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Abstract
Background: Early identification of impending in-hospital cardiac arrest (IHCA) improves clinical outcomes but remains
elusive for practicing clinicians.
Objective: We aimed to develop a multimodal machine learning algorithm based on ensemble techniques to predict the
occurrence of IHCA.
Methods: Our model was developed by the Multiparameter Intelligent Monitoring of Intensive Care (MIMIC)–IV database
and validated in the Electronic Intensive Care Unit Collaborative Research Database (eICU-CRD). Baseline features consisting
of patient demographics, presenting illness, and comorbidities were collected to train a random forest model. Next, vital signs
were extracted to train a long short-term memory model. A support vector machine algorithm then stacked the results to form
the final prediction model.
Results: Of 23,909 patients in the MIMIC-IV database and 10,049 patients in the eICU-CRD database, 452 and 85 patients,
respectively, had IHCA. At 13 hours in advance of an IHCA event, our algorithm had already demonstrated an area under
the receiver operating characteristic curve of 0.85 (95% CI 0.815‐0.885) in the MIMIC-IV database. External validation with
the eICU-CRD and National Taiwan University Hospital databases also presented satisfactory results, showing area under the
receiver operating characteristic curve values of 0.81 (95% CI 0.763-0.851) and 0.945 (95% CI 0.934-0.956), respectively.
Conclusions: Using only vital signs and information available in the electronic medical record, our model demonstrates it is
possible to detect a trajectory of clinical deterioration up to 13 hours in advance. This predictive tool, which has undergone
external validation, could forewarn and help clinicians identify patients in need of assessment to improve their overall
prognosis.
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Introduction
The prognosis of in-hospital cardiac arrest (IHCA) is poor
as it represents the culmination of heterogeneous multi-organ
dysfunction, with few treatments [1]. IHCA has an incidence
of 9 to 10 per 1000 admissions and a mortality rate of
80%‐100% [2]. Therefore, clinical guidelines emphasize the
urgent need for early identification of patients at risk for
IHCA [3]. Early warning scores were developed to facilitate
early identification of impending clinical deterioration and
trigger rapid interventions [4]. However, many traditional
early warning scores are limited by considerable variation
in discrimination in different populations and are often not
sufficiently sensitive [5].

Recent research indicates that the implementation of the
electronic Cardiac Arrest Risk Triage (eCART) score has
significantly decreased the incidence of IHCA at UChi-
cago Medicine [6]. However, the inclusion of laboratory
data in eCART substantially diminishes the practicality
and immediacy of this scoring system. Moreover, other
studies have reported that calculating the Modified Early
Warning Score (MEWS) 0.5 hours before a cardiac arrest
can significantly increase the survival-to-discharge rate in
patients experiencing IHCA [7]. Nonetheless, a 0.5-hour
lead time is often insufficient for a prompt reaction dur-
ing a patient’s rapid deterioration. Given the continuously
generated real-time information, such as vital signs, a
time-varying model could be constructed for more timely and
early identification of IHCA.

The aim of our study was to develop a recurrent neural
network–based model using the electronic health records
(EHRs) of a single tertiary medical center to predict incident
IHCA. We hypothesized that variations in physiological
parameters, evaluated in the context of known comorbidities,
could help to predict incident cardiac arrest. We also aimed to
validate the model in an independent cohort and compare it to
a previous scoring system.

Methods
Ethics Approval
Given the retrospective study design, the Research Eth-
ics Committee of the National Taiwan University Hos-
pital (NTUH) approved this study (project approval
202206108RINB) and waived the requirement for obtaining
informed consent.
Data Source
Predictive models were developed using the Multiparameter
Intelligent Monitoring of Intensive Care (MIMIC)–IV v0.4
database and were externally validated using the Elec-
tronic Intensive Care Unit Collaborative Research Database
(eICU-CRD) v2.0 [8,9]. Pre-existing institutional review

board approval was waived given the deidentified nature
of this public data set (Massachusetts Institute of Technol-
ogy: 0403000206; Beth Israel Deaconess Medical Center:
2001-P-001699/14) [8]. One author who completed the
Collaborative Institutional Training Initiative examination
(certificate 57186438 for author HJJ) obtained access to
the database and performed the data extraction. To assess
the performance of our model in practical applications, we
collected clinical data from the electronic medical records
of the NTUH, spanning from 2008 to 2018. To decrease
patient heterogeneity and feature variability, we applied the
same inclusion criteria and data processing workflow to
the 3 databases. We extracted data on patients older than
20 years who were hospitalized in intensive care units
(ICUs) for at least 24 hours. Patients were excluded if they
were encoded with a deceased status but without an IHCA
labeling defined as below. We employed 5-fold cross-vali-
dation in our training cohort, randomly dividing the data
set into 5 equally sized subsets. Four of these folds (80%
of the MIMIC-IV cohort) were used for training, while the
remaining fold (20% of the MIMIC-IV cohort) was reserved
for internal validation. Performance metrics were recorded for
each iteration, resulting in five distinct performance scores.
These scores were then averaged to derive a singular more
robust performance estimate for the model. Finally, external
validation was performed on the entire eICU-CRD cohort.
Disease Outcome Ascertainment
In the MIMIC-IV cohort, patients were marked with IHCA
if they were either labeled with a time-stamped database-
specific procedure code (22,5466 cardiac arrest) or diag-
nosed with the International Classification of Diseases, Ninth
Revision (ICD-9), Procedure Coding System (PCS) code 9960
(cardiopulmonary resuscitation, not otherwise specified).
Although the MIMIC-IV database contained both ICD-9
and International Statistical Classification of Diseases, Tenth
Revision (ICD-10) codes, we did not convert ICD-9-PCS
code 9960 to the ICD-10-PCS code, as the most approxi-
mately equivalent indicated code 5A1.2012 (performance of
cardiac output, single, manual) represented variable defini-
tions. For the eICU-CRD cohort, patients were classified with
IHCA if they either presented with a time-stamped database-
specific procedure note indicating cardiopulmonary resuscita-
tion or were administered epinephrine, either as a bolus of 1
mg/10 ml or an infusion rate of 30 mg/250 ml at 100 ml/hr,
with an associated administration time. In both the MIMIC-
IV and eICU-CRD cohorts, the control group was defined
as patients who were not labeled as having experienced an
IHCA or being deceased, and the reference time was set as
the ICU discharge time. For IHCA patients with multiple
labelings, we only selected the time of the first label as the
reference time. The data collection method in the NTUH
database involves identifying patients with specific ICD
codes (ICD-9 427.5; ICD-10 T46.2, 145.8, 146.9). Patients
who have been diagnosed with the aforementioned codes
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followed by the initiation of cardiopulmonary resuscitation
or bolus epinephrine injection will be classified as patients
who experienced IHCA.
Data Curation and Features Extraction
Two types of features were extracted: time-independent
baseline features and time-varying physiologic readings from
bedside monitors. Baseline features, which are variables
registered at the time of admission, consisted of three
types: (1) demographic information such as gender, age,
ethnicity, type of ICU admission, and BMI; (2) chronic
comorbidities, as identified by combined comorbidity score
and Elixhauser Comorbidity Index [10,11]; (3) presenting
illness, as identified by ICD codes for acute cardiac dis-
ease, respiratory insufficiency, sepsis, and potential rever-
sible causes of cardiac arrest, popularly known as the
H’s (hyperkalemia, hypokalemia, hypothermia, hypoxemia,
hypovolemia, hydrogen ion, eg, acidosis) and T’s (spontane-
ous tension pneumothorax, thrombosis, cardiac tamponade)
by resuscitation guidelines [12]. Physiologic readings, which
consisted of 6 vital signs: heart rate (HR), respiratory rate,
O2 saturation (SpO2), systolic blood pressure (sBP), diastolic
blood pressure, and mean arterial pressure, were extracted
on an hourly basis. For all patients, vital signs in the 24
hours prior to the reference time were recorded. To balance
model utility with adequate accuracy, we only investigated
the risk of cardiac arrest starting from 13 hours prior to
the event. To overcome the time series’ irregularity, specific
rules were applied to combine multiple vital signs in the
same hour (Multimedia Appendix 1). The remaining missing
values in vital signs were filled with the last observation
carried forward method. To eliminate the misguidance of our

imbalanced data set, we tested the two following remedies:
synthetic minority oversampling technique (SMOTE) and
near miss algorithm [13,14]. We employed SMOTE in the
following training with a nearest neighbor interpolation of
1 as it yielded a better performance compared to the near
miss algorithm (Figure S1 in Multimedia Appendix 1). After
applying SMOTE, the numbers of IHCA patients and control
patients were equal, signifying data balance.
Model Development
Our predictive model was encoded in three layers (Figure
1). First, random forest (RF) was responsible for classifying
the baseline features [15]. For hyperparameter optimization,
the number of estimators was set to 5, the maximum depth
was set to 20, and Gini impurity was used to determine the
split. Nodes are expanded until all leaves contain fewer than
2 samples [16]. Second, recurrent neural network with the
long short-term memory (LSTM) architecture stored the vital
signs trajectories in an hourly pattern [17]. There were 3
hidden layers and 8 cells each, with a tangent and a sigmoid
activation function. The learning rate was set to 0.001, and
a dropout rate of 0.4 was applied for regularization [18].
The Adam algorithm was adapted for optimizing network
weights [19]. Last, the support vector machine (SVM) with
a radial basis function kernel integrates the RF and LSTM
models to generate the final prediction. The SVM predicts the
identical target outcome by learning the relationship between
the predictions from two base models (RF and LSTM) and the
target outcomes in the training set [20]. All the models were
implemented in Python 3.8.3 (Python Software Foundation)
with TensorFlow 2.1.0, pandas 1.1.2, scikit-learn 0.24.2, and
NumPy 1.19.1 libraries.

Figure 1. Illustration of the modeling framework. Each patient’s data from the electronic health record were used as input for our model. Four
preprocessing steps are carried out on the vital signs to obtain fixed-interval data. All features go through SMOTE to overcome data imbalance and
are split into training and testing groups. Baseline features are inputted to random forest, and vital signs are inputted into LSTM for prediction.
Support vector machine then integrates both models. AUROC: area under the receiver operating characteristic curve; LSTM: long short-term
memory; SHAP: Shapley Additive Explanations.

Evaluation Strategy
To identify the perfect algorithm, the following machine
learning (ML) techniques were evaluated in terms of

prediction performance. First, based on the baseline data’s
time independency and binary structure, logistic regression
(LR), k-nearest neighbor (KNN), extreme gradient boosting
(XGBoost) tree, and SVM were compared with RF for model
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fitness. In the LR model, we applied an L2 penalty with
a stopping tolerance set at 1e-4, and the model underwent
a maximum of 100 iterations. For the KNN algorithm, we
set the parameter K to 2, utilizing Euclidean distance as
the chosen metric. In the XGBoost model, the number of
estimators was configured to 5 with a maximum depth of
5 and a learning rate of 0.1. Hyperparameter optimization
was carried out through a grid search. In the SVM, we
used a radial basis function with an L2 penalty, setting the
regularization parameter to 1. The SVM model was execu-
ted with a stopping tolerance of 1e-3, and no limit was
imposed on the maximum number of iterations. For the
time-dependent vital signs trajectories, the incorporation of
memory gates in LSTM indicates its superiority in handling
long sequence data. Thus, no other model comparison was
made. To compare different stacking techniques, LR was also
implemented for comparison with SVM. Last, as we aim to
use neural networks to accommodate our feature’s complex-
ity, we connected this 3-layer model by engaging a deep
neural network in baseline data prediction and final stacking.
The hyperparameters of the deep neural network were set at
an epoch of 30, batch size of 24, and the Adam algorithm
as optimizer. Model performance was assessed based on
discrimination and calibration using the internal validation
cohort, as quantified by the area under the receiver operating
characteristic curve (AUROC) with mean values and 95%
CIs [21]. Sensitivity and specificity metrics are presented by
two binary classifications, including a predefined threshold
of 0.5 and an optimal cutoff determined by the Youden
index [22]. We used the Brier score to assess accuracy and
visualized calibration curves across deciles based on observed
and expected cardiac arrest numbers [23].
Model Interpretation
The importance of baseline features in the RF model was
ranked based on “gain,” the cumulative improvement in
accuracy of the nodes attributed to a specific feature. To focus
more on the local impact of each vital sign at the patient level,
we employed the Shapley Additive Explanations (SHAP)
method to explain how our LSTM model makes predictions
during a specific timepoint [24].
Comparison With Previous Prediction
Score
The Cardiac Arrest Risk Triage (CART), a commonly used
cardiac arrest prediction model, was calculated to put the

prediction results in perspective with prior studies [25]. A
previously described “early warning score efficiency curve”
was created to compare CART and our prediction model [26].
By plotting the percentage of detected events within 13 hours
followed by the observations above the predefined threshold,
a 0.5 probability in our model, and a score of 20 in the
CART model, we could demonstrate the changes of cumu-
lative incidence as the event time approached. Due to the
large number of missing data for temperature and neurolog-
ical status in our development cohort, we were unable to
compare our risk prediction tool against the MEWS or Acute
Physiology and Chronic Health Evaluation.

Results
Patient Characteristics
A total of 34,633 patients in the MIMIC-IV database and
79,643 patients in the eICU-CRD database were included in
our analysis. After processing the vital signs data, a total of
452 IHCA patients and 23,457 control patients from MIMIC-
IV were used for model development, whereas 85 IHCA
patients and 9964 control patients from eICU-CRD were used
for external validation. Table S1 in Multimedia Appendix 1
shows the baseline characteristics of the IHCA group and
the control group for the two cohorts. IHCA patients were
significantly older (P<.001) and scored higher on combined
comorbidity scores and the Elixhauser Comorbidity Index. In
terms of presenting illness, myocardial infarction, pneumo-
nia, respiratory failure, and the 5 H’s and 5 T’s were more
prevalent in IHCA patients than among control patients.
Prediction From Time-Independent Data
Patient demographics, comorbidities, and presenting illness
were first classified by RF. Figure 2 demonstrates the
discrimination of the RF model (AUROC 0.80, 95% CI
0.779‐0.844; sensitivity 0.71; specificity 0.78; F1-score
0.79. The top five important features listed by RF include
the presence of respiratory failure or acidosis, comorbid
uncomplicated hypertension, comorbid fluid and electrolyte
disorder, and initial ICU being the cardiac ICU.
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Figure 2. Prediction from baseline features. (A) AUROC for evaluating the discriminatory ability of random forest on baseline features. (B) Feature
importance derived from the random forest model. AUROC: area under the receiver operating characteristic curve.

Modeling of Time-Dependent Data
The trajectories of six vital signs were modeled with respect
to time. Figure S2 A in Multimedia Appendix 1 illustrates
that in the MIMIC-IV cohort, the control group exhibited a
constant value of all six vital signs throughout the 24-hour
collecting period. However, the vital signs of the IHCA
patients were characterized by progressive deterioration in the
last several hours. Of note, throughout the 24-hour monitor-
ing period, patients who developed cardiac arrest exhibited,
on average, a 12-mmHg lower sBP, 1.5% lower SpO2, and
a 9-bpm higher resting HR compared to the control group.
However, the exact timing of the start of deterioration could
not be clearly marked on the plot. A similar vital signs
trajectory was seen in the eICU-CRD cohort (Figure S2 B
in Multimedia Appendix 1).
Prediction From Time-Dependent Data
The hourly AUROC values for predicting cardiac arrest are
presented in Figure S3 in Multimedia Appendix 1, which
shows the results after SMOTE and cross-validation. A steady
rise in AUROC was observed in the hours leading up to
cardiac arrest with a sharp increase in the preceding 3 hours.
Performance of the SVM-Based Stacking
Model
In the final step of model construction, we stacked the
LSTM model with the RF model and combined both

predictions from baseline features and vital signs. AUROCs
of the stacked model exhibited consistently better predictions
compared with the baseline and vital signs–only model,
with the highest AUROC of 0.91 (95% CI 0.874‐0.935),
sensitivity of 0.80, specificity of 0.86, and F1-score of
0.85 1 hour prior to the event. Further evaluation of the
stacked model presented an increase in sensitivity, specificity,
negative predictive value, and F1-score by the reduction of
the time interval (Figure 3). However, the calibration plot
showed a risk of overestimation and a steadily low Brier
score throughout the 13 hours of prediction time (Figure
S4 in Multimedia Appendix 1). Additionally, in Figure S5
in Multimedia Appendix 1, we compared the model perform-
ance using different cutoffs. We found that the optimal cutoff
defined by the Youden index (at 13 hours: 0.29; at 12 hours:
0.25; at 11 hours: 0.38; at 10 hours: 0.25; at 9 hours: 0.28; at
8 hours: 0.26; at 7 hours: 0.28; at 6 hours: 0.30; at 5 hours:
0.26; at 4 hours: 0.38; at 3 hours: 0.30; at 2 hours: 0.34; at 1
hour: 0.35) presented with a better sensitivity compared with
the predefined 0.5 cutoff; the largest difference was 14% at
12 hours prior to the event.
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Figure 3. Performance of the stacked model in the Multiparameter Intelligent Monitoring of Intensive Care (MIMIC)–IV database. AUROCs (95%
CIs) of the long short-term memory (LSTM) model with vital signs as input (orange plot), RF model with baseline features as input (gray plot), and
stacked model after integration of RF and LSTM (blue plot) are shown. The three models’ exact AUROCs, sensitivity, specificity, NPV, and F1-score
of the stacked model are listed in the table. AUROC: area under the receiver operating characteristic curve; NPV: negative predictive value; RF:
random forest.

External Validation
We performed external validation of the stacked model in the
eICU-CRD database. The results showed the best perform-
ance at 1 hour prior to IHCA with an AUROC of 0.89 (95%
CI 0.849‐0.920), sensitivity of 0.79, specificity of 0.83, and
an F1-score of 0.81. These findings align closely with the

AUROC obtained from the MIMIC-IV data set (Figure 4). To
further validate our model in an actual clinical scenario, we
identified 1935 IHCA patients and 3692 control patients from
the ICU of the NTUH. Additionally, our model demonstrated
high prediction sensitivity and an AUROC of 0.945 when
predicting IHCA 1 hour prior to its occurrence (Figure 5).

JMIR MEDICAL INFORMATICS Lee et al

https://medinform.jmir.org/2024/1/e49142 JMIR Med Inform 2024 | vol. 12 | e49142 | p. 6
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e49142


Figure 4. Performance of the stacked model in the Electronic Intensive Care Unit Collaborative Research Database (eICU-CRD). External validation
of the stacked model is performed on the eICU-CRD. AUROC (95% CI) is plotted in a blue line; sensitivity is plotted in a gray line. AUROC: area
under the receiver operating characteristic curve.

Figure 5. Performance of the stacked model in the clinical scenario. External validation of the stacked model is performed using data from 1935
in-hospital cardiac arrest patients and 3692 control patients collected from the National Taiwan University Hospital. AUROC is plotted in a blue line;
sensitivity is plotted in a gray line. AUROC: area under the receiver operating characteristic curve.

Local Interpretation of the LSTM Model
We adopted the SHAP method to enable model explanation
from an individual patient’s perspective. In each box, SHAP
values for specific vital signs are assigned, with positive
SHAP values in red indicating a risk factor and negative
SHAP values in blue indicating a protective factor. Figure S6
A in Multimedia Appendix 1 represents a patient from the

MIMIC-IV database experiencing IHCA at 0 hours. As IHCA
approaches, an increase in sBP from its average contributes
to an elevated risk, with the most significant effect occurring
6 hours prior to IHCA. However, at 1 hour before IHCA,
the most significant risk becomes a decrease in sBP from
its average. Figure S6 B in Multimedia Appendix 1 illus-
trates another IHCA patient from the eICU-CRD database.
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In contrast to Figure S6 A in Multimedia Appendix 1, the
most prominent feature at 1 hour prior to IHCA is a decrease
in HR and SpO2 from its baseline value. These figures
showcase diverse presentations leading to IHCA in various
patients, providing a valuable guideline for medical staff to
identify the specific organ failure responsible for IHCA. The
significance lies in enabling a swift response, incorporating
timely interventions such as intubation for saturation drop and
the administration of inotropic agents for decreased sBP. This
approach ensures that medical staff will not delay necessary
treatments while determining the cause of IHCA.
Performance Compared With Different
ML and Deep Learning Algorithms
Conventional statistics and supervised ML algorithms were
compared to predict IHCA using only baseline features.
RF demonstrated superior performance in terms of AUROC
compared with XGBoost, LR, KNN, and SVM (Figure S7
in Multimedia Appendix 1). SVM also presented prefera-
ble results during the stacking operation compared with
LR throughout the 13-hour prediction period. AUROCs
at 1 hour prior to the incidence of IHCA were 0.91 ver-
sus 0.80 (Figure S8 in Multimedia Appendix 1). Finally,
using a neural network to connect baseline, vital signs, and
stacking predictions did not reveal an improving outcome
(Figure S9 in Multimedia Appendix 1). After comparing
several algorithms and combinations, RF, LSTM, and SVM
predictions still yielded the most satisfactory results.
Detection Efficacy Compared to Previous
Prediction Score
We compared the performance of our proposed model to
that of the CART score. Overall, our model demonstrated
better AUROC throughout the prediction period (Figure S10
in Multimedia Appendix 1). As illustrated in Figure S11 in
Multimedia Appendix 1, it is evident that at 12 hours prior
to cardiac arrest, our model was able to detect over 70% of
patients at risk for IHCA, compared to the CART score that
did not surpass a 65% detection rate even 1 hour prior to
IHCA.

Discussion
Principal Findings
In this retrospective study of 34,633 patients in the MIMIC-
IV database, we constructed a high-performance multimodal
model (AUROC 0.91, 95% CI 0.874‐0.935) that can predict
IHCA up to 13 hours in advance using EHRs and high-resolu-
tion time series physiological readings. As the time of cardiac
arrest approached, our model yielded a steady increase in
the detection rate, finally reaching 89% 1 hour prior to the
event. We also illustrated the impact of each vital sign on the
prediction of cardiac arrest associated with individual patients
through the use of SHAP values. Furthermore, we demonstra-
ted the advantage of this ML algorithm over the CART score,
which was derived using traditional regression models.

Comparison to Prior Work
As a ubiquitous activity in the hospital, several studies have
demonstrated the importance of vital signs measurement in
determining a patient’s disease course [27]. Diastolic blood
pressure, respiratory rate, and maximum HR have all been
found to be significant and independent predictors of cardiac
arrest [28]. However, maintaining a minimal model with
only vital signs or adding lab data as predictors at the
cost of decreasing model adaptability remains a dilemma
[29,30]. The lactic acid level is the most representative
laboratory biomarker in circulatory failure but had a high rate
of missingness in the MIMIC-IV database (16,317/23,909,
68.2%). This motivated us to abandon utilizing lab results
and assess if a nimbler model could be constructed with vital
signs trends alone, overlaying the easily obtainable ICD codes
and patient demographics as baseline features. Unsurpris-
ingly, a significant increase in AUROC was discovered by
adding demographics and comorbidities to the vital signs–
only model. Furthermore, an SVM-based stacked model can
address the predictive capabilities of underlying conditions
and dynamic changes during disease deterioration. Stacking
proves advantageous by compensating for the weaknesses
of both models, with RF potentially struggling with highly
correlated data and LSTM excelling in handling timely
intricate information.

Distinct Advantages of Our Approach
The reason for not establishing an end-to-end neural network
throughout the prediction stood out, as supervised ML
algorithms retained the ability to determine the importance
of each predictor and have better model explainability.
Moreover, in the ensemble technique, stacking excels over
both boosting and bagging due to its versatility in integrat-
ing diverse data domains and combining various types of
models. Late fusion at the model level is also preferred
over other fusion methods for mitigating feature discrepan-
cies and enabling independent model training between the
time-independent baseline and time-dependent vital signs.
Additionally, the outperformance of SVM over LR in the
stacking operation could be attributed to better data han-
dling using the nonlinear kernel function. To evaluate the
external validity of our model, we tested it on two dis-
tinct data sets—the eICU-CRD and NTUH databases—both
representing patient groups with diverse ethnicities and
disease backgrounds. Over a 10-year duration, we identified
1935 (34.3%) IHCA cases in NTUH. In contrast to prior
IHCA prediction studies, such as Kwon et al’s [31] 2.3%
(n=1233) over 7 years, Chae et al’s [32] 1.3% (n=1154)
over 4 years, and Ding et al’s [33] 23.09% over 5 years
(n=1796), our clinical database demonstrated a higher IHCA
incidence yet fewer cases [31-33]. This disparity is attrib-
uted to our ICU-focused validation database, in contrast
to earlier studies that encompassed all patients who were
hospitalized. Consequently, our approach ensures heightened
data precision and a more nuanced understanding of patient
dynamics through continuous monitoring within this critically
ill cohort. Nevertheless, our high prediction quality in both
independent databases ensures the credibility of our model
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across various demographic groups and subpopulations. The
consistent performance across these data sets not only
minimizes the possibility of overfitting but also validates the
generalizability of our predictions.
Limitations of Our Methodology
Our study had limitations because we used data collected
from one medical center. First, due to the nature of EHRs, we
were unable to determine the reason for the multi-scale gaps
and different frequencies of each input. Second, we did not
include clinical interventions, body temperature, and mental
status in our model. Clinical interventions may change the
disease course or even terminate the deterioration process.
Nevertheless, the complexity of the treatment record and
the high frequency of missing values in temperature and
mental status compelled us to omit these valuable predic-
tors. Third, our identification of IHCA relied on time-labeled
database-specific procedure codes, ICD procedure codes, or
administration of epinephrine in resuscitation dosages. In

real-time clinical scenarios, delays in data entry may occur
as documentation is considered secondary to patient care.
Additionally, the accuracy of these codes is often operator
dependent and may vary across different ICU policies. To
minimize recording biases, we manually reviewed all IHCA
vital signs data and only included reasonable measurements,
ensuring that the identified IHCA timepoints correlated with
the worst patient vital signs.
Conclusion
We built a multimodal ML model based on time serial
vital signs and three types of baseline features, which were
all easily accessible in the ICU. Our model showed high
accuracy in detecting clinical deterioration leading to the
development of IHCA up to 13 hours in advance in both
the internal and external validation cohorts. A model like this
could be integrated into a hospital’s EHR system to identify
high-risk patients and provide clinical decision support.
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