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Abstract
Background: Biomedical natural language processing tasks are best performed with English models, and translation tools
have undergone major improvements. On the other hand, building annotated biomedical data sets remains a challenge.
Objective: The aim of our study is to determine whether the use of English tools to extract and normalize French medical
concepts based on translations provides comparable performance to that of French models trained on a set of annotated French
clinical notes.
Methods: We compared 2 methods: 1 involving French-language models and 1 involving English-language models. For the
native French method, the named entity recognition and normalization steps were performed separately. For the translated
English method, after the first translation step, we compared a 2-step method and a terminology-oriented method that performs
extraction and normalization at the same time. We used French, English, and bilingual annotated data sets to evaluate all stages
(named entity recognition, normalization, and translation) of our algorithms.
Results: The native French method outperformed the translated English method, with an overall F1-score of 0.51 (95% CI
0.47-0.55), compared with 0.39 (95% CI 0.34-0.44) and 0.38 (95% CI 0.36-0.40) for the 2 English methods tested.
Conclusions: Despite recent improvements in translation models, there is a significant difference in performance between the
2 approaches in favor of the native French method, which is more effective on French medical texts, even with few annotated
documents.
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Introduction
Named entity recognition (NER) and term normalization are
important steps in biomedical natural language processing
(NLP). NER is used to extract key information from textual

medical reports, and normalization consists of matching a
specific term to its formal reference in a shared terminol-
ogy such as the United Medical Language System (UMLS)
Metathesaurus [1]. Major improvements have been made
recently in these areas, particularly for English, as a huge
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amount of data is available in the literature and resources.
Modern automatic language processing relies heavily on
pretrained language models, which enable efficient semantic
representation of texts. The development of algorithms such
as transformers [2,3] has led to significant progress in this
field.

In Figure 1, the term “mention level” indicates that the
analysis is carried out at the level of a word or small group

of words: first at the NER stage (in blue) and then during
normalization (in green); finally, all mentions with normal-
ized concept unique identifiers (CUIs) are aggregated at the
“document level” (orange part). The sets of aggregated CUIs
per document predicted by the native French and transla-
ted English approaches are then compared to the manually
annotated gold standard.

Figure 1. Overall objective of the method: translating plain text to the CUI codes of the UMLS Metathesaurus, document by document. CHEM:
Chemicals & Drugs; CUI: concept unique identifier; DISO: Disorders; PROC: Procedures; UMLS: United Medical Language System.

In many languages other than English, efforts remain to be
made to obtain such results, notably due to a much smaller
quantity of accessible data [4]. In this context, our work
explores the relevance of a translation step for the recognition
and normalization of medical concepts in French biomedical
documents. We compared 2 methods: (1) a native French
approach where only annotated documents and resources
in French are used and (2) a translation-based approach
where documents are translated into English, in order to take
advantage of existing tools and resources for this language
that would allow the extraction of concepts mentioned in
unpublished French texts without new training data (zero-
shot), as proposed in van Mulligen et al [5].

We evaluated and discussed the results on several French
biomedical corpora, including a new set of 42 annotated
hospitalization reports with 4 entity groups. We evaluated the
normalization task at the document level, in order to avoid
a cross-language alignment step at evaluation time, which
would add a potential level of error and thus make the results
more difficult to interpret (see word alignment in Gao and
Vogel [6] and Vogel et al [7]). This normalization was carried
out by mapping all terms to their CUI in the UMLS Metathe-
saurus [1]. Figure 1 summarizes these various stages, from
the raw French text and the translated English text to the
aggregation and comparison of CUIs at the document level.
Our code is available on GitHub [8].

The various stages of our algorithms rely heavily on
transformers language models [2]. These models currently
represent the state of the art for many NLP tasks, such as

machine translation, NER, classification, and text normal-
ization (also known as entity binding). Once trained,
these models can represent any specific language, such as
biomedical or legal. The power of these models comes from
their neural architecture but also largely depends on the
amount of data they are trained on. In the biomedical field, 2
main types of data are available: public articles (eg PubMed)
and clinical electronic medical record databases (eg MIMIC-
III [9]), and the most powerful models are, for example,
BioBERT [10], which has been trained on the whole of
PubMed in English, and ClinicalBERT [11], which has been
trained on PubMed and MIMIC-III. In French, the variety
of models is less extensive, with CamemBERT [12] and
FlauBERT [13] for the general domain and no specific model
available for the biomedical domain.

In Figure 2, axis 1 (green axis on the left) corresponds
to the native French branch with a NER step based on
a FastText model trained from scratch on French clinical
notes and a CamemBERT model. A multilingual Bidirec-
tional Encoder Representations From Transformers (BERT)
model was then used for the normalization step, with 2
models tested: a deep multilingual normalization model [14]
and CODER [15] with the full version. Axes 2.1 and 2.2
(the 2 purple axes on the right) correspond to the translated
English branches, with a first translation step performed by
the OPUS-MT-FR-EN model [16] for both. Axis 2.1 (left)
was conducted with decoupled NER and normalization steps:
FastText trained from PubMed and MIMIC-III [17] for NER,
and deep multilingual normalization [14] or CODER [15]
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with the English version for normalization. Axis 2.2 (right)
used a single system for the NER and normalization stages:
MedCAT [18].

In addition to particularly powerful English-language
pretrained models, universal biomedical terminologies (ie, the
UMLS Metathesaurus) also contain many more English terms
than other languages. For example, the UMLS Metathesaurus
[1] contains at least 10 times more English terms than French
terms, which may enable rule-based models to perform better
in English. As mentioned above, each reference concept in
the UMLS Metathesaurus [1] is assigned a CUI, associated
with a set of synonyms, possibly in several languages, and
a semantic group, such as Disorders, Chemicals & Drugs,
Procedure, Anatomy, etc.

In parallel, the performance of machine translation has
also improved thanks to the same type of transformer-based
language models, and recent years have seen the emergence
of high-quality machine translations, such as OPUS-MT
developed by Tiedemann et al [16], Google Translate, and
others. These 2 observations have led several research teams
to add a translation step in order to analyze medical texts,
for example, to extract relevant mentions in ultrasound
reports [19,20] or in the case of the standardization of
medical concepts [14,15,21]. Work in the general (nonmed-
ical) domain has also focused on alignment between named
entities in parallel bilingual texts [22,23].

Figure 2. Diagram of different experiments comparing French and English language models without and with intermediate translation steps. CHEM:
Chemicals & Drugs; CUI: concept unique identifier; DEVI: Devices; DISO: Disorders; EHR: electronic health record; EN: English; FR: French; FT:
fine-tuned; PROC: Procedures; UMLS: United Medical Language System.

Methods
Approaches

Overview
Figure 2 shows the main approaches and models used in our
study. We explored 1 “native French approach axis” (axis 1 in
Figure 2), based on French linguistic models learned from and
applied to French annotated data, and 2 “translated English
approach axes” (axes 2.1 and 2.2), based on a translation
step and concept extraction tools in English. We compared
the performance of all axes with the average of the document-
level CUI prediction precisions for all documents.

Native French Approach
Axis 1 consisted of 2 stages: a NER stage and a normalization
stage. For the NER stage, we used the nested NER algorithm.
Next, a normalization step was performed by 2 different
algorithms: a deep multilingual normalization model [14] and
CODER [15] with the CODER all version.

Translated-English Approach
First, axes 2.1 and 2.2 consisted of a translation step,
performed by the state-of-the-art OPUS-MT-FR-EN [16] or
Google Translate algorithm. Second, similar to axis 1, axis
2.1 was based on a NER step and a normalization step.
The NER step was performed by the same algorithm but
trained on the National NLP Clinical Challenges (N2C2)
2019 data set [24] without manual annotation realignment; for
the normalization step, we used the same deep multilingual
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algorithm [14] and the English version of CODER [15] based
on a BioBERT model [10]. This axis allows us to compare 2
methods whose difference lies solely in the translation step.

Axis 2.2 was based on the MedCAT [18] algorithm, which
performs NER and normalization simultaneously. In this case,
we compared the native French method with a state-of-the-
art, ready-to-use English system, which is not available in
French.
Data Sets
For all our experiments, we chose to focus on 4 seman-
tic groups of the UMLS Metathesaurus [1]: Chemical &
Drugs (“CHEM”); Devices (“DEVI”), corresponding to
medical devices such as pacemakers, catheters, etc; Disorders
(“DISO”), corresponding to all signs, symptoms, results (eg,

positive or negative results of biological tests), and diseases;
and Procedures (“PROC”), corresponding to all diagnos-
tic and therapeutic procedures such as imaging, biological
tests, operative procedures, etc, as well as the corresponding
number of documents.

Table 1 shows the data sets used for all our experiments
and the corresponding number of documents. First, 2 French
data sets were used for the final evaluation, as well as for
training the axis-1 models. QUAERO is a freely available
corpus [25] based on pharmacological notes with 2 subcor-
pora: MEDLINE (short sentences from PubMed abstracts)
and EMEA (drug package inserts). We also annotated a
new data set of real-life clinical notes from the Assistance
Publique Hôpitaux de Paris data warehouse, described in
Section S1 in Multimedia Appendix 1.

Table 1. Overview of all data sets used. When a data set is used for both training and testing, 80% of the data set is used for training and 20% is
used for testing. Thus, for the EMEA data set, 30 documents were used for training and 8 for testing, 34 French notes were used for training and 8 for
testing, and so on.
Variables Languages and data sets

French English English and French

QUAERO [25] French notes
N2C2a 2019
[24] Mantra [26]

WMTb 2016
[27]

WMT 2019
[28]

EMEA MEDLINE
Type Drug notices MEDLINE

titles
French notes English notes Drug notices

and MED-
LINE titles

PubMed
abstracts

PubMed
abstracts

Size (documents), n 38 2514 42 100 200 >600,000 sent 6542
Use

Train NERc ✓ ✓ ✓ ✓
Test NER ✓ ✓ ✓ ✓
Normalization ✓ ✓ ✓ ✓
Test MedCAT ✓ ✓
Translation (fine-tuning) ✓ ✓
Translation (test) ✓

aN2C2: National Natural Language Processing Clinical Challenges.
bWMT: Workshop on Machine Translation.
cNER: named entity recognition.

Second, we used the N2C2 2019 corpus [24] with anno-
tated CUIs, on which we automatically added semantic
group information from the UMLS Metathesaurus [1], to
train the axis-2.1 system and evaluate the NER and English
normalization algorithms. We also used the Mantra data set
[26], a multilingual reference corpus for biomedical concept
recognition.

Finally, we refined and tested the translation algorithms
on the Workshop on Machine Translation biomedical corpora
of 2016 [27] and 2019 [28]. A detailed description of the
number of respective entities in the data sets can be found in
Table S1 in Multimedia Appendix 1.

The annotation methods for the French corpus are detailed
in Section S1 and Figure S1 in Multimedia Appendix 1. The
distribution of entities for this annotation is detailed in Table
S1 in Multimedia Appendix 1.

Translation
We used and compared 2 main algorithms for the translation
step: the OPUS-MT-FR-EN model [16], which we tested
without and with fine-tuning on the 2 biomedical translation
corpora of 2016 and 2019 [27,28], and Google Translate as a
comparison model.
NER Algorithm
For this step, we used the algorithm of Wajsbürt [29]
described in Gérardin et al [30]. This model is based on
the representation of a BERT transformer [3] and calculates
the scores of all possible concepts to be predicted in the
text. The extracted concepts are delimited by 3 values: start,
end, and label. More precisely, the encoding of the text
corresponds to the last 4 layers of BERT, FastText integra-
tion, and a max-pool Char-CNN [31] representation of the
word. The decoding step is then performed by a 3-layer long
short-term memory [32] with learning weights [33], similar to
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the method in Yu et al [34]. A sigmoid function was added to
the vertex. Values (start, end, and label) with a score greater
than 0.5 were retained for prediction. The loss function was a
binary cross-entropy, and we used the Adam optimizer [35].

In our experiments, for the native French axis (axis 1 in
Figure 2), the pretrained embeddings used to train the model
were based on a FastText model [36], trained from scratch on
5 gigabytes of clinical text, and a CamemBERT-large model
[12] fine-tuned on this same data set. For English axis 2.1, the
pretrained models were BioWordVec [17] and ClinicalBERT
[11].
Normalization Algorithms

Overview
This stage of our experiments was essential for comparing a
method in native French and one translated into English, and
it consisted of matching each mention extracted from the text
to its associated CUI in the UMLS Metathesaurus [1]. We
compared 3 models for this step, described below: the deep
multilingual normalization algorithm developed by Wajsbürt
et al [14]; CODER [15]; and the MedCAT [18] model, which
performs both NER and normalization.

These 3 models require no training data set other than the
UMLS Metathesaurus.

Deep Multilingual Normalization
This algorithm by Wajsbürt et al [14] considers the normali-
zation task as a highly multiclass classification problem with
cosine similarity and a softmax function as the last layer. The
model is based on contextual integration, using the pretrained
multilingual BERT model [3], and works in 2 steps. In the
first step, the BERT model is fine-tuned and the French
UMLS terms and their corresponding English synonyms
are learned. Then, in the second step, the BERT model is
frozen and the representation of all English-only terms (ie,
those present only in English in the UMLS Metathesaurus
[1]) is learned. The same training is used for the native
French and translated English approaches. This model was
trained with the 2021 version of the UMLS Metathesaurus
[1], corresponding to the version used for annotating the
French corpus. The model was thus trained on over 4 million
concepts corresponding to 2 million CUIs.

CODER
The CODER algorithm [15] was developed by contrastive
learning on the basis of the medical knowledge graph of
the UMLS Metathesaurus [1], with concept similarities being
calculated from the representation of terms and relations in

this knowledge graph. Contrastive learning is used to learn
embeddings through multisimilarity loss [37]. The authors
have developed 2 versions: a multilingual version based on
the multilingual BERT [3] and an English version based on
the pretrained BioBERT model [10]. We used the multilin-
gual version for axis 1 (native French approach) and the
English version for axis 2.1. Both types of this model
(CODER all and CODER en) were trained with the 2020
version of UMLS (publicly available models). CODER all
[15] was trained on over 4 million concepts corresponding to
2 million CUIs, and CODER en was trained on over 3 million
terms and 2 million CUIs.

For the deep multilingual model and the CODER model, in
order to improve performance in terms of accuracy, we chose
to add semantic group information (ie, Chemical & Drugs,
Devices, Disorders, and Procedures) to the model output: that
is, from the first k CUIs chosen from a mention, we selected
the first from the corresponding group.

The MedCAT algorithm is described in detail in Section
S1 in Multimedia Appendix 1.
Ethical Considerations
The study and its experimental protocol were approved by the
Assistance Publique Hôpitaux de Paris Scientific and Ethical
Committee (IRB00011591, decision CSE 20-0093). Patients
were informed that their electronic health record informa-
tion could be reused after an anonymization process, and
those who objected to the reuse of their data were excluded.
All methods were applied in accordance with the relevant
guidelines (Commission nationale de l'informatique et des
libertés reference methodology MR-004 [38]).

Results
The sections below present the performance results for each
stage. The N2C2 2019 challenge corpus [24] enabled us to
evaluate the performance of our English models on clini-
cal data, and the Biomedical Translation 2016 shared task
[27] allowed us to evaluate our translation performance on
biomedical data with a BLEU score [39].
NER Performances
To be able to compare our approaches in native French and
translated English, we used the same NER model, trained
and tested on each of the data sets described above. Table
2 shows the corresponding results. Overall F1-scores were
similar across data sets: from 0.72 to 0.77.
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Table 2. Named entity recognition (NER) performance for each model. For all experiments, we used the same NER algorithm but with different
pretrained models. The best performance values are italicized.
Groups Data sets and models

EMEA test, with FastText*a and
CamemBERT-FT [12]

French notes, with FastText* and
CamemBERT-FT

N2C2b 2019 test, with BioWordVec [17] and
ClinicalBERT [11]

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
CHEMc 0.80 0.83 0.82 0.84 0.88 0.86 0.87 0.85 0.86
DEVId 0.42 0.81 0.55 0.00 0.00 0.00 0.58 0.51 0.54
DISOe 0.54 0.63 0.59 0.67 0.65 0.66 0.74 0.72 0.73
PROCf 0.73 0.78 0.74 0.78 0.72 0.75 0.80 0.78 0.79
Overall 0.71 0.77 0.74 0.73 0.71 0.72 0.78 0.76 0.77

aFastText* corresponds to a FastText model [36] trained from scratch on our clinical data set.
bN2C2: National Natural Language Processing Clinical Challenges.
cCHEM: Chemical & Drugs.
dDEVI: Devices.
eDISO: Disorders.
fPROC: Procedures.

Normalization Performances
This section presents only the normalization performance
based on the gold standard’s entity mentions, without the
intermediate steps. The results are summarized in Table 3.
The deep multilingual algorithm performed better for all
corpora tested, with an improvement in F1-score from +0.6
to +0.11. By way of comparison, the winning team of the
2019 N2C2 had achieved an accuracy of 0.85 using the N2C2
data set directly to train their algorithm [24]. In our context of

comparing algorithms between 2 languages, the normalization
algorithms were not trained on data other than the UMLS
Metathesaurus. MedCAT’s performance (shown in Table S2
in Multimedia Appendix 1) cannot be directly compared with
that of other models, as this method performed both NER and
normalization in a single step. However, we note that this
algorithm performed as well as axis 2.1 in terms of overall
performance, as shown in Table 4.

Table 3. Performance of the normalization step. Model results were calculated from the annotated data sets, focusing on the 4 semantic groups of
interest: Chemical & Drugs, Devices, Disorders, and Procedures. The best performance values are italicized.
Algorithms Data set models

EMEA test French notes N2C2a 2019 test
Deep multilingual normalization 0.65 0.57 0.74
CODER all 0.58 0.51 —b

CODER en — — 0.63
aN2C2: National Natural Language Processing Clinical Challenges.
bNot applicable.

Table 4. Overall performances. The normalization step was performed by the deep multilingual model and the translation was performed by the
OPUS-MT-FR-EN FT model. The best performance values are italicized.
Methods EMEA test French notes

Precision Recall F1-score (95% CI) Precision Recall F1-score (95% CI)
Axis 1 (French NERa+normalization) 0.63 0.60 0.61 (0.53-0.65) 0.49 0.53 0.51 (0.47-0.55)
Axis 2.1 (Translation+NER+normalization) 0.53 0.40 0.45 (0.38-0.51) 0.41 0.38 0.39 (0.34-0.44)
Axis 2.2 (Translation+MedCAT [18]) 0.53 0.46 0.49 (0.38-0.54) 0.38 0.38 0.38 (0.36-0.40)

aNER: named entity recognition.

Translation Performances
For both translation models, the respective BLEU scores [39]
were calculated on the shared 2016 Biomedical Translation
Task [27]. The chosen BLEU algorithm was the weighted
geometric mean of the n-gram precisions per sentence.

A fine-tuned version of OPUS-MT-FR-EN [16] was also
tested on the 2016 and 2019 Biomedical Translation shared

tasks. For fine-tuning, we used the following hyperpara-
meters: a maximum sequence length of 128 (mainly for
computational memory reasons), a learning rate of 2 × 10–
5, and a weight decay of 0.01, and we varied the number
of epochs up to 15 epochs (the error function curve stops
decaying after 10 epochs). The Google Translate model could
not be used for our clinical score experiments for reasons of
confidentiality.
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Table 5 presents the BLEU scores for the 3 models,
showing that fine-tuning the OPUS-MT-FR-EN model [16]
on biomedical data sets gave the best results, with a BLEU

score [39] of 0.51. This was the model used to calculate the
overall performance of axes 2.1 and 2.2.

Table 5. Translation performances: BLEU scores of the translation models. The best performance value is italicized.
Models WMTa Biomed 2016 test
Google Translate 0.42
OPUS-MT-FR-EN 0.31
OPUS-MT-FR-EN FTb 0.51

aWMT: Workshop on Machine Translation.
bOPUS-MT-FR-EN FT corresponds to the OPUS-MT-FR-EN model [16] fine-tuned on biomedical translated corpus from the WMT Biomedical
Translation Tasks in 2016 [27] and 2019 [28].

Overall Performances From Raw Text to
CUI Predictions
This section presents the overall performance of the 3 axes,
in an end-to-end pipeline. For axis 2, the results are those
obtained with the best normalization algorithm (presented in
Table 3). The model used for translation is the OPUS-MT-
FR-EN [16] fine-tuned model. The results are presented in
Table 4, with the best results obtained by the native French
approach on the EMEA corpus [25] and French clinical notes.
The 95% CIs were calculated using the empirical bootstrap
method [40].

Discussion
Principal Findings
In this paper, we compared 2 approaches for extracting
medical concepts from clinical notes: a French approach
based on a French language model and a translated Eng-
lish approach, where we compared 2 state-of-the-art English
biomedical language models, after a translation step. The
main advantages of our experiment are that it is reproducible
and that we were able to analyze the performance of each step
of the algorithm: NER, normalization, and translation, and to
test several models for each step.
The Quality of the Translation Is Not
Sufficient
We showed that the native French approach outperformed
the 2 translated English approaches, even with a small
French training data set. This analysis confirms that, where
possible, an annotated data set improves feature extraction.
The evaluation of each intermediate step showed that the
performance of each module was similar in French and
English. We can therefore conclude that it is rather the
translation phase itself that is of insufficient quality to allow
the use of English as a proxy without a loss of performance.
This is confirmed by the translation performance calcula-
tions, where the calculated BLEU scores were relatively low,
although improved by a fine-tuning step.

In conclusion, although translation is commonly used for
entity extraction or term normalization in languages other
than English [5,20,41-43], due to the availability of turn-
key models that do not require additional annotation by a

clinician, we showed that this induces a significant perform-
ance loss.

Commercial application programming interface–based
translation services could not be used for our task due to
data confidentiality issues. However, the OPUS-MT model is
considered state of the art, it is adjustable to domain-specific
data, and the translation results presented in Table 5 confirm
the absence of performance difference between this model
and the Google Translate model.

Although our experiments were carried out on a single
language, the French-English pair is one of the best perform-
ers in recent translation benchmarks [16]. Other languages are
unlikely to produce significantly better results.
Error Analysis
In these experiments, the overall results may appear low,
but the task is still complex, especially because the UMLS
Metathesaurus [1] contains many synonyms with different
CUIs. To better understand this, we performed an error
analysis on the normalization task only, as shown in Table
S3 in Multimedia Appendix 1, with a physician’s evalua-
tion, on a sample of 100 errors for both models. We cal-
culated that 24% (24/100) and 39% (39/100) of the terms
found by the deep normalization algorithm [14] and CODER
[15], respectively, were in fact synonyms but had 2 differ-
ent UMLS CUIs. This highlights the difficulty of achiev-
ing normalization on the UMLS Metathesaurus. The UMLS
Metathesaurus indeed groups together numerous terminol-
ogies whose mapping between terms is often imperfect,
implying that certain synonyms, as shown here, do not have
the same CUI, as pointed out by Cimino [44] and Jiménez-
Ruiz et al [45]. For example, “cardiac ultrasound” has the
CUI of C1655737, whereas “echocardiography” has another
CUI of C0013516; similarly, “H/O: thromboembolism” has
a CUI of C0455533, whereas “history of thromboembolism”
has a CUI of C1997787, and so on.

Moreover, to be more precise, each axis had its own
errors: overall, the errors in axis 2 were essentially due to
the loss of information in translation. One notable error was
literal translation: for example, “dispersed lupus erythema-
tous” instead of “systemic lupus erythematosus,” or “crepi-
tant” instead of “crackles.” This loss of translation led to
more errors in the extraction of named entities.
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In addition to the loss of translation information, axis
2.1 was also penalized by the NER step, due to the differ-
ence between the training set (N2C2 notes) and the test set
(the translated French notes; the aim being to compare the
performance of English-language turnkey models with the
performance of French-language models from an annotated
set). Axis 2.1, for example, omitted the names of certain
drugs more often.

Finally, both axes were penalized by abbreviations. These
were often badly translated (for example, the abbreviation
“MFIU” for “mort foetale in utero,” meaning “intrauterine
fetal death,” was not translated), which penalized axis 2.
Nevertheless, if they were indeed extracted by NER steps in
axis 1, they were not correctly normalized due to the absence
of a corresponding CUI in the UMLS Metathesaurus.

Limitations
This work has several limitations. First, the actual French
clinical notes contained very few terms in the Devices
semantic group, which prevented the NER algorithm from
finding them in the test data set. However, this drawback,
which penalized the native French approach, still allowed
us to draw a conclusion for the results. Furthermore, in this
study, we did not take into account attributes of the extracted
terms such as negation, hypothetical attribute, or belonging to
a person other than the patient for comparison purposes, as
the QUAERO [25] and N2C2 2019 [24] data sets did not have
this labeled information.

Acknowledgments
The authors would like to thank the Assistance Publique Hôpitaux de Paris (AP-HP) data warehouse, which provided the
data and the computing power to carry out this study under good conditions. We wish to thank all the medical colleges,
including internal medicine, rheumatology, dermatology, nephrology, pneumology, hepato-gastroenterology, hematology,
endocrinology, gynecology, infectiology, cardiology, oncology, emergency, and intensive care units, that gave their permission
for the use of the clinical data.
Data Availability
The data sets analyzed as part of this study are not accessible to the public due to the confidentiality of data from patient
files, even after deidentification. However, access to raw data from the Assistance Publique Hôpitaux de Paris (AP-HP) data
warehouse can be granted by following the procedure described on its website [46]: by contacting the ethical and scientific
committee at secretariat.cse@aphp.fr. Prior validation of access by the local institutional review committee is required. In the
case of non-APHP researchers, a collaboration contract must also be signed.
Authors’ Contributions
CG contributed to conceptualization, data curation, formal analysis, investigation, methodology, software, validation, original
drafting, writing—original version, and writing—revision and editing the manuscript. YX contributed to investigation,
methodology, software, and validation. PW contributed to investigation, software, and revision of the manuscript. FC
contributed to conceptualization, methodology, project administration, supervision, writing—original version, and writing—
revision and editing of the manuscript. XT contributed to conceptualization, formal analysis, methodology, writing—original
version, and writing—revision and editing of the manuscript.
Conflicts of Interest
None declared.
Multimedia Appendix 1
Detailed description of the data sets, an example of the clinical notes annotation, French corpus annotation, MedCAT
performances, and error analysis.
[DOCX File (Microsoft Word File), 154 KB-Multimedia Appendix 1]
References
1. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids

Res. Jan 1, 2004;32(suppl 1):D267-D270. [doi: 10.1093/nar/gkh061] [Medline: 14681409]
2. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Guyon I, von Luxburg U, Bengio S, et al, editors.

Advances in Neural Information Processing Systems 30 (NIPS 2017). 2017. URL: https://papers.nips.cc/paper_files/
paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html [Accessed 2024-03-15]

3. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language
understanding. In: Burstein J, Doran C, Solorio T, editors. Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Association for Computational Linguistics; 2019;4171-4186. [doi: 10.18653/v1/N19-1423]

4. Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natural language processing in languages other
than English: opportunities and challenges. J Biomed Semantics. Mar 30, 2018;9(1):12. [doi: 10.1186/s13326-018-0179-
8] [Medline: 29602312]

JMIR MEDICAL INFORMATICS Gérardin et al

https://medinform.jmir.org/2024/1/e49607 JMIR Med Inform 2024 | vol. 12 | e49607 | p. 8
(page number not for citation purposes)

https://jmir.org/api/download?alt_name=medinform_v12i1e49607_app1.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e49607_app1.docx
https://doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/pubmed/14681409
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1186/s13326-018-0179-8
https://doi.org/10.1186/s13326-018-0179-8
http://www.ncbi.nlm.nih.gov/pubmed/29602312
https://medinform.jmir.org/2024/1/e49607


5. van Mulligen EM, Afzal Z, Akhondi SA, Vo D, Kors JA. Erasmus MC at CLEF Ehealth 2016: concept recognition and
coding in French texts. In: Balog K, Cappellato L, Ferro N, Macdonald C, editors. Working Notes of CLEF 2016 -
Conference and Labs of the Evaluation Forum CEUR Workshop Proceedings, Vol 1609. CEUR-WS.org; 2016;171-178.
URL: https://ceur-ws.org/Vol-1609/16090171.pdf [Accessed 2024-03-15]

6. Gao Q, Vogel S. Parallel Implementations of word alignment tool. In: Cohen KB, Carpenter B, editors. SETQA-
NLP ’08: Software Engineering, Testing, and Quality Assurance for Natural Language Processing. Association for
Computational Linguistics; 2008;49-57. [doi: 10.5555/1622110.1622119]

7. Vogel S, Ney H, Tillmann C. HMM-based word alignment in statistical translation. In: COLING ’96: Proceedings of the
16th Conference on Computational Linguistics - Volume 2. Association for Computational Linguistics; 1996;836-841.
[doi: 10.3115/993268.993313]

8. ChristelDG/biomed_translation. GitHub. URL: https://github.com/ChristelDG/biomed_translation [Accessed
2024-03-15]

9. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data. May 24,
2016;3(1):160035. [doi: 10.1038/sdata.2016.35] [Medline: 27219127]

10. Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics. Feb 15, 2020;36(4):1234-1240. [doi: 10.1093/bioinformatics/btz682] [Medline: 31501885]

11. Huang K, Altosaar J, Ranganath R. ClinicalBERT: modeling clinical notes and predicting hospital readmission. arXiv.
Preprint posted online on Apr 10, 2019. [doi: 10.48550/arXiv.1904.05342]

12. Martin L, Muller B, Ortiz Suárez PJ, et al. CamemBERT: a tasty French language model. In: Kurafsky D, Chai J,
Schluter N, Tetreault J, editors. Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics; 2020;7203-7219. [doi: 10.18653/v1/2020.acl-main.645]

13. Le H, Vial L, Frej J, et al. FlauBERT: unsupervised language model pre-training for French. In: Calzolari N, Béchet F,
Blanche P, et al, editors. Proceedings of the Twelfth Language Resources and Evaluation Conference. European
Language Resources Association; 2020;2479-2490. URL: https://aclanthology.org/2020.lrec-1.302 [Accessed
2024-03-15]

14. Wajsbürt P, Sarfati A, Tannier X. Medical concept normalization in French using multilingual terminologies and
contextual embeddings. J Biomed Inform. Feb 2021;114:103684. [doi: 10.1016/j.jbi.2021.103684] [Medline: 33450387]

15. Yuan Z, Zhao Z, Sun H, Li J, Wang F, Yu S. CODER: knowledge-infused cross-lingual medical term embedding for
term normalization. J Biomed Inform. Feb 2022;126:103983. [doi: 10.1016/j.jbi.2021.103983] [Medline: 34990838]

16. Tiedemann J, Thottingal S. OPUS-MT - building open translation services for the world. In: Martins A, Moniz H,
Fumega S, et al, editors. Proceedings of the 22nd Annual Conference of the European Association for Machine
Translation. European Association for Machine Translation; 2020;479-480. URL: https://aclanthology.org/2020.eamt-1.
61 [Accessed 2024-03-15]

17. Zhang Y, Chen Q, Yang Z, Lin H, Lu Z. BioWordVec, improving biomedical word embeddings with subword
information and MeSH. Sci Data. May 10, 2019;6(1):52. [doi: 10.1038/s41597-019-0055-0] [Medline: 31076572]

18. Kraljevic Z, Bean D, Mascio A, et al. MedCAT -- medical concept annotation tool. arXiv. Preprint posted online on Dec
18, 2019. [doi: 10.48550/arXiv.1912.10166]

19. Campos L, Pedro V, Couto F. Impact of translation on named-entity recognition in radiology texts. Database (Oxford).
Jan 1, 2017;2017(2017):bax064. [doi: 10.1093/database/bax064] [Medline: 29220455]

20. Suarez-Paniagua V, Dong H, Casey A. A multi-BERT hybrid system for named entity recognition in Spanish radiology
reports. In: Faggioli G, Ferro N, Joly A, Maistro M, Piroi F, editors. Proceedings of the Working Notes of CLEF 2021 -
Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, Vol 2936. CEUR-WS.org; 2021;846-856.
URL: https://ceur-ws.org/Vol-2936/paper-70.pdf [Accessed 2024-03-15]

21. Perez-Miguel N, Cuadros M, Rigau G. Biomedical term normalization of EHRs with UMLS. In: Calzolari N, Choukri K,
Cieri C, et al, editors. Proceedings of the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018). European Language Resources Association (ELRA); 2018;2045-2051. URL: https://aclanthology.org/
L18-1322 [Accessed 2024-03-15]

22. Chen Y, Zong C, Su KYS. On jointly recognizing and aligning bilingual named entities. In: Hajič J, Carberry S, Clark S,
Nivre J, editors. Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics; 2010;631-639. URL: https://aclanthology.org/P10-1065 [Accessed 2024-03-15]

23. Chen Y, Zong C, Su KYS. A joint model to identify and align bilingual named entities. Comput Linguist. Jun 1,
2013;39(2):229-266. [doi: 10.1162/COLI_a_00122]

24. Henry S, Wang Y, Shen F, Uzuner O. The 2019 National Natural Language Processing (NLP) Clinical Challenges
(N2C2)/Open Health NLP (OHNLP) shared task on clinical concept normalization for clinical records. J Am Med
Inform Assoc. Oct 1, 2020;27(10):1529-1537. [doi: 10.1093/jamia/ocaa106] [Medline: 32968800]

JMIR MEDICAL INFORMATICS Gérardin et al

https://medinform.jmir.org/2024/1/e49607 JMIR Med Inform 2024 | vol. 12 | e49607 | p. 9
(page number not for citation purposes)

https://ceur-ws.org/Vol-1609/16090171.pdf
https://doi.org/10.5555/1622110.1622119
https://doi.org/10.3115/993268.993313
https://github.com/ChristelDG/biomed_translation
https://doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127
https://doi.org/10.1093/bioinformatics/btz682
http://www.ncbi.nlm.nih.gov/pubmed/31501885
https://doi.org/10.48550/arXiv.1904.05342
https://doi.org/10.18653/v1/2020.acl-main.645
https://aclanthology.org/2020.lrec-1.302
https://doi.org/10.1016/j.jbi.2021.103684
http://www.ncbi.nlm.nih.gov/pubmed/33450387
https://doi.org/10.1016/j.jbi.2021.103983
http://www.ncbi.nlm.nih.gov/pubmed/34990838
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://doi.org/10.1038/s41597-019-0055-0
http://www.ncbi.nlm.nih.gov/pubmed/31076572
https://doi.org/10.48550/arXiv.1912.10166
https://doi.org/10.1093/database/bax064
http://www.ncbi.nlm.nih.gov/pubmed/29220455
https://ceur-ws.org/Vol-2936/paper-70.pdf
https://aclanthology.org/L18-1322
https://aclanthology.org/L18-1322
https://aclanthology.org/P10-1065
https://doi.org/10.1162/COLI_a_00122
https://doi.org/10.1093/jamia/ocaa106
http://www.ncbi.nlm.nih.gov/pubmed/32968800
https://medinform.jmir.org/2024/1/e49607


25. Névéol A, Grouin C, Leixa J, Rosset S, Zweigenbaum P. The QUAERO French medical corpus: a resource for medical
entity recognition and normalization. Presented at: Fourth Workshop on Building and Evaluating Resources for Health
and Biomedical Text Processing - BioTextM2014; May 26-31, 2014; Reykjavik, Iceland. 24-30. URL: https://perso.
limsi.fr/pz/FTPapiers/Neveol_BIOTEXTM2014.pdf [Accessed 2024-03-15]

26. Kors JA, Clematide S, Akhondi SA, van Mulligen EM, Rebholz-Schuhmann D. A multilingual gold-standard corpus for
biomedical concept recognition: the Mantra GSC. J Am Med Inform Assoc. Sep 2015;22(5):948-956. [doi: 10.1093/
jamia/ocv037] [Medline: 25948699]

27. Bojar O, Chatterjee R, Federmann C. Findings of the 2016 Conference on Machine Translation. In: Bojar O, Buck C,
Chatterjee R, et al, editors. Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers.
Association for Computational Linguistics; 2016;131-198. [doi: 10.18653/v1/W16-2301]

28. Bawden R, Bretonnel Cohen K, Grozea C, et al. Findings of the WMT 2019 Biomedical Translation Shared Task:
evaluation for MEDLINE abstracts and biomedical terminologies. In: Bojar O, Chatterjee R, Federmann C, et al, editors.
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2). Association for
Computational Linguistics; 2019;29-53. [doi: 10.18653/v1/W19-5403]

29. Wajsbürt P. Extraction and Normalization of Simple and Structured Entities in Medical Documents [thesis]. Sorbonne
Université; Dec 2021. URL: https://theses.hal.science/THESES-SU/tel-03624928v1 [Accessed 2024-03-15]

30. Gérardin C, Wajsbürt P, Vaillant P, Bellamine A, Carrat F, Tannier X. Multilabel classification of medical concepts for
patient clinical profile identification. Artif Intell Med. Jun 2022;128:102311. [doi: 10.1016/j.artmed.2022.102311]
[Medline: 35534148]

31. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural architectures for named entity recognition. In:
Knight K, Nenkova A, Rambow O, editors. Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics;
2016;260-270. [doi: 10.18653/v1/N16-1030]

32. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. Nov 15, 1997;9(8):1735-1780. [doi: 10.1162/
neco.1997.9.8.1735] [Medline: 9377276]

33. Kim J, El-Khamy M, Lee J. Residual LSTM: design of a deep recurrent architecture for distant speech recognition.
Presented at: Interspeech 2017; Aug 20-24, 2017; Stockholm, Sweden. 2017;1591-1595. [doi: 10.21437/Interspeech.
2017-477]

34. Yu J, Bohnet B, Poesio M. Named entity recognition as dependency parsing. In: Jurafsky D, Chai J, Schulter N,
Tetreault J, editors. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics; 2020;6470-6476. [doi: 10.18653/v1/2020.acl-main.577]

35. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv. Preprint posted online on Dec 22, 2014. [doi: 10.
48550/arXiv.1412.6980]

36. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information. Trans Assoc Comput
Linguist. Dec 1, 2017;5:135-146. [doi: 10.1162/tacl_a_00051]

37. Wang X, Han X, Huang W, Dong D, Scott MR. Multi-similarity loss with general pair weighting for deep metric
learning. Presented at: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Jun 15-20,
2019; Long Beach, CA. 2019;5017-5025. [doi: 10.1109/CVPR.2019.00516]

38. CNIL (Commission Nationale de l’Informatique et des Libertés). URL: https://www.cnil.fr/en/home [Accessed
2024-03-15]

39. Papineni K, Roukos S, Ward T, Zhu W-J. BLEU: a method for automatic evaluation of machine translation. In:
ACL ’02: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for
Computational Linguistics; 2002;311-318. [doi: 10.3115/1073083.1073135]

40. Dekking FM, Kraaikamp C, Lopuhaa HP, Meester LE. A Modern Introduction to Probability and Statistics:
Understanding Why and How. Springer Nature; 2007.

41. Cotik V, Rodríguez H, Vivaldi J. Spanish named entity recognition in the biomedical domain. In: Lossio-Ventura J,
Muñante D, Alatrista-Salas H, editors. Information Management and Big Data. SIMBig 2018. Communications in
Computer and Information Science, vol 898. Springer; 233-248. [doi: 10.1007/978-3-030-11680-4]

42. Hellrich J, Hahn U. Enhancing multilingual biomedical terminologies via machine translation from parallel corpora. In:
Métais E, Roche M, Teisseire M, editors. Natural Language Processing and Information Systems. NLDB 2014. Lecture
Notes in Computer Science, vol 8455. Springer; 2014;9-20. [doi: 10.1007/978-3-319-07983-7_2]

43. Attardi G, Buzzelli A, Sartiano D. Machine translation for entity recognition across languages in BIOMEDICAL
documents. In: Forner P, Navigli R, Tufis D, Ferro N, editors. Working Notes for CLEF 2013 Conference. CEUR
Workshop Proceedings, Vol 1179. CEUR-WS.org; 2013. URL: https://ceur-ws.org/Vol-1179/CLEF2013wn-CLEFER-
AttardiEt2013.pdf [Accessed 2024-03-15]

JMIR MEDICAL INFORMATICS Gérardin et al

https://medinform.jmir.org/2024/1/e49607 JMIR Med Inform 2024 | vol. 12 | e49607 | p. 10
(page number not for citation purposes)

https://perso.limsi.fr/pz/FTPapiers/Neveol_BIOTEXTM2014.pdf
https://perso.limsi.fr/pz/FTPapiers/Neveol_BIOTEXTM2014.pdf
https://doi.org/10.1093/jamia/ocv037
https://doi.org/10.1093/jamia/ocv037
http://www.ncbi.nlm.nih.gov/pubmed/25948699
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/W19-5403
https://theses.hal.science/THESES-SU/tel-03624928v1
https://doi.org/10.1016/j.artmed.2022.102311
http://www.ncbi.nlm.nih.gov/pubmed/35534148
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.21437/Interspeech.2017-477
https://doi.org/10.21437/Interspeech.2017-477
https://doi.org/10.18653/v1/2020.acl-main.577
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1109/CVPR.2019.00516
https://www.cnil.fr/en/home
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1007/978-3-030-11680-4
https://doi.org/10.1007/978-3-319-07983-7_2
https://ceur-ws.org/Vol-1179/CLEF2013wn-CLEFER-AttardiEt2013.pdf
https://ceur-ws.org/Vol-1179/CLEF2013wn-CLEFER-AttardiEt2013.pdf
https://medinform.jmir.org/2024/1/e49607


44. Cimino JJ. Auditing the Unified Medical Language System with semantic methods. J Am Med Inform Assoc.
1998;5(1):41-51. [doi: 10.1136/jamia.1998.0050041] [Medline: 9452984]

45. Jiménez-Ruiz E, Grau BC, Horrocks I, Berlanga R. Logic-based assessment of the compatibility of UMLS ontology
sources. J Biomed Semantics. Mar 7, 2011;2 Suppl 1(Suppl 1):S2. [doi: 10.1186/2041-1480-2-S1-S2] [Medline:
21388571]

46. Assistance Publique Hôpitaux de Paris. URL: www.eds.aphp.fr [Accessed 2024-03-18]

Abbreviations
BERT: Bidirectional Encoder Representations From Transformers
CUI: concept unique identifier
N2C2: National Natural Language Processing Clinical Challenges
NER: named entity recognition
NLP: natural language processing
UMLS: United Medical Language System

Edited by Christian Lovis; peer-reviewed by Luise Modersohn, Manabu Torii; submitted 03.06.2023; final revised version
received 07.01.2024; accepted 10.01.2024; published 04.04.2024

Please cite as:
Gérardin C, Xiong Y, Wajsbürt P, Carrat F, Tannier X
Impact of Translation on Biomedical Information Extraction: Experiment on Real-Life Clinical Notes
JMIR Med Inform 2024;12:e49607
URL: https://medinform.jmir.org/2024/1/e49607
doi: 10.2196/49607

© Christel Gérardin, Yuhan Xiong, Perceval Wajsbürt, Fabrice Carrat, Xavier Tannier. Originally published in JMIR Medical
Informatics (https://medinform.jmir.org), 04.04.2024. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The
complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright
and license information must be included.

JMIR MEDICAL INFORMATICS Gérardin et al

https://medinform.jmir.org/2024/1/e49607 JMIR Med Inform 2024 | vol. 12 | e49607 | p. 11
(page number not for citation purposes)

https://doi.org/10.1136/jamia.1998.0050041
http://www.ncbi.nlm.nih.gov/pubmed/9452984
https://doi.org/10.1186/2041-1480-2-S1-S2
http://www.ncbi.nlm.nih.gov/pubmed/21388571
https://medinform.jmir.org/2024/1/e49607
https://doi.org/10.2196/49607
https://medinform.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://medinform.jmir.org/
https://medinform.jmir.org/2024/1/e49607

	Impact of Translation on Biomedical Information Extraction: Experiment on Real-Life Clinical Notes
	Introduction
	Methods
	Approaches
	Data Sets
	Translation
	NER Algorithm
	Normalization Algorithms
	Ethical Considerations

	Results
	NER Performances
	Normalization Performances
	Translation Performances
	Overall Performances From Raw Text to CUI Predictions

	Discussion
	Principal Findings
	The Quality of the Translation Is Not Sufficient
	Error Analysis
	Limitations



