to efficiently solve long
text input issues. Additionally, models were trained on an
extensive collection of biomedical texts to overcome the limited
amount of training data. For example, BioALBERT and
GatorTron attempted to develop a large medical language model
[65,93]. BioALBERT used vocabulary specifically tailored to
the biomedical domain and applied the ALBERT structure. On
the other hand, GatorTron used the byte pair encoding algorithm
and was pretrained on the GPT model to scale up the language
model up to 8.9 billion parameters, showing 9.6% accuracy
improvement. Furthermore, the datasets in the medical domain
face the challenge of not only limited training data but also
low-quality labeled training data. Therefore, multi-task learning
was presented by Khan et al [92], and the slot tagging problem
was approached with MT-BioNER, a multi-task
transformer-based model that enhanced memory performance
and time efficiency in slot tagging, with 10% better performance
than single-task models.

While recent studies have heavily relied on BERT-based
structures, transformer models used other PLMs for improving
NER tasks. ELECTRAMed [91] proposed an ELECTRA-based
model for the biomedical domain, which reduced the sequence
length and training phases. Additionally, many models have
focused on multilingualism, including the CamemBERT,
BioGottBERT, Ra-RC, and RG-FLAT-CRF models
[95,153,154], focusing on efficiently learning features in
languages other than English, such as French, German, and
Chinese.

More recent studies include HeartBERT [98], which emphasizes
department-specific models, focusing on cardiology and
achieving 74% accuracy. UMLS-KGI-BERT [99] introduced
graph-based learning for clinical text extraction, with a precision
of 85.05%. CardioBERTpt [100], which is specialized in
Portuguese cardiology terms, improved NER performance, with
an FL-score of 83%. Finally, TocBERT [101], which is
fine-tuned on the MIMIC-III dataset, outperformed rule-based
methods for segmenting discharge summaries, achieving an F1
score of 84.6%.

Discussion

Principal Findings
This study examined previous studies on transformer-based
language models in the medical domain. We reviewed a total
of 75 recently studied models that aligned with our inclusion
criteria. The initial step of the method involves categorizing the
models based on the tasks they perform, such as dialogue
generation, question answering, summarization, text
classification, sentiment analysis, and NER. Then, each study
is analyzed based on the key findings, frameworks, pretraining
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models used, and model names. Finally, the limitations of each
task application are discussed. The use of transformer-derived
language models in medicine has shown numerous advantages,
such as high accuracy, language comprehension, automated
diagnosis, adaptability, and efficiency. However, these models
also face several challenges, including the lack of
standardization, the need for domain-specific knowledge, limited
annotated training data, safety concerns, interoperability and
interpretability issues, integration complexities, ethical
considerations, and evaluation issues. In this discussion section,
we explore key limitations and future directions of models in
terms of each task and the generalizability of the explored
models across different health care settings and population
considerations. Model challenges, their potential solutions, and
the future of natural language models in the medical domain
will be discussed.

Specific Task-Based Challenges and Future Directions

Dialogue Generation
Dialogue generation models like DialoGPT and ChatDoctor
face challenges such as handling the complexity and specificity
of medical terminology, ensuring data privacy, and providing
accurate, contextually relevant, and empathetic responses.
Privacy and security issues are critical since these models deal
with sensitive patient information. The risk of privacy, chances
of errors, ethical constraints, and security issues remain to be
addressed. The challenge comes from the specificity and
complexity of medical terminology, although the medical
dialogue system certainly should provide only accurate and
informative knowledge tailored to the level of expertise of the
end user. Therefore, human experts need to conduct regular risk
and security audits.

The following suggestions are made to further improve medical
dialogue research. First, continuous learning and training of the
dialogue system are necessary to incorporate up-to-date
knowledge for users. Additionally, language translation could
be integrated into the dialogues to enable universal access to
data and promote a more profound exchange of insights without
language barriers. Moreover, chatbots [107] should be integrated
in a real medical setting to reduce medical costs and physician
burdens. Proper and accurate usage of the dialogue system may
assist patients in navigating through the vast amount of freely
available online data, finding correct information, and avoiding
falsified or unsolved answers. Lastly, automated data
augmentation techniques can be used to create unbiased
dialogues. These suggestions can lead to further advancements
in medical dialogue research, leading to more efficient
communication between patients and medical professionals.

Question Answering
Medical question-answering systems like BioBERT and
UmlsBERT struggle with the complexity of medical terminology
for nonexperts in the medical field. Patients who are
experiencing an illness may find it difficult to filter and search
for relevant information. These models need to handle diverse
linguistic data and adapt regional variations in medical practices.
One approach to addressing these limitations is to integrate
multilingual models to handle questions in various languages.

Another approach is the incorporation of region-specific medical
data to improve model generalizability and accuracy. Further,
enhancing the ability to integrate summarization tasks on top
of the question-answering system may provide comprehensive
responses. However, such a multi-task system requires several
human experts to evaluate the provided answers in order to
judge the task performance accurately.

Summarization
Medical summarization is a crucial application in language
model tasks to facilitate the hospital’s process and significantly
reduce the workload and burnout of clinicians. However,
challenges emerge due to the complexity of health care
terminologies and the need for expert knowledge to comprehend
them. The ability to achieve concise and faithful summaries is
critical for avoiding physician burnout and patient
dissatisfaction. Models like BioBERTSum and
ClinicalBERTSum face challenges in learning sentence and
document-level features, handling complex medical
terminologies, and ensuring summaries are concise and accurate.
The risk of physician burnout due to extensive documentation
can be mitigated by effective summarization. Future work can
focus on developing a system of human expert assessments to
validate the summarization quality. Additionally, combining
extractive methods and abstractive summarization methods is
suggested. A fine-tuned summarization model for a particular
task should consider tense information and personal information.
We recommend building an ensemble method to improve
pretraining and fine-tuning datasets for summarization
effectiveness. Medical summarization is a crucial application
in language model tasks to facilitate the hospital’s process and
significantly reduce the workload and burnout of clinicians.

Text Classification
Improving the accuracy and effectiveness of classification tasks
poses several challenges and limitations that need to be
addressed. Models, such as BioMed-RoBERTa and
ClinicalBERT, need to address issues related to class imbalance,
limited annotated data, and the complexity of medical
terminologies. Limited training data, for instance, can be
addressed by collaborating with different institutions to gather
various information options in vocabulary usage and text
structure, and high-quality annotated data can thus be developed.
Ambiguity, variation, concept drift, data privacy, language
complexity, and class imbalance can be addressed by employing
domain-specific approaches, and pretraining language models
can be leveraged on similar datasets. Domain-specific
approaches can resolve ambiguity issues and achieve active
learning to reduce the reliance on large volumes of labeled data.
These strategies will facilitate better model performance results.

Sentiment Analysis
Despite previous research results, medical sentiment analysis
remains a challenging task due to personalized information
required to accurately measure meaning and interpret emotions
in context. MentalBERT and RedBERT, for instance, need to
accurately interpret emotions in medical contexts, handle
personalized information, and manage the complexity of
evaluating representations in the biomedical domain [155].
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Organizing emotions in context requires sentiments, including
sarcasm, emojis, and misspelled words, which create
subjectivity, as noted by Brezulianu et al [156].

These limitations can be overcome by defining emotional
polarity for annotations and integrating cultural, economic, and
medical contexts into the model. Future research should consider
using a domain-specific sentiment dataset, adapting the specific
medical source (despite the lack of an available dataset, mostly
from a single source), creating highly effective and defined
labels in data, performing analysis based on the context, building
both the explicit and implicit sentiment lexicon, and addressing
the lack of a mental health–related sentiment lexicon. By
addressing these challenges, future work can develop more
accurate and effective medical sentiment analysis language
models.

Named Entity Recognition
NER downstream tasks are imperative to address its limitations.
The limited annotated data in medical text datasets is a major
challenge due to the high cost and time involved in labeling,
resulting in limited labeled data for model training. The
Bio+ClinicalBERT and Med-BERT models face challenges in
handling limited annotated data, normalizing various
terminologies, and ensuring accurate entity extraction across
different medical texts.

Therefore, we suggest collaborative effort among health care
providers, biomedical researchers, and computer engineering
experts to develop effective and robust NER models. Improving
the annotation algorithms and creating extensive and accurately
labeled medical text datasets can significantly enhance the
performance. Moreover, standardized clinical entities can
prevent ambiguity arising from abbreviations and context. The
use of transfer learning techniques and domain PLMs can be
beneficial in addressing the limited annotated data issue.
Developing domain-specific dictionaries and ontologies can aid
in improving the model performance.

Generalizability Challenges
Health care systems vary widely in their practices, protocols,
and terminologies. For instance, a model trained on data from
the United States may not perform optimally in a health care
setting in Asia or Europe due to differences in clinical
infrastructure and settings. The availability of resources, such
as EHRs and technological infrastructure, can also differ
between urban and rural settings, and between developed and
underdeveloped countries. This variability can significantly
affect the implementation and performance of the models.

Moreover, patients from different ethnic and cultural
backgrounds may present symptoms differently and may have
varying health behaviors, and models need to account for these
varying characteristics to avoid biases and ensure equitable
health care delivery. Moreover, multilingual populations pose
a challenge for language models trained predominantly on
English language data. The inclusion of diverse linguistic data
during model training can mitigate this issue with a
language-specific pretraining stage followed by a shared
fine-tuning stage to improve the model’s applicability across
different regions.

By incorporating diverse datasets during training, language
models can support personalized medicine initiatives. This
involves tailoring medical treatments to individual patient
characteristics, leading to more effective and efficient care.
Developing adaptable models that can be fine-tuned with local
data ensures scalability across different health care settings, to
address regional variations in medical practices and patient
demographics.

Standardizing Medical Data for Improved Model
Performance
The quality and consistency of medical data may vary across
health care settings. Models trained on high-quality standardized
data may not perform as well when applied to settings with less
structured and lower quality data. The lack of standardized
terminologies in medical texts, which encompass a vast array
of terminologies from disease-specific to domain-specific
language, is a notable challenge. Currently available datasets
often have a restricted range of medical entities, posing
difficulties in accurately extracting relevant entities.

To address this, we suggest creating standardized clinical
entities. This would enable the normalization of different names
or abbreviations to accurately normalize entities for standard
medical terminology, thereby improving data consistency and
model performance. Building standardized forms that are widely
adopted and available in multiple languages will facilitate
standardized medical learning. Additionally, developing
domain-specific models has proven effective in enhancing model
performance. For instance, an open-source package for detecting
clinical entities from medical texts, which can recognize risk
factors, medications, and diagnoses, can be developed to support
this initiative.

The fuel of building and training language models is data.
Collecting accurate information and precisely fabricating the
data design during the preprocessing step is crucial. The
challenges in creating such quality data for medical language
models include a lack of key annotation and limited training
data. Annotating medical text is time-consuming and costly,
resulting in limited labeled data for training models. First, using
diagnosis codes on weak supervision for training labels is
suggested. Second, the pipeline should support the automated
retrieval of datasets and multiple types of clinical entities to
enable the preservation of annotation relationships across
different languages. The automated retrieval of datasets and the
development of speedy and supportive algorithms can aid in
data integration and preprocessing. In addition to technical
solutions, emphasizing the importance of multidisciplinary
collaboration can significantly enhance the development and
implementation of these models. By integrating expertise from
various fields, we can overcome challenges, develop innovative
solutions, and further advance the field of AI in health care.
Collaborative efforts among data scientists, clinicians,
bioinformaticians, and ethicists are crucial for building robust,
reliable, and ethically sound models.

Ethical Considerations
Interoperability and cybersecurity pose significant challenges
in medicine. EMRs and clinical decision support systems often
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have difficulty interacting with each other, leading to
inefficiencies in patient care. To overcome these challenges, it
is important to develop strategies focused on informed consent,
safety, transparency, and algorithmic fairness for bias
prevention. Ensuring that patients provide informed consent for
the use of their data is critical. This involves informing patients
about the use of their data, the benefits and risks, and their rights
to withdraw consent at any time. This process upholds patient
autonomy and enhances trust in AI systems.

Safety and transparency are fundamental to the ethical
deployment of AI models in health care. Models handling
sensitive patient data and providing clinical recommendations,
such as BioBERTSum, must be rigorously validated and
continuously monitored to detect and rectify errors promptly.
Transparency can be achieved by making algorithms and
decision-making processes understandable to users. This
includes documenting how models are trained, the types of data
used, and the underlying mechanisms of the algorithms.

Ensuring algorithmic fairness is crucial to prevent biases in AI
models, which could lead to unequal treatment of patients. AI
models trained on biased datasets can perpetuate existing
disparities in health care. For example, models must include
diverse and representative data to avoid underrepresentation of
certain populations, ensuring fairness and accuracy across
different groups such as ethnicity, cultural background, gender,
and age. By addressing these ethical considerations within
mitigated guidelines, we can ensure the reliability of transformer
language models in medicine to improve overall health care
while preserving fairness.

Evaluation Metrics
Furthermore, the rapid evolution of medical knowledge poses
a challenge for language models to adapt and remain up to date
with innovative discoveries. Ensuring the interpretability of
language models is also crucial to address the trust issue and
support the decision-making process. To evaluate medical
language models, multiple metrics, including the F1 score,
Biomedical Language Understanding Evaluation, Biomedical
Language Understanding & Reasoning Benchmark (BLURB),
and Chinese Biomedical Language Understanding Evaluation
[157], should be used to overcome unbalanced performance
issues.

Conclusion
We presented a comprehensive survey of task-specific
transformer-derived models employed for diverse medical tasks,
demonstrating their significant potential in the medical domain.
Numerous studies have highlighted their capabilities in
improving health outcomes, extending beyond disease prediction
and medical classification studies. Our work clearly delineates
the applications of transformer-based language models in various
medical tasks such as dialogue generation, question answering,
summarization, text classification, sentiment analysis, and
NER. We identified innovative models and their unique
contributions to the field. These findings distinguish our work
from existing literature by providing a detailed, task-specific
analysis of transformer-based models in health care.

Despite the promising advancements, several challenges must
be addressed to develop effective models. These include
standardization, limited annotated data, interoperability, and
ethical considerations. To overcome these challenges, it is
crucial to emphasize multidisciplinary collaboration. Future
research should investigate transformer models that incorporate
visual or audio data sources to provide a more comprehensive
understanding of medical contexts.

Developing models that support patients’ experiences and assist
health care practitioners in focusing solely on critical tasks by
providing evidence-based recommendations and identifying
potential diagnostic and treatment options can remarkably
improve patient care. AI-driven tools rationalize administrative
tasks, reduce paperwork, and improve workflow efficiency,
eventually saving time for health care providers. Further,
policymakers can leverage insights from transformer-based
models to inform health care policies and allocate resources
more effectively, ensuring equitable health care delivery.

This review solely focused on transformer language models
that used text data. While the findings are promising, the
applicability of these models may vary across different medical
settings and populations. Our findings highlight the
transformative potential of transformer-based language models
in the medical field. By addressing the identified challenges
and focusing on innovative research directions, the health care
domain can advance significantly. We encourage researchers
to build upon our work, address these challenges, and explore
new frontiers in medical AI to improve patient care and clinical
decision-making.
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