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Abstract
Background: Although evidence-based medicine proposes personalized care that considers the best evidence, it still fails to
address personal treatment in many real clinical scenarios where the complexity of the situation makes none of the available
evidence applicable. “Medicine-based evidence” (MBE), in which big data and machine learning techniques are embraced to
derive treatment responses from appropriately matched patients in real-world clinical practice, was proposed. However, many
challenges remain in translating this conceptual framework into practice.
Objective: This study aimed to technically translate the MBE conceptual framework into practice and evaluate its perform-
ance in providing general decision support services for outcomes after congenital heart disease (CHD) surgery.
Methods: Data from 4774 CHD surgeries were collected. A total of 66 indicators and all diagnoses were extracted
from each echocardiographic report using natural language processing technology. Combined with some basic clinical and
surgical information, the distances between each patient were measured by a series of calculation formulas. Inspired by
structure-mapping theory, the fusion of distances between different dimensions can be modulated by clinical experts. In
addition to supporting direct analogical reasoning, a machine learning model can be constructed based on similar patients to
provide personalized prediction. A user-operable patient similarity network (PSN) of CHD called CHDmap was proposed and
developed to provide general decision support services based on the MBE approach.
Results: Using 256 CHD cases, CHDmap was evaluated on 2 different types of postoperative prognostic prediction tasks:
a binary classification task to predict postoperative complications and a multiple classification task to predict mechanical
ventilation duration. A simple poll of the k-most similar patients provided by the PSN can achieve better prediction results
than the average performance of 3 clinicians. Constructing logistic regression models for prediction using similar patients
obtained from the PSN can further improve the performance of the 2 tasks (best area under the receiver operating character-
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istic curve=0.810 and 0.926, respectively). With the support of CHDmap, clinicians substantially improved their predictive
capabilities.
Conclusions: Without individual optimization, CHDmap demonstrates competitive performance compared to clinical experts.
In addition, CHDmap has the advantage of enabling clinicians to use their superior cognitive abilities in conjunction with it to
make decisions that are sometimes even superior to those made using artificial intelligence models. The MBE approach can be
embraced in clinical practice, and its full potential can be realized.
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Introduction
Congenital heart disease (CHD) is the most common type
of birth defect, with birth prevalence reported to be 1%
of live births worldwide [1]. Despite remarkable success in
the surgical and medical management that has increased the
survival of children with CHD [2], the quality of treat-
ment and prognosis after congenital heart surgery remains
unsatisfactory and varies across centers [3,4]. The reason for
this is that the complexity of the disease, clinical heterogene-
ity within lesions, and small number of patients with specific
forms of CHD severely degrade the precision and value of
estimates of average treatment effects provided by random-
ized controlled trials on the average patient. Some visionary
researchers have proposed a new paradigm called “medicine-
based evidence” (MBE), in which big data and machine
learning techniques are embraced to interrogate treatment
responses among appropriately matched patients in real-world
clinical practice [5,6].

Postoperative complications in congenital heart surgery
have been inconsistently reported but have important
contributions to mortality, hospital stay, cost, and quality
of life [7-9]. Heart centers with the best outcomes might
not report fewer complications but rather have systems in
place to recognize and correct complications before delete-
rious outcomes ensue [8]. The early detection of deteriora-
tion after congenital heart surgery enables prompt initiation
of therapy, which may result in reduced impairment and
earlier rehabilitation. Several risk scoring systems, such
as the Risk Adjustment for Congenital Heart Surgery 1
(RACHS-1) method, Aristotle score, and Society of Thoracic
Surgeons–European Association for Cardiothoracic Surgery
(STS-EACTS) score, have been developed and used to
adjust the risk of in-hospital morbidity and mortality [10-13].
However, most of these consensus-based risk models only
focus on the procedures themselves and ignore the differen-
ces between centers and patients. Specific patient characteris-
tics, such as lower weight [14] and longer cardiopulmonary
bypass time [15], especially the quantitative echocardio-
graphic indicators used by clinicians to understand CHD
conditions, were not incorporated into these models nor can
they be adjusted for. Based on the increasing number of
CHD databases being built, some machine learning–based
predictive models have recently been used to identify
independent risk factors and predict complications after

congenital heart surgery [16-18]. These predictive models
achieved outstanding performance compared to traditional
risk scores, but these models are usually only capable of
performing a single task. In addition, such models often
contain hundreds of features, so for clinicians, understand-
ing how to interpret the prediction from a complicated
machine learning model is still a challenge [19]. Based on
our previous studies [16-18], as the model becomes more
complex and more variables are included, the results are
better, but it is more difficult to understand and accept
clinically. Although some explainable artificial intelligence
(AI) techniques continue to evolve [20,21], machine learning
prediction models are still a black box for clinicians. Due
to the lack of understanding and manipulation of the model,
clinicians often lack confidence in the predicted outcomes,
which severely hampers the entry of these machine learning
models into routine care.

Patient similarity networks (PSNs) are an emerging
paradigm for precision medicine, in which patients are
clustered or classified based on their similarities in various
features [22,23]. PSNs address many challenges in data
analytics and is naturally interpretable. In a PSN, each node
is an individual patient, and the distance (or edge) between
2 nodes corresponds to pairwise patient similarity for given
features. PSNs naturally handle heterogeneous data, as any
data type can be converted into a similarity network by
defining similarity measures [24,25]. A PSN generated based
on a large cohort of patients will show several subgroups
of patients who are tightly connected. If a new patient is
located on the PSN, neighbors that have similar features
with known risk or prognosis will inform clinicians of the
potential risk and prognosis of the patient. This mimics the
clinical reasoning of many experienced clinical experts, who
often relate a patient to similar patients they have seen.
Moreover, representing patients by similarity is conceptually
intuitive and explainable because it can convert the data into
network views, where the decision boundary can be visually
evident [26]. PSNs can also provide a feasible engineering
solution for the MBE framework, which, based on a library
of “approximate matches” consisting of a group of patients
who share the greatest similarity with the index case, can be
examined to estimate the effects of various treatments within
the context of the individual patient’s specific characteristics
[6].
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PSNs have been reported in many studies. Although early
PSN studies have focused on using omics data in precision
medicine [27-29], with the development of electronic health
record (EHR) systems, abundant, complex, high-dimensional,
and heterogeneous data are being captured during daily care,
and some EHR-based patient similarity frameworks have
been proposed for diagnosis [30], subgroup patients [31,32],
outcome prediction [33], drug recommendation [34,35], and
disease screening [36]. However, studies of PSNs that predict
the outcome after CHD surgery have not been reported. A
perspective article proposed an MBE conceptual framework
for CHD [6], in which similarity analysis is used to gener-
ate a library of “approximate matches.” However, they did
not provide any technical solution for this framework. The
challenge in applying PSNs in a real clinical setting is, first
of all, to assess the distance between patients with complex
conditions such as CHD in a computable way. However,
mimicking clinical analogy reasoning is not a simple math
formula based on various patients’ attributes. The structure-
mapping theory in cognitive science argues that advanced
cognitive functions are involved in the analysis of relationship

similarity above attribute similarity [37]. Analogy infer-
ence requires advanced cognitive activity, which current AI
technology lacks but clinical experts are good at. However,
all established models ignore this important feature of patient
similarity analysis, in that it should not only measure patients’
distance but also put clinicians back behind the wheel to
generate MBE for clinical decision-making. In this study, we
aimed to develop and evaluate a clinician-operable PSN of
CHD to try to mitigate the above problems.

Methods
Study Design and Population
As shown in Figure 1, using data available at different stages,
4 PSNs were generated and named as screening map, echo
map, patient map, and surgery map. These data were obtained
from the ultrasound reporting system and EHR system of the
Children’s Hospital, Zhejiang University School of Medicine,
Hangzhou, China.

Figure 1. CHDmap contains 4 patient similarity networks generated from 4 different clinical phases, with different data obtained at each phase. CHD:
congenital heart disease; ICU: intensive care unit; LOS: length of stay.

A schematic of the data processing and workflow for the
construction of the PSN is shown in Figure 2 and described
below.
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Figure 2. Schematic of data processing and workflow of the construction of the congenital heart disease (CHD) patient similarity network. NLP:
natural language processing; t-SNE: t-distributed stochastic neighbor embedding.

Ethical Considerations
This retrospective study was performed according to
relevant guidelines and approved by the institutional review
board of the Children’s Hospital of Zhejiang University
School of Medicine with a waiver of informed consent
(2018_IRB_078). All cases included in this study were
anonymized. Intensive care unit (ICU) clinicians who
participated in the trial received cash compensation (RMB
¥100 [US $14.06] per day), which complied with local
regulatory requirements for scientific labor.
Data Collection and Preprocessing
In addition to preoperative echocardiography reports that
described the CHD conditions, the following patient and
surgical characteristics were also collected: age, sex, height,
weight, preoperative oxygen saturation of the right-upper
limb, surgery time, cardiopulmonary bypass time, aortic
cross-clamping time, mechanical ventilation time, duration
of postoperative hospital stay, duration of ICU stay, and
postoperative complications (the detailed definitions of
postoperative complications are shown in Table S1 in
Multimedia Appendix 1 [38-40]).

The most challenging part of patient similarity analysis
was defining all the semantic concepts in the domain. An
ontology of CHD was developed based on reviewing a large
number of clinical guidelines for CHD to cover 436 CHD
conditions and 87 related echocardiographic indicators. The

OWL format ontology file is available on the CHDmap
website [41]. The ontology was used to normalize all
concepts and measure semantic similarity among them. It
was also used to identify quantitative indicators from the
unstructured text of echocardiography reports. In addition
to recording some routine cardiac structure indicators, the
echocardiography report also provided quantitative indicators
regarding various malformations, such as the size of various
defects, shunt flow velocity, and pressure difference at the
defect, depending on the specific CHD structural malforma-
tion. Natural language processing (NLP) technology [38] was
used to extract 66 commonly used quantitative indicators. A
range of processing and computational methods were used
to assess similarity between patients (details information are
shown in the supplemental methods and Tables S2 Table
S3 in Multimedia Appendix 1). The various automatically
extracted measurement values were subject to quality control,
and any abnormal data (outside the reasonable range of
the corresponding values) were modified or removed after
manual verification. The diagnosis in the report was also
extracted and mapped to the normalized terms defined in the
CHD ontology.
Measuring Patient Similarity
In this study, the similarity of patients with CHD was
measured using 4 groups of features: the quantitative
echocardiographic indicators, the specific CHD diagnosis,
preoperative clinical features, and surgical features. Different
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distance measurement methods were adopted for different
groups of features, as described in the supplemental methods
in Multimedia Appendix 1. We provided 3 types of methods
to handle the echocardiographic indicators: the origin value,
the z score, and the indicator combination ratio. The similarity
between 2 diagnoses was calculated using the depth of the
corresponding nodes in the CHD ontology, which organi-
zes hundreds of CHD diagnoses in a hierarchical structure.
Two approaches were used to measure the distance between
diagnosis lists: one treats all diagnoses equally, referred to in
the result section as “ungrade,” whereas the other distin-
guishes between basic and other diagnoses, referred to as
“grade.” Finally, the patient distance was measured as the
weighted sum of the 4 distances as shown in equation (1), and
the final distances were also normalized to [0,1].

(1)dpatient = w1 × dindicator + w2 × dDiag + w3 × dpre + w4 × dsurg
The weights in equation (1) and the different methods used
to measure distance can also be modified by users depend-
ing on their experience in different tasks to fully exploit
the advanced cognitive ability of clinical professionals. The

distance matrix among historical patients can be calculated
based on the aforementioned methods. We used t-distributed
stochastic neighbor embedding [42] to convert the distance
matrix into 2D points, which can be visualized as a map.
The user-operable CHDmap was developed based on ECharts
[43] using React (Meta) and Node.js (OpenJS Foundation).
The patient similarity analysis engine, which measures the
distances between a new patient and patients in CHDmap,
was developed using Python (Python Software Foundation).
CHDmap
A user-operable CHD PSN called CHDmap was developed
and published on the web [44]. The introduction video of
this tool is also available in Multimedia Appendix 2. Based
on the different available data for each clinical phase, as
shown in Figure 1, CHDmap provides 4 different PSNs: the
screening map, echo map, patient map, and surgery map. The
workspace of CHDmap comprises 3 major modules: (1) map
view, (2) cockpit view, and (3) outcome view (as shown in
Figure 3).

Figure 3. Screenshot of CHDmap. The map view, cockpit view, and outcome view of the workspace are marked separately. CHDmap was published
on the web [44]. CHD: congenital heart disease.
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The map view presents the PSN as a zoomable electronic
map, in which a node presents a patient and the distance
between nodes shows their similarity. The map can be
enhanced by using different colors to show the diagnostic
labels as well as relevant prognostic indicators (eg, length
of stay and complications). Different methods to handle the
echocardiographic indicators, such as normal, z score, or
combination ratio value, can be selected on the web. The
similar patient group is also highlighted on the map view
during similarity analysis.

The cockpit view provides a navigation function that helps
clinicians locate cases based on specified query conditions,
such as age, gender, and CHD subtypes. In practice, clinicians
were allowed to create a new case, in which an NLP-based
information extraction tool will assist users in filling in
most of the echocardiographic indicators based on Chinese
echocardiography reports. The top k value, or threshold of
patient similarity, is used to customize the similar group.
For advanced users, a customized map can be generated by
adjusting the weights for the patient similarity measurement
defined in the Methods section.

The outcome view provides an overview of outcomes,
including the length of hospital stay, mechanical ventilation
time, length of ICU stay, complications, and hospital survival
of the selected similar patient group. Multiple charts are used
to show the difference between the selected patient group
and others. The Mann-Whitney U test and the χ2 test are
used to determine the significance of differences between
groups. When there are significant differences between the
selected patient group and other patients, the color of the
check box at the top of the outcome view will turn red;
otherwise, it will stay gray. Checking the box will show
detailed charts and tables of the outcome. This real-time
feedback will help clinicians adjust the parameters in the
cockpit view based on the requirements of the scenario
for clinical decision-making. Based on a selected group of
similar patients, CHDmap provides machine learning models
to personalize the prediction of relevant outcome metrics
for the current patient. Therefore, for each case, different
parameters can be applied and compared to ultimately assess
the credibility of the relevant decision support information.
Evaluation Method
The closer 2 patients are located on the CHDmap, the
more similar their conditions and postoperative outcomes are
considered to be. When a new patient is admitted to the
hospital, historical patients can be divided into similar and
nonsimilar groups based on some criteria. There are 2 criteria
to define patient similarity groups: one is to use the most
similar k patients, also known as k-nearest neighbor (KNN),
to form a patient similarity group, and the other is to define
a threshold above which patients form a similarity group.
The statistical characteristics or regression value of postoper-
ative outcomes in the similarity group are used to predict the
outcomes of the current patient.

In this paper, we evaluated the performance of the
surgery map of CHDmap on 2 tasks: predicting postoperative

complications as a binary classification task, in which more
than 50% of patients in the similarity group with compli-
cations were assigned ‘True” for the target patient, and
predicting mechanical ventilation duration as a multiple-label
classification task (I: 0-12 h, II: 12-24 h, III: 24-48 h, and IV:
>48 h), in which the category with the highest proportion in
the similarity group was assigned to the target patient.

As the optimum k of KNN to form a similarity group for a
specific case is always different, the unified population-level
optimized k on the training data set was used to evaluate
CHDmap on the test data set without individual customiza-
tion. Different data preprocessing methods (original, z score,
and combination ratio) and whether to distinguish primary
diagnoses (grade and ungrade) were tested and compared.

Making decisions may not be straightforward if the
outcome of a similar patient group is extremely heterogene-
ous, whereby a machine learning model based on a similar
patient population can provide a more personalized predic-
tion of the relevant prognostic indicators. Although there are
numerous machine learning models to choose from, the focus
of this study was to demonstrate the advantages of basing the
model on similar patient populations, so we chose to use the
most conventional and easily understood logistic regression
(LR) model. Clinical users obtained a population of similar
patients after various parameter adjustments and threshold
settings on CHDmap, and the data from this population
were used to train an LR model (KNN+LR), which can be
accomplished on the web in real time because this population
of similar patients is usually not very large. To demonstrate
the effect of similar patient populations, we trained another
LR model (k-Random+LR) based on randomly collected
cases of the same size in parallel in the evaluation. We
evaluated such approaches and compared the LR models
based on k similar patients and k random patients.

The accuracy, recall, F1-score, and area under the receiver
operating characteristic curve (AUC), which are defined
below, were adopted to evaluate the performance of the
classification. Accuracy is defined as the total correctly
classified example including true positive (TP) and true
negative (TN) divided by the total number of classified
examples. Recall quantifies the number of correct positive
predictions made out of all positive predictions that could
have been made. F1-score is a weighted average of precision
and recall. As we know, in precision and recall, there are
false positive (FP) and false negative (FN), so F1-score also
considers both of them. AUC provides an aggregate measure
of the performance across all possible classification thresh-
olds. The higher the accuracy, recall, F1-score, and AUC, the
better the model’s performance is at distinguishing between
the positive and negative classes.

(2)Accuracy = TP + TNTP + TN + FP + FN
(3)Recall = TPTP + FN
(4)Precision = TPTP + FP
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(5)F1‐score =  2 × Recall × PrecisionRecall + Precision
The performance was evaluated on an independent test set,
which included 256 patients with CHD. These test cases were
also available on CHDmap when users created a new case.
Three clinicians working in the cardiac ICU with extensive
experience were also asked to make relevant judgments for
these test cases based on their clinical experience. After half
a year following the initial trial, we conducted an experiment
where the 3 clinicians were asked to make further predic-
tions based on the output of CHDmap, and this prediction
was compared with the previous results based on clinical
experience alone to validate the benefits of CHDmap in
supporting clinical decision-making.

Results
Population Characteristics
A total of 4774 patients who underwent congenital heart
surgery between June 2016 and June 2021 at the Children’s
Hospital of Zhejiang University School of Medicine were
used to generate the CHD PSN. The performance of the
PSN in predicting complications and mechanical ventilation

duration was evaluated on an independent test data set, which
included 256 pediatric patients who underwent congenital
heart surgery between July 2021 and November 2021 at
the Children’s Hospital of Zhejiang University School of
Medicine. The characteristics of patients used to generate
the PSN and for evaluation are described in Table 1. Since
the test data and the data used by the PSN were generated
and collected in different time periods, as shown in Table
1, they are somewhat statistically different. The test data
were older; therefore, the patients were significantly larger
in terms of height and weight (P<.001), and there were also
relatively large differences in the distribution of outcomes,
lower complication rates, and shorter duration of mechanical
ventilation. It should be noted that the diagnostic label is
not the complete diagnostic information; we just use a few
of the most common CHD subtypes to facilitate statistics
and visualization, and this cohort contains a complete range
of epidemiological characteristics as well as a variety of
complex CHD subtypes such as transposition of the great
arteries, tetralogy of Fallot, etc, which may appear in various
diagnostic labels that they are combined with. When the case
has 2 common CHD subtypes, such as ventricular septal
defect and patent ductus arteriosus, only the more common
subtype, ventricular septal defect, is labeled.

Table 1. Characteristics of patients with CHDa used to generate CHDmap and in the test data set.
Characteristic Patients of CHDmap (n=4774) Patients of the test data set (n=256) P value
Gender (male), n (%) 2336 (48.9) 111 (43.4) .09
Age (mo), median (IQR) 12.0 (4.0-32.0) 22.1 (7.8-50.9) <.001
Height (cm), median (IQR) 75.0 (63.0-94.0) 85.5 (67.0-106.3) <.001
Weight (kg), median (IQR) 9.2 (6.0-13.4) 10.8 (6.8-16.5) <.001
Preoperative oxygen saturation (%), median (IQR) 98.0 (97.0-99.0) 98.0 (97.0-99.0) .007
Surgery time (min), median (IQR) 119.0 (96.0-147.0) 120.0 (100.0-147.0) .25
Cardiopulmonary bypass time (min), median (IQR) 60.0 (48.0-82.0) 61.5 (49.3-80.0) .55
Aortic cross-clamping time (min), median (IQR) 40.0 (28.0-54.0) 38.5 (27.0-52.0) .55
Duration of hospital stay (d), median (IQR) 9.0 (7.0-13.0) 7.0 (6.0-11.0) .003
Duration of ICUb stay (d), median (IQR) 3.0 (1.0-4.0) 3.0 (1.0-4.0) .49
Diagnostic label, n (%) .46

ASDc and VSDd 1659 (34.8) 78 (30.5)
VSD 1522 (31.9) 94 (36.7)
ASD 1228 (25.7) 65 (25.4)
PFOe 134 (2.8) 5 (2)
PDAf 123 (2.6) 9 (3.5)
Others 108 (2.3) 5 (2)

Mechanical ventilation time (%), n (%) .001
I (<12 h) 3009 (63.0) 180 (70.3)
II (12-24 h) 918 (19.2) 54 (21.1)
III (24-48 h) 433 (9.1) 7 (2.7)
IV (≥48 h) 414 (8.7) 15 (5.9)

Complication, n (%) 1229 (25.7) 48 (18.8) .02
aCHD: congenital heart disease.
bICU: intensive care unit.
cASD: atrial septal defect.
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dVSD: ventricular septal defect.
ePFO: patent foramen ovale.
fPDA: patent ductus arteriosus.

Performance of CHDmap
Three methods for preprocessing the echocardiographic
indicators (origin, z score, combination) and 2 distinguishing

primary diagnoses (grade and ungrade) were used to compare
their effect on CHDmap performance. The performance of the
CHDmap and 3 clinicians is shown in Table 2 and Figure 4.

Table 2. Evaluation results in the 2 tasks.
Methods Prediction of postoperative complications Prediction of mechanical ventilation duration

Accuracy Recall F1-score AUCa Accuracy Recall F1-score AUC
KNNb

Origin+ungrade 0.832 0.438 0.494 0.757 0.813 0.444 0.459 0.862
Origin+grade 0.836 0.417 0.489 0.773 0.797 0.437 0.467 0.860
z score+ungrade 0.828 0.458 0.500 0.738 0.836 0.554 0.574 0.902
z score+grade 0.848 0.458 0.530 0.747 0.855 0.564 0.573 0.895
Combination+ungrade 0.836 0.500 0.533 0.767 0.828 0.468 0.488 0.900
Combination+grade 0.859 0.458 0.550 0.768 0.855 0.521 0.545 0.873

KNN+LRc

Origin+ungrade 0.813 0.604 0.547 0.810d 0.848 0.558 0.602 0.921
Origin+grade 0.813 0.667 0.571 0.799 0.863 0.589 0.632 0.920
z score+ungrade 0.809 0.604 0.542 0.809 0.840 0.537 0.561 0.888
z score+grade 0.813 0.646 0.564 0.805 0.855 0.549 0.562 0.886
Combination+ungrade 0.805 0.583 0.528 0.801 0.840 0.537 0.555 0.900
Combination+grade 0.805 0.604 0.537 0.798 0.824 0.500 0.522 0.926

k-Random+LR 0.809 0.500 0.495 0.774 0.809 0.484 0.488 0.895
Clinicianse

C1 0.875 0.396 0.543 N/Af 0.844 0.614 0.618 N/A
C2 0.758 0.646 0.500 N/A 0.734 0.535 0.496 N/A
C3 0.840 0.208 0.328 N/A 0.797 0.498 0.536 N/A
Clinician average 0.824 0.417 0.457 N/A 0.792 0.549 0.550 N/A
C1+CHDmap 0.883 0.426 0.580 N/A 0.943 0.612 0.647 N/A
C2+CHDmap 0.816 0.5625 0.534 N/A 0.874 0.587 0.542 N/A
C3+CHDmap 0.852 0.313 0.441 N/A 0.916 0.511 0.546 N/A
Clinician+CHDmap average 0.850 0.434 0.518 N/A 0.911 0.570 0.578 N/A

aAUC: area under the receiver operating characteristic curve.
bKNN: k-nearest neighbor.
cLR: logistic regression.
dIn each column, the maximum value is italicized.
eThe performance of the 3 clinicians are labeled as C1, C2, and C3.
fN/A: not applicable.
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Figure 4. Evaluation result based on receiver operating characteristic curves. (A) Binary postoperative complication prediction using KNN; (B) to
(E) multilabel mechanical ventilation duration prediction (I: 0-12 h, II: 12-24 h, III: 24-48 h, and IV: >48 h) using KNN, respectively; (F) binary
postoperative complication prediction using KNN+LR; (G) to (J) multilabel mechanical ventilation duration prediction (I: 0-12 h, II: 12-24 h, III:
24-48 h, and IV: >48 h) using KNN+LR, respectively. The performance of 3 clinicians are labeled as black stars in different tasks as C1, C2, and C3.
The performance of 3 clinicians enhanced by CHDmap are labeled as red stars. CHD: congenital heart disease; KNN: k-nearest neighbor; LR: logistic
regression.

In the postoperative complication prediction task, the
F1-score of methods using KNN exceeded the average of the
3 clinicians, although 1 clinician achieved the best accuracy
when dropping a high recall value. In all 6 KNN methods,
introducing the indicator combination ratio and distinguish-
ing the primary diagnosis in the similarity measurement can
truly improve the overall performance of the F1-score. LR
models constructed using the KNN-obtained patient groups
were able to generally achieve better predictions compared to
simple voting of similar patients and the LR model based
on k random patients. Interestingly, both the model with
the best F1-score performance and the model with the best
AUC used the original values. This may be because original
values are more reflective of individualized patient differen-
ces in a similar patient population. The main improvement
of CHDmap on this task is reflected in the general improve-
ment in recall values, with the best recall method being 0.250
higher than the clinician average.

In another multiclassification task that predicts mechanical
ventilation duration, the differences among these different
KNN methods in overall performance were not consistent.
The KNN+LR approaches also achieved better composite
performance (F1-score and AUC), although 1 of the human
experts got the best recall value.

From the test result, clinicians do not have the same
performance for such predictive judgments. Some raise the
standard and thus miss some events; on the other hand,
some lower the judgment threshold, and thus the accuracy
of the judgment decreases. At the same time, the perform-
ance of clinical experts on different tasks is inconsistent.
A simple poll of the k-most similar patients provided by
the CHDmap can achieve better results than the clinician
average. When 3 clinicians were allowed to use the results
of CHDmap (KNN+LR) as a reference to give predictions

again, all 3 clinicians achieved a substantial improvement
in their prediction ability. The averages of accuracy, recall,
and F1-score in the first task improved by 0.026, 0.017,
and 0.061, respectively. The averages of accuracy, recall,
and F1-score in the second task improved by 0.119, 0.021,
and 0.028, respectively. One of the enhanced clinicians also
surpassed the KNN+LR CHDmap.

It is important to note that the evaluation is performed
with population-optimized parameters, whereas in practice,
clinicians can adjust the relevant parameters such as k or
similarity threshold for each case in a personalized man-
ner, which theoretically leads to better results. The use of
the obtained similar patient population to construct modern
deep learning models for prediction can further improve the
performance of each prediction task. Especially important is
that the experience and cognitive ability of the clinical expert
combined with CHDmap can further enhance the accuracy of
the prediction.

Discussion
Principal Findings
Medicine remains both an art and a science, which are
congruent to the extent that the individual patient resembles
the average subject in randomized controlled trials. Although
the evidence-based medicine approach proposes personalized
care, it still fails to address the physician’s most important
question—“How to treat the unique patient in front of me?”
—in many real clinical scenarios where the complexity of
the situation makes none of the available evidence applica-
ble [45]. The proposal of MBE represents a fundamental
change in clinical decision-making [5,6]. Although how to
construct an MBE clinical decision support tool still faces

JMIR MEDICAL INFORMATICS Li et al

https://medinform.jmir.org/2024/1/e49138 JMIR Med Inform 2024 | vol. 12 | e49138 | p. 9
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e49138


many challenges, the CHDmap seems to be a very promising
first step in realizing what has been coined MBE.

AI is poised to reshape health care. Many AI applications,
especially modern deep learning models, have been devel-
oped in recent years to improve clinical prediction abilities.
In addition to supervised and unsupervised machine learning,
PSNs, another form of data-driven AI, have shown many
unique properties in the clinical field, especially in complex
clinical settings such as surgery for CHD. Moreover, their
potential to construct a “library of clinical experience” will
gradually be recognized, discovered, and used in the context
of the continuous accumulation of medical big data.

In many other popular AI paradigms, such as super-
vised or unsupervised machine learning, models are usually
trained toward a specific task, and thus, the models are
only capable of performing that single task. This, cou-
pled with the black-box nature of many machine learning
models, especially deep learning models, makes it difficult to
widely apply these techniques in practice. In contrast, patient
similarity analysis exhibits many natural advantages. First,
PSNs usually do not serve a single task; all characteristics
exhibited by the patient similarity group, such as disease risk,
various prognostic outcomes, and cost of care, can be used as
MBE for decision support. Second, instead of a model that
simply gives black-box predictions, CHDmap allows users
to see how the patient similarity group is segmented and
bounded across the patient population and then adjust the
size of the patient similarity group or set custom quantita-
tive thresholds based on their knowledge and experience.
On CHDmap, the results after parameter adjustments during
user manipulation are reflected in the visualized map in real
time, and the statistical characteristics of multiple predictors
that distinguish the current patient’s similar group from other
patients are also highlighted by the color of the title of the
outcome view. The process of continuously adjusting and
optimizing parameters through visualized feedback combines
the computational advantages of computers and the advanced

cognitive abilities of the human brain and truly puts the
clinician, who is responsible for the decision, in control of
the decision-making. Third, many machine learning models
tend to require that the test and training data have consis-
tent statistical distribution characteristics, but as shown in
this evaluation, similarity analyses are still very compatible
with test data with different characteristics. Finally, this PSN
framework does not exclude any type of machine learning
models, and all models constructed based on similar patient
populations are expected to be more adaptable to individual-
ized decision-making needs than models trained on heteroge-
neous populations.

Because the goal of patient similarity analysis is to be able
to mimic clinical analogy reasoning, the major challenge is
constructing computational patient similarity measurements
that are consistent with sophisticated clinical reasoning.
This is especially true when faced with complex scenarios
containing a large number of dynamic features with different
dimensions. Some deep learning models have been intro-
duced to address this challenge [46-49], but they do not
exhibit the interpretability and tractability of PSNs. Another
way to address this challenge is to open up the computa-
tional process to clinicians, allowing them to determine and
adjust the weights of different dimensions and thresholds for
the similarity group themselves, thus better simulating their
clinical reasoning process, as shown in Figure 5. We believe
that clinical users will be able to learn how to better optimize
these parameters as they continue to gain experience and
understanding of this “large history data set” in the process
of using CHDmap. Using a data-driven approach on how to
customize the parameters of PSNs to be able to self-optimize
and adapt to different tasks is also a good research direction
for the future. In this study, CHDmap serves as a personalized
decision aid for clinicians, using the computer’s power in data
storage and processing while giving clinicians more control
over the decision-making process. We believe CHDmap can
perform better with the full involvement of clinicians.
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Figure 5. Collaborative decision-making based on the congenital heart disease patient similarity network (PSN). The right half shows the storage and
computational capacity of the PSN for a large number of cases; the left half shows the role of the clinical user who, by receiving a variety of feedback
and his or her own experience, can autonomously adjust the parameters of the similarity group and reconstruct the similarity network so that the
strengths of both can be used to make collaborative decisions. ASD: atrial septal defect; PDA: patent ductus arteriosus; PFO: patent foramen ovale;
VSD: ventricular septal defect.

CHDmap can be used in several scenarios: for the intensivists
in cardiac ICUs, CHDmap can be used to predict postopera-
tive complications after cardiac surgery, as evaluated in this
paper; for surgeons, CHDmap can also be used to assess
the prognosis of surgical procedures; and for departmental
managers, CHDmap can be used to assess the lengths of stay
and costs. By far, CHDmap is still in the early stages of
a research project. Transforming this tool into routine care
is dependent on the availability of funding and the willing-
ness of users to change their existing working patterns. The
publication of this paper will also facilitate the advancement
of our subsequent translational work.

It is important to note that associations between treatments
and outcomes obtained by observation in similar patient
populations may not be causal. The real causal effects often
rely on a matching process to control for the bias introduced
by the treatment itself in the selection of patients [50]. An
initial demo feature is available on CHDmap to estimate
treatment outcome effects based on matched patient groups.
CHDmap can match 1 or k patients for each patient receiving

the treatment using a PSN and then allow for a more visual
and unbiased assessment of treatment outcomes by show-
ing the difference in prognosis between these 2 groups of
patients. It is important to note that this causal assessment
assumes that there are no other factors outside the variables
covered by the patient’s similarity analysis that may influence
treatment choice or prognosis. Thus, the reliability of this real
world–generated evidence usually relies on clinical experts
to judge it as well. In future versions, we hope to incorpo-
rate more modern frameworks for causal inference (such as
DoWhy [51]) to automatically quantitatively assess causal
effects as well as their reliability.

There are several limitations to this study. First, limited
clinical features were used to measure the similarity of
patients with CHD. In addition to the information presented
by the echocardiography, there is a wealth of other clinical
information that can be used to assess the patient’s status.
Second, the use of NLP to automatically extract measurement
information can also be subject to errors or mismatches, and
although manual quality control is carried out, it is still not
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possible to ensure that all of the measurements are 100%
accurate. Third, just as clinicians gain clinical experience by
continuously treating different patients, PSNs need to expand
their ability to dynamically accumulate cases. A PSN with a
web-based automatic update mechanism will be the next key
research step. Fourth, data from only a single center were
used to evaluate this tool, and the introduction of data from
multiple centers during PSN construction may pose unknown
risks that require attention in future studies. Finally, different
clinicians may have different decision-making philosophies,
and different weights can be assigned to different indicators
for different tasks. CHDmap offers only a limited number of
customizations that may be difficult to adapt to all scenarios.
A way to attribute weights to each of the indicators and
dimensions by AI for specific tasks may potentially improve
the performance of CHDmap in the future.

Conclusions
A clinician-operable PSN for CHD was proposed and
developed to help clinicians make decisions based on
thousands of previous surgery cases. Without individual
optimization, CHDmap can obtain competitive performance
compared to clinical experts. Statistical analysis of data based
on patient similarity groups is intuitive and clear to clinicians,
whereas the operable, visual user interface puts clinicians
in real control of decision-making. Clinicians supported by
CHDmap can make better decisions than both pure experi-
ence-based decisions and AI model output results. Such a
PSN-based framework can become a routine method of CHD
case management and use. The MBE can be embraced in
clinical practice, and its full potential can be realized.
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