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Abstract

Background: Physicians are hesitant to forgo the opportunity of entering unstructured clinical notes for structured data entry
in electronic health records. Does free text increase informational value in comparison with structured data?

Objective: This study aims to compare information from unstructured text-based chief complaints harvested and processed by
a natural language processing (NLP) algorithm with clinician-entered structured diagnoses in terms of their potential utility for
automated improvement of patient workflows.

Methods: Electronic health records of 293,298 patient visits at the emergency department of a Swiss university hospital from
January 2014 to October 2021 were analyzed. Using emergency department overcrowding as a case in point, we compared
supervised NLP-based keyword dictionaries of symptom clusters from unstructured clinical notes and clinician-entered chief
complaints from a structured drop-down menu with the following 2 outcomes: hospitalization and high Emergency Severity Index
(ESI) score.

Results: Of 12 symptom clusters, the NLP cluster was substantial in predicting hospitalization in 11 (92%) clusters; 8 (67%)
clusters remained significant even after controlling for the cluster of clinician-determined chief complaints in the model. All 12
NLP symptom clusters were significant in predicting a low ESI score, of which 9 (75%) remained significant when controlling
for clinician-determined chief complaints. The correlation between NLP clusters and chief complaints was low (r=−0.04 to 0.6),
indicating complementarity of information.

Conclusions: The NLP-derived features and clinicians’ knowledge were complementary in explaining patient outcome
heterogeneity. They can provide an efficient approach to patient flow management, for example, in an emergency medicine
setting. We further demonstrated the feasibility of creating extensive and precise keyword dictionaries with NLP by medical
experts without requiring programming knowledge. Using the dictionary, we could classify short and unstructured clinical texts
into diagnostic categories defined by the clinician.
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Introduction

Organizational challenges, such as overcrowding in emergency
departments (EDs), directly impact patient outcomes. The
digitization of health records offers an opportunity to integrate
artificial intelligence (AI) into patient management. However,
health care workers often prefer to write unstructured text rather
than entering structured data [1,2]. This raises the question of
how future electronic health records (EHRs) should be designed:
what additional value does free text provide?

We propose adding an additional dimension alongside the classic
predictive task performed with text—inference to infer
characteristics from text entries. Most studies using text analysis
with patient records show promising results in predicting patient
outcomes, such as in-hospital mortality, unplanned re-admission
after 30 days, and prolonged length of hospital stay [3,4]. The
benefits of unstructured text in EHRs for the improvement of
prediction models have been demonstrated, as underscored by
the extensive review by Seinen et al [5]. Indeed, 20% of the
trials that were reported were conducted within a hospital ED
environment. However, the analysis of the reported studies
focused on demonstrating an improvement in predicting clinical
outcomes, such as death or rehospitalization. We extend this
approach by using the text not primarily to predict outcomes
but to explain the correlation of patient subgroups with clinical
outcomes. For instance, we show if certain symptoms
documented in the ED triage are associated with a higher
probability of an inpatient stay. Our results indicate that the
information captured by clinical text-based notes is
complementary to traditional structured data and can provide
clinicians with valuable information about patients.

Overcrowding in the ED is an important case in point where AI
supporting the optimization of patient workflows may
substantially improve outcomes. It is a recognized challenge
facing many EDs worldwide [6,7], adversely impacting patient
outcomes [8]. These negative effects are evident during ED
resource overload, such as during the COVID-19 pandemic [9].
More recently, senior public health officials in England have
attributed up to 500 excess deaths per week during the recent
winter months to delays caused by National Health Service
capacity constraints [10,11]. Therefore, electronically enabled
targeted patient selection could help speed up triage and reduce
ED overcrowding. However, the optimal structure of EHRs
remains controversial, particularly because clinicians tend to
prefer the flexibility of entering unstructured text to structured
data entry [12].

By comparing data extracted from 2 fields—1 derived from a
structured drop-down menu indicating leading symptoms for
ED admission and the other containing unstructured text—we
can demonstrate that free text contains additional information
beyond structured data and that these 2 types of data
complement each other. With our semisupervised topic
allocation method, we demonstrate the ability to capture more
comprehensive information about a patient’s symptom cluster
compared with relying solely on a manually attributed single
chief complaint. Moreover, we present a transparent approach
for extracting topics from short clinical texts based on natural

language processing (NLP)–supported annotated clinical
libraries, which can be fed into predictive models. In addition
to being transparent, our method is language independent and
easy to implement for clinical researchers (although the
dictionaries we constructed are in German, researchers can
easily use our method to construct their own topic dictionaries
in any language).

Our approach is based on constructing a dictionary with
keywords that define a topic. In contrast to dictionary
approaches, unsupervised topic models, such as the latent
Dirichlet allocation [13], are often used. However, finding topics
in short-text samples using these models is challenging [14].
Moreover, unsupervised models might not capture topics that
are of interest to the researcher because these models
differentiate between topics based on their statistical difference.
For instance, it could be that latent Dirichlet allocation defines
topics based on words about the age and gender of the patients
because these are the most distinctive features. However, the
researcher may be interested in the diagnosis, which is more
challenging to classify.

In contrast, supervised machine learning methods require
creating a manually classified training data set. The algorithm
learns how to classify future data into topics based on the
training set. When dealing with a high volume of topics, both
human classification and the algorithm’s training run the risk
of creating noise. Similarly, regression approaches for
supervised classifications are not suitable for many topics.
Therefore, we chose a dictionary approach based on keywords.
To facilitate the selection of the keywords, we developed a
preselection of words based on a measure of their semantic
similarity. As our presorting of words uses word embeddings,
we consider our approach as a hybrid between dictionary- and
machine learning–based approaches [15].

Our approach, combined with clinical notes, allow us to address
2 questions:

• What additional information does the free text provide on
the patient being admitted compared with the suspected
diagnosis from the drop-down menu?

• Could this additional information be useful for clinical or
organizational purposes?

Methods

Data
We used data from the ED’s admission report. Figure 1 provides
a contextual representation of this data type in relation to patient
flow and other documents associated with patients. In step 1,
patients present themselves at the ED and are admitted in the
system. A medical professional conducts the triage by quickly
assessing the main symptoms and their severity using the
Emergency Severity Index (ESI) score, resulting in an admission
report. This report is for the internal patient management within
the ED and contains basic patient information (age, gender, and
so on) along with the chief complaints and symptoms.

After a waiting time (which depends on the triage score), the
patient receives primary care from a medical professional, which
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is documented in the ED report. The ED report summarizes the
patient’s entire stay at the ED and is issued at the end of the
patient care from the ED. In the third step, the patient is either

discharged into ambulatory care (which does not create any
further documents) or is transferred to inpatient care, which
results in the classic medical records.

Figure 1. Patient flow in emergency department (ED) and associated reports.

For our analysis, we used the first type of document: the internal
ED admission report. Unlike the other types of documents, this
report is issued before treatment and provides an opportunity
to manage patient flow. Although the ED report from step 2
could also be used for inpatient management, this proves
challenging in practice because inpatient care is very
heterogeneous and depends on many factors, including different
organizational structures in every hospital department. In
contrast, the ED admission reports can be used for homogeneous
organization within the ED.

Our initial data set contained 293,298 patient visits to the ED
of the University Hospital of Zurich, Switzerland, from January
1, 2014, to October 31, 2021 (in German; received in the Excel
[Microsoft Corporation] format). For each visit, the data set
includes a short text from the triage with the patient’s symptoms,
along with our 2 outcomes of interest (triage score “ESI,” which
we further explain below, and type of discharge), basic patient
characteristics (patient visit pseudo ID, age, gender, admission
type [self, ambulance, or police], and admission reason [accident
or illness]), ED organizational variables (average number of
patients in ED; average patient waiting time; night, late, or early
shift; and treating ED team [internal medicine, surgery,
neurology, neurosurgery, or psychiatry]), and the visit’s time
stamp. The summary statistics of these variables are presented
in Table 1.

After excluding cases with no records in the string variable
“suspected diagnosis” on admission on which NLP analysis
was to be performed, the data set comprised 256,329 (87.4%)
of the initial data set of 293,298 patient visits. We only used
2019 to 2021 for comparison as these visits had a recorded chief
complaint, reducing the data set to the final sample of 52,222
patient visits. Patients directly admitted to the shock room (ie,
ESI score=1) were not considered in our analysis, as no
additional triage was performed upon admission. The data
structure of our analysis is summarized in Figure 2, and the
recorded variables are presented in Textbox 1.

The ESI is an internationally established 5-level triage algorithm
widely used in EDs and is based on the acuity as well as the
resource intensity of anticipated emergency care, with level 1
denoting acute life-threatening conditions, such as massive
trauma warranting immediate, life-saving care, and level 5
denoting non–time-critical conditions of low complexity [13].
Cases triaged as ESI 4 or 5 (approximately 16% of patients) are
usually fast-tracked to specialized treatment rooms because the
medical resources required to treat these patients are low, and
thus, they can be managed in parallel by a dedicated team, which
reduces ED congestion. ESI 2 or 3 typically require a more
thorough workup. Hence, for the outcome variable “low ESI,”
we decided to set the cutoff at ESI<4, that is, patients with “low
ESI” had been triaged with a score of 2 or 3. Furthermore, the
data set included free-text fields (strings), namely, the suspected
diagnosis at admission and the diagnosis at discharge.

In the admission process, the clinician performing triage records
the patient’s symptoms in written form in 2 to 3 sentences. The
purpose of this free text is to preregister the patient in the ED
and enable all team members to become aware of the impending
clinical problems. To our knowledge, all the larger EDs in
German-speaking countries with full EHR note the reason for
admission in the form of a short, unstructured text upon
notification of a pending ED admission.

From May 28, 2019, onward, the symptoms were additionally
recorded as so-called chief complaints from a drop-down menu
(ordinal variable). The difference between the free text and the
chief complaint was that the chief complaint was a fixed
category selected from a drop-down menu and was primarily
intended to serve administrative and statistical purposes, that
is, to allow for post hoc analysis of the patient composition of
the ED.

During the entire study period, the list of chief complaints
(n=99) varied over time or contained doublets, which we
grouped into 58 symptom topics. For patient visits with a
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selected chief complaint from the drop-down option “Diverse,”
it was unclear if a leading symptom had been attributed at triage;
hence, we did not include them in the list of chief complaints
(referred to as lead symptoms [LS]). Furthermore, we grouped
5 chief complaints with very low occurrences, such as
“drowning accident” or “flu vaccine,” into our class “diverse.”
However, we did not use this group in further analysis because
of the heterogeneity of the symptoms included. The lead
symptom topics were then aggregated into 12 clusters by the
authors according to clinical judgment. The complete list of LS
can be found in Table S1 in Multimedia Appendix 1.

A total of 65 variables from 2014 to 2018 and 69 variables from
2019 to 2021 (including the chief complaint) were recorded in
the initial data set. A total of 65 variables from 2014 to 2018
were constant throughout 2014 to 2021 and were retained for

preprocessing. The final data table used for the analysis
contained the variables listed in Table 1, in addition to the
patient ID, year and weekday of the consultation derived from
the admission time stamp, the treating ED team (internal
medicine, surgery, neurology, or psychiatry), as well as the LS
clusters from the drop-down menu and the NLP-extracted topic
clusters that were obtained from the field “suspected diagnoses,”
discussed in detail in Analysis: Topic Allocation section. In
addition, the table contained the outcomes “inpatient” and “ESI
score<4” as binary variables. Two further outcomes were
considered, namely, readmission within 30 days and waiting
time>30 minutes, but were discarded owing to doubts regarding
the quality and consistency of the entered data. We retained the
outcomes “inpatient” and “ESI score<4” owing to their direct
association with the immediacy of the outcome in the patient
pathway within the ED, ensuring robust data quality.

Table 1. Summary statistics of the patient population (n=52,222)a.

ValuesVariable

46.5 (19.7)Age (y), mean (SD)

23,782 (45.54)Female, n (%)

3.3 (0.6)Emergency Severity Index score (out of 5), mean (SD)

8264 (15.82)Fast track, n (%)

19.8 (8.3)Number of patients in the emergency department, mean (SD)

21,644 (41.45)Early shift, n (%)

9020 (17.27)With emergency medical service, n (%)

188 (0.36)With police, n (%)

16,845 (32.26)Accident, n (%)

14,112 (27.02)Inpatient, n (%)

7915 (15.16)Night shift, n (%)

22,663 (43.4)Late shift, n (%)

aThe total sample contains patient visits for the period from May 28, 2019, to October 31, 2021.
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Figure 2. Data structure.

Textbox 1. Variables recorded for our analysis.

Triage

• Suspected diagnosis (free text) and Emergency Severity Index score

Type of discharge

• Hospitalization, ambulatory treatment, or patient has run away

Patient characteristics

• Patient visit pseudo ID, age, gender, admission type (self, ambulance, or police), and admission reason (accident or illness)

Organizational

• Average number of patients in emergency department (ED); average patient waiting time; night, late, or early shift; and treating ED team (internal
medicine, surgery, neurology, or psychiatry)

Time

• Time stamp

Analysis: Topic Allocation
We selected the field “suspected diagnosis” to extract the
symptoms or complaints that led to ED admission according to
the oral report received by the ED physician in charge, as
mentioned previously. This field comprises a short-text string
entered by the ED physician upon receiving information about
the patient’s expected arrival at the ED. This information can
be transmitted to the ED physician by a referring physician or
ambulance well in advance of a patient’s arrival. The text is
entered before the patient triage is performed by the triage ED
nurse. As a clinical note, the physician’s text entry is part of the
EHR. The information contained in the string “suspected
diagnoses” is supposed to be similar to the selected chief
complaint from the drop-down menu “lead symptom.” Indeed,
the latter variable was added later (in 2019) to facilitate the
administrative analysis of causes for ED admission, as an

analysis using unstructured text was not possible by the hospital
administration. Both fields are supposed to contain the medical
reason, or chief complaint, leading to ED admission.

We constructed a measure of the semantic distance of all words
in the corpus by training a word embedding. Word embeddings
are matrices in which each column represents a word and its
relative distance to other words (eg, the distance between blood
and red is smaller than that between blood and green). Hence,
it is possible to find the most similar words for a given keyword
using the smallest distance measured with the cosine similarity.
To train the word embedding, we used word2vec with the entire
text corpus and the continuous bag-of-words algorithm from
the Python library Gensim [16], with an embedding size of 300
computed with 100 epochs.
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To construct our topic dictionaries, we proceeded in 4 steps, as
shown in Figure 3. First, we manually defined topics and
selected between 2 and 20 initial seed words (henceforth
“keywords”) by reading some of the texts and using prior
medical knowledge. A smaller number of keywords were used
for the design of the topic “infection” (n=1). A larger number
of initial keywords were used for the design of the topics
“intoxication” (n=40) and “skin” (n=28). In step 2, we then
searched for up to 50 of the semantically closest words for each
initial list. With the help of the word embedding, it is possible
to search for the words that maximize the cosine similarity for
the seed keywords. In addition, we only considered keywords
that occurred at least 10 times. This list of similar words allowed
us to efficiently increase the dictionary for each topic. In step
3, we manually chose words from the preselection of similar
words to the seed word, resulting in a separate dictionary per
topic (step 4). In some instances, the dictionary used
combinations of words. For instance, the topic “chest pain” was
allocated to combinations of words such as “pain” or “pressure”
with the words “chest” or “thorax.”

This table presents the distribution of the diagnosis topics
obtained with the NLP-based text annotation before and after
the spherical feature annotation. The total number of cases was
52,222, and 20.38% could not be attributed with a diagnosis
topic.

The summary of the increase in tags per topic cluster through
the NLP-based expansion of our topics library is presented in
Table 2. The first column shows the percentage of the sample
tagged with a topic using the original keyword approach. The
proportion of clinical topics ranged from 0.72% for COVID-19
to 31.6% for trauma-related visits. It should be noted that patient
visits can be allocated with multiple topics. The next column
shows the share of visits with the spherically increased

dictionary, with the percentage increase in topic shares in the
last column. Overall, the spherical dictionary enhancement
decreased the number of nontagged visits by nearly 25%, from
27.08% of the sample to 20.24%. For the individual topics, the
additional keywords increased their share, ranging from 5.29%
for trauma to 286.35% for general administrative visits.

In the second procedure, we automatically increased the number
of keywords for each topic dictionary. This process is shown
in Figure 4, which can be imagined as constructing a
multidimensional sphere using the initial keywords. The
additional keywords were then located within that sphere.

The “spherical” dictionary enhancement consists of the
following steps:

• Compute all distances between the keywords and retain the
largest distance (ie, the distance between the 2 least similar
words). For each keyword, this distance is the radius of a
circle in the embedding space (steps 1 and 2).

• For each of the initial keywords, identify the n-closest words
(not in the topic dictionary) using the cosine similarity (step
3).

• Retain these additional words if their distance to all other
initial keywords is smaller than the maximum distance
computed in the first step, that is, if the new words are in
the intersection of all circles (step 4).

Using the abovementioned approach, we could tag 79.76%
(41,653/52,222) of the final sample. The remaining texts could
not be tagged because they either belonged to small topics that
we did not define or because these texts did not contain words
that are present in the dictionary.

Once the dictionaries for each topic are constructed, they can
be used for additional patient visits and for similar data sets,
which makes the approach easily scalable.

Figure 3. Topic dictionaries with semimanual keyword selection. (A) The researcher selects an initial seed word for a topic. (B) Using word embeddings,
a list of semantically similar words from the corpus is generated. (C) The researcher manually selects words that are associated with the topic. (D) The
topic dictionary is created.
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Table 2. Spherical feature annotation and increase in topic share (n=52,222)a.

Increase in tagged patient records, n (%)cRecords tagged NLP-augmented, n (%)Records tagged initially, n (%)Clinical topic NLPb

30 (8)405 (0.78)375 (0.72)COVID-19

466 (7.28)6867 (13.15)6401 (12.26)General symptom

902 (286.35)1217 (2.33)315 (0.6)General administration

300 (9.32)3519 (6.74)3219 (6.16)Systemic clinical

738 (21.57)4159 (7.96)3421 (6.55)Gastrointestinal

738 (21.57)4159 (7.96)4040 (6.55)Respiratory

2536 (94.52)5219 (9.99)2683 (5.14)Cardiovascular

345 (8.33)4485 (8.59)414 (7.93)Neurological

243 (13.37)2061 (3.95)1818 (3.48)Eye; ear, nose, and throat; and
derma

292 (10.77)3004 (5.75)2712 (5.19)Gynecology and urology

873 (5.29)17,389 (33.3)16,516 (31.63)Trauma

638 (32.08)2627 (5.03)1989 (3.81)General psychiatric

–3572 (–25.26)10,569 (20.24)14,141 (27.08)No tag

aThis table presents the distribution of the diagnosis topics obtained with the NLP-based text annotation before and after the spherical feature annotation.
bNLP: natural language processing.
cPercent of initially recorded tags.
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Figure 4. Spherical dictionary enhancement. (A) Step A uses the largest distance between 2 words that are already in the topic. The circle around the
word (x) shows the region in the embedding space with words closer to (x) than the maximum distance. (B) The same region is circled around the other
2 words (y) and (z). (C) The other words in the embedding space that were initially not included in the topic. (D) The intersection of the 3 circles defines
the area in the embedding space where the distance of each word is smaller than the maximum distance.

Ethical Considerations
A waiver from the cantonal ethics committee was obtained
before the commencement of this study (BASEC-Nr.
Req-2019-00671).

Results

In the first step, we performed a descriptive analysis of the
topics. To this end, we first excluded cases without a manually
selected LS for further analysis and obtained a data set with
52,222 entries. Of the 52,222 patient visits included in our final
analysis, 5994 (11.48%) had a manually recorded chief
complaint that was not otherwise specified (eg, “Diverse”) and
could not be classified as a symptom Of the 52,222 entries,
10,569 (20.24%) were not tagged with an NLP topic.

The distribution of all NLP topics is shown in Table 3. The
distribution ranged from 0.05% of patient visits tagged with the
NLP topic “dementia” to 9.89% for “wound.” The largest cluster
of aggregated NLP symptom-related topics was “trauma,” with
33.1% of visits, and the smallest was “COVID,” with 0.8% of
visits. The distribution of chief complaints can be found in Table
S1 in Multimedia Appendix 1. In total, the distribution ranged
from 0.01% of patient visits for the recorded chief complaints
“melaena,” “hearing problems,” and “contact with chemicals”
to 14.6% for “COVID.” The largest cluster of aggregated chief
complaints was “trauma” with 23.6% and the smallest was
“general organizational” with 1.2% of visits.

For comparability, we grouped all LS and NLP topics into 12
identical symptom clusters, which can be found in Table 4.
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Table 3. Clusters for natural language processing–extracted topics (n=52,222)a.

Values, n (%)Cluster and subcluster detail

401 (0.77)COVID-19

6852 (13.12)General symptoms

2440 (4.67)Fever

4505 (8.63)Pain

80 (0.15)General weakness

438 (0.84)Back pain

1217 (2.33)General organizational

1217 (2.33)Follow-up and prescription

3519 (6.74)Systemic

1239 (2.37)Infection not otherwise specified

125 (0.24)Sepsis

261 (0.5)Anaphylaxia and allergy

1688 (3.23)Cancer

227 (0.43)Transplantation

138 (0.26)Glycemia

4147 (7.94)Gastrointestinal

522 (1)Gastrointestinal bleeding

1879 (3.6)Abdominal pain

2248 (4.3)Diarrhea, vomiting, and nausea

4311 (8.26)Respiratory

1592 (3.05)Upper airway

1934 (3.7)Lower airway

440 (0.84)Influenza

2197 (4.21)Dyspnea

5211 (9.98)Cardiovascular

3569 (6.83)Chest pain

518 (0.99)Palpitations and arrythmia

281 (0.54)Pulmonary embolism

528 (1.01)Deep venous thrombosis

394 (0.75)Hypertension

4466 (8.55)Neurological

1189 (2.28)Headache

1737 (3.33)Neurological

191 (0.37)Vigilance and disorientation

24 (0.05)Dementia

453 (0.87)Syncope

934 (1.79)Vertigo and dizziness

226 (0.43)Convulsion

2061 (3.95)Eye; ear, nose, and throat; and skin

58 (0.11)Epistaxis

703 (1.35)Eye symptoms

18 (0.03)Hearing and auricular
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Values, n (%)Cluster and subcluster detail

1311 (2.51)Skin

3004 (5.75)Urological and gynecological

2973 (5.69)Urological and kidney

34 (0.07)Pregnancy

17,302 (33.13)Trauma

5163 (9.89)Wound

5375 (10.29)Fracture and luxation

2171 (4.16)Trauma and head

141 (0.27)Burns

729 (1.4)Fall

9278 (17.77)Trauma not otherwise specified

986 (1.89)Bleeding not otherwise specified

1250 (2.39)Collision

314 (0.6)Traffic

2625 (5.03)Psychiatric

1146 (2.19)Intoxication

851 (1.63)Psychiatric

725 (1.39)Fear

Severity

113 (0.22)Nonsevere

235 (0.45)Severe

55 (0.11)Chronic

232 (0.44)Acute

aThis table presents the distribution of the diagnosis topics obtained with the natural language processing–based text annotation. In total, 20.38% of
cases could not be attributed with a diagnosis topic.
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Table 4. Summary statistics feature annotations (n=52,222)a.

ConsistencyeCorrelation (r)dNLPc (n)LSb, (n)Cluster

0.050.184017623COVID-19

0.10−0.0468527993General symptom

0.040.011217642General administration

0.220.1235191983Systemic clinical

0.460.4141474063Gastrointestinal

0.440.174311872Respiratory

0.490.2852112245Cardiovascular

0.460.4444665123Neurological

0.390.2620611041Eye; ear, nose, and throat; and derma

0.670.4030041206Gynecology and urology

0.790.5417,30212,337Trauma

0.780.6026251610General psychiatric

0.280.0710,6445994No tag

aThis table presents the number of tagged cases for each chief cluster with both the natural language processing–based method and based on the chief
complaint tag.
bLS: lead symptom.
cNLP: natural language processing.
dCorrelation between LS and NLP.
eThe number of overlapping LS and NLP tags divided by the total number of LS tags.

In addition to the NLP symptom-related topics, 4 modulating
NLP topics, “acute,” “chronic,” “nonsevere,” and “severe,”
were recorded, also based on keywords (ie, words in the text
indicating severity). The purpose of the modulating topics is to
provide more information on severity and control for this
dimension in the further analysis.

We found that the correlation between LS clusters and NLP
clusters was low (Table 4). Similarly, consistency varies relative
to the LS. We also calculated the consistency of the NLP tags
relative to the LS groups (the LS groups are the denominator;
being more established, we use them as a benchmark). For most
clusters, the consistency is approximately 50%, with trauma
and psychiatric diagnosis having the highest consistency of 78%
and 79%, respectively, and general administration and
COVID-19 having the lowest consistency of 4% and 5%,
respectively.

Compared with the LS clusters, our NLP topics have the
advantage that a patient visit can be tagged to multiple topics.
Table S2 in Multimedia Appendix 1 shows the number of NLP
topics for each LS cluster. Of the 46,228 patient visits where
we could assign a manually recorded chief complaint, 8950
(19.36%) were not tagged with an NLP topic. In contrast,
33.48% (15,477/46,228) of the visits were tagged with at least
2 NLP topics.

We estimated 3 models using logistic regression to show the
association of the different symptom groups with the ESI and
inpatient indicators:

Model 1: Yi = α + βXi + γZi + εi (1)

Model 2: Yi = α + βXi + δWi + εi (2)

Model 3: Yi = α + βXi + γZi + δWi + εi (3)

where Yi is either the ESI or inpatient indicator variable for
patient visit i, α the intercept, Xi is a vector of demographic and
organizational variables for patient visit I (age; gender;
admission type; admission reason; average number of patients
in ED; average patient waiting time; night, late, or early shift;
and treating ED team), Zi is a vector of the NLP-derived
symptom clusters, Wi is a vector of the lead symptom–derived
cluster (based on the drop-down menu), and εi is the error term.

Tables 5 and 6 present the results. Column 1 shows the
NLP-derived groups, with coefficients ranging between 5% and
13% increased or decreased probability of a high ESI score or
5% to 19% increased or decreased probability for
hospitalization. The drop-down–based LS in column 2 has
similar but slightly larger coefficients. Column 3 shows both
variables, as in model 3, in this specification, the coefficients
are mostly complementary, meaning that if a patient shows the
same symptom in both the NLP and LS measures, the
probabilities can be added. Note that this is not owing to
multicollinearity because both coefficients remain significant
in most cases.
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Table 5. Linear probability model on “Inpatient”a.

Model 3 including both measuresd,
regression coefficient (SE)

Model 2c, regression
coefficient (SE)

Model 1c, regression coefficient
(SE)

Name of clusterb

−0.022 (0.022)N/Ag0.048f (0.019)NLPe cluster: COVID-19

0.133h (0.008)0.127g (0.007)N/AChief complaint cluster: COVID-19

−0.019h (0.005)N/A0.011f (0.005)NLP cluster: general symptoms

0.000 (0.007)−0.002 (0.007)N/AChief complaint cluster: general symptoms

0.006 (0.011)N/A−0.004 (0.011)NLP cluster: general organizational

−0.052h (0.016)−0.062g (0.016)N/AChief complaint cluster: general organizational

0.101h (0.007)N/A0.117h (0.007)NLP cluster: systemic

0.104h (0.010)0.118h (0.010)N/AChief complaint cluster: systemic

0.040h (0.007)N/A0.071h (0.006)NLP cluster: gastrointestinal

0.059h (0.008)0.083h (0.008)N/AChief complaint cluster: gastrointestinal

−0.017f (0.008)N/A0.063h (0.007)NLP cluster: respiratory

0.126f (0.014)0.133h (0.014)N/AChief complaint cluster: respiratory

−0.009 (0.006)N/A−0.020h (0.006)NLP cluster: cardiovascular

−0.031h (0.010)−0.038h (0.010)N/AChief complaint cluster: cardiovascular

−0.045h (0.007)N/A−0.046h (0.007)NLP cluster: neurological

−0.048h (0.009)−0.058h (0.009)N/AChief complaint cluster: neurological

−0.044h (0.009)N/A−0.055h (0.009)NLP cluster: eye, ENTi, or skin

−0.112h (0.013)−0.128h (0.013)N/AChief complaint cluster: eye, ENT, or skin

−0.004 (0.008)N/A−0.015f (0.008)NLP cluster: urological or gynecological

−0.036h (0.013)−0.033h (0.012)N/AChief complaint cluster: urological or gynecological

−0.038h (0.005)N/A−0.041h (0.005)NLP cluster: trauma

0.020h (0.007)0.011 (0.007)N/AChief complaint cluster: trauma

−0.053h (0.010)N/A−0.079h (0.009)NLP cluster: psychiatric

−0.039h (0.014)−0.068h (0.013)N/AChief complaint cluster: psychiatric

aThis table presents the results from a linear probability model with inpatients as the dependent variable. All the models include a set of demographic
and administrative covariates.
bObservation: 52,222; R2=0.259.
cObservation: 52,222; R2=0.263.
dObservation: 52,222; R2=0.269.
eNLP: natural language processing.
fP<.05.
gN/A: not applicable.
hP<.01.
iENT: ear, nose, and throat.
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Table 6. Linear probability model on “low Emergency Severity Index (ESI) score”a.

Model 3 including both measuresd,
regression coefficient (SE)

Model 2c, regression
coefficient (SE)

Model 1c, regression coefficient
(SE)

Name of clusterb

0.023 (0.019)N/Ag0.079f (0.019)NLPe cluster: COVID-19

0.172f (0.007)0.214f (0.007)N/AChief complaint cluster: COVID-19

−0.023f (0.005)N/A0.036f (0.005)NLP cluster: general symptoms

0.127f (0.007)−0.142f (0.007)N/AChief complaint cluster: general symptoms

−0.044f (0.011)N/A−0.050 (0.011)NLP cluster: general organizational

0.352f (0.016)0.308f (0.016)N/AChief complaint cluster: general organizational

0.093f (0.007)N/A0.076f (0.007)NLP cluster: systemic

0.009 (0.010)0.009 (0.010)N/AChief complaint cluster: systemic

0.088f (0.007)N/A0.192f (0.006)NLP cluster: gastrointestinal

0.262f (0.008)0.305f (0.008)N/AChief complaint cluster: gastrointestinal

0.053f (0.007)N/A0.114f (0.007)NLP cluster: respiratory

0.088f (0.014)0.121f (0.014)N/AChief complaint cluster: respiratory

0.030f (0.006)N/A0.050f (0.006)NLP cluster: cardiovascular

0.197f (0.010)0.205f (0.009)N/AChief complaint cluster: cardiovascular

−0.002 (0.007)N/A−0.015h (0.007)NLP cluster: neurological

−0.039f (0.009)−0.038f (0.009)N/AChief complaint cluster: neurological

−0.061f (0.009)N/A−0.134f (0.009)NLP cluster: eye, ENTi, or skin

−0.279f (0.013)−0.302f (0.013)N/AChief complaint cluster: eye, ENT, or skin

0.006 (0.008)N/A0.055f (0.008)NLP cluster: urological or gynecological

0.187f (0.013)0.193f (0.012)N/AChief complaint cluster: urological or gynecological

−0.098f (0.005)N/A−0.129f (0.005)NLP cluster: trauma

0.013j (0.007)−0.011 (0.007)N/AChief complaint cluster: trauma

0.080f (0.010)N/A0.063f (0.009)NLP cluster: psychiatric

0.051f (0.013)0.086f (0.012)N/AChief complaint cluster: psychiatric

aThis table presents the results from a linear probability model with the low ESI score indicator as the dependent variable (ESI score of 2 or 3). All
models included a set of demographic and administrative covariates.
bObservation: 52,222; R2=0.409.
cObservation: 52,222; R2=0.448.
dObservation: 52,222; R2=0.457.
eNLP: natural language processing.
fP<.01.
gN/A: not applicable.
hP<.05.
iENT: ear, nose, and throat.
jP<.10.

Of the 12 symptom clusters, 11 (92%) in column 1 had a
significant regression coefficient for hospitalization (all but
“general organizational”). Eight clusters remained significant
even when including the cluster of clinician-determined chief
complaints in the model. In the model explaining “inpatient,”

in 10 (83%) out of the 12 symptom cluster pairs, the coefficients
of the NLP topic clusters showed the same algebraic sign as the
chief complaint clusters. In contrast, for 2 symptom cluster
pairs, they did not (“general symptoms” and “trauma”). A
change in the algebraic sign of either the chief complaint cluster
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or the NLP topics cluster occurred in 4 cluster pairs when both
NLP topics and chief complaints were included in the model
(“COVID,” “general symptoms,” “general organizational,” and
“respiratory”). We obtained similar results when analyzing the
low ESI scores. However, a change in the algebraic sign of a
coefficient within solely 1 pair of symptom clusters was noted
(“trauma”). Interestingly, the clusters “cardiovascular,”
“neurological,” and “trauma” were significantly associated with
nonhospitalization, of which “neurological” and “trauma” but
not “cardiovascular” were also significantly associated with a
lower ESI score.

As a robustness check, we used each of the 3 model
specifications to predict the ESI indicator and the inpatient
indicator. Using the respective sets of variables of each
specification, we used a logistic regression with a 2:1 train-test
split to predict both outcomes. Table 7 shows the F1-score and
area under the curve (AUC) score of these predictions. The
results show that the 3 specifications have similar predictive

power (an AUC of 0.82-0.84 for “inpatient” and an AUC of
0.90-0.92 for ESI indicator).

The inference and prediction results show that the added value
of text in this setting is not by increasing the predictive power
of the model, where the outcomes are existing process outcomes
(eg, discharge type of severity). Instead, unstructured text allows
clinicians to access more granular information to optimize
patient flows, which cannot be reflected in the inpatient and
ESI indicator outcomes.

In a more granular analysis, we estimated models 1 to 3 with
the individual NLP topics and the individual LS groups instead
of the clusters previously used. The analysis corroborated our
clinical presumptions that, for example, age, admission by an
ambulance, and “sepsis” as an NLP topic, as well as “chest
pain” for a chief complaint, were associated with low ESI scores
(2 or 3) or hospital admission. In contrast, the NLP topic or
chief complaint cluster “follow-up” was not. The complete
results are provided in Tables S3-S6 in Multimedia Appendix
1.

Table 7. Prediction of hospitalization (“Inpatient”) and low Emergency Severity Index (ESI) score of 2 or 3 (“Low ESI score”).

AUCaF1-score on onesVariable and model

Inpatient

0.820.57Model 1: NLPb clusters

0.830.57Model 2: LSc clusters

0.840.59Model 3: NLP+LS clusters

Low ESI score

0.920.86Model 1: NLP clusters

0.900.84Model 2: LS clusters

0.920.87Model 3: NLP+LS clusters

aAUC: area under the curve.
bNLP: natural language processing.
cLS: lead symptom.

Discussion

Principal Findings
Our analysis of patient records showed the additional
information extracted from unstructured text and its potential
usefulness in the clinical context. We demonstrated that the
information extracted from NLP features and the physician’s
categorization of chief complaints was complementary. Indeed,
the correlation and consistency between the chief complaint
and NLP-derived clusters were low (Table 4). This finding
indicates that the free text from the NLP clusters provides
additional information than that contained in the symptom
clusters from the structured chief complaints.

The complementarity of the information is further emphasized
by the results summarized in Tables 5 and 6, and most
coefficients remained significant when both types of indicators
were included in the model, suggesting that different aspects
of patient information appear to be encoded by the 2 approaches.

These results support our hypothesis that NLP-derived libraries
capture greater depth and breadth of information than a single
chief complaint and underscore the relevance of including
information captured in unstructured text to address patient
populations.

Surprisingly, the “cardiovascular” and “trauma” clusters were
not significant features for predicting hospitalization, with
“trauma” also significant for predicting a higher ESI score. In
contrast, the “systemic” cluster, which included sepsis,
anaphylaxis, and neoplastic disease, was significant for
predicting hospitalization and a lower ESI score, consistent with
clinical expectations. Although symptoms suggestive of cardiac
dysfunction and trauma may warrant urgent clinical risk
assessment, most patients with such complaints would not
require hospitalization. Therefore, early allocation of hospital
beds for these subgroups is unlikely to reduce overcrowding.
Targeting patients with systemic symptoms, in contrast, is likely
to do so.

JMIR Med Inform 2024 | vol. 12 | e49007 | p. 14https://medinform.jmir.org/2024/1/e49007
(page number not for citation purposes)

Mehra et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We also proposed a method for analyzing unstructured clinical
notes. Our approach has the advantages of speed, simplicity of
implementation, and transparency. The speed at which
supervised libraries can be assembled is a strength of the
proposed approach. A limitation of implementing supervised
NLP algorithms in routine decision support is that they are often
resource intensive [17]. In our application, it took an untrained
clinician only a few days to assemble the entire library.

Furthermore, using NLP as a tool traditionally requires expertise
and the ability to master NLP applications. In fields that require
years to decades of training, such as health care, professionals
cannot be routinely trained to excel in programming. Thus, a
further major barrier to the successful implementation of NLP
applications in health care is often the usability of NLP
applications [18]. Moreover, the flexibility of the method allows
easy adaptation of the created dictionaries to analyze new data
sets.

Trust is one of the key benefits of clinician involvement in
developing proprietary AI models. Indeed, lack of trust is a
recognized major limitation that hinders the potential benefits
of using AI in routine clinical practice for organizations and
patients [19,20]. Owing to the supervised approach, annotated
library compilation is comprehensible and transparent; hence,
it is trustworthy for clinicians. This may also become an
important advantage if regulation on the implementation of AI
use in health care tightens in the future.

The limitation of this study is that our approach still requires
manual coding. However, future developments in AI may
facilitate this step even further. In addition, human bias was
possible because the library was compiled manually. In general,
an AI-based text analysis does not achieve perfect precision.
However, we primarily advocate using free-text analysis for
organizational, not clinical, decision support. Therefore, this
limitation is not clinically relevant. A further limitation may lie
in the fact that the low correlation between the NLP and chief

complaint clusters could stem from errors originating from the
manual grouping or NLP clustering. However, we believe these
results are plausible. Indeed, the chief complaints “fever” and
“pain” were included in the cluster “general symptoms,” as were
the NLP-extracted tags “fever” and “pain.” However, as only
1 chief complaint could allocated to a patient, during the
COVID-19 pandemic, most patients presenting with fever or
influenza-like pain would have most likely been categorized as
presenting with the chief complaint “COVID.”

Conclusions
Health care workers on the one side and EHR engineers as well
as hospital administration on the other side are caught in a long,
ongoing conflict over the extent of structuring the data entered
into EHR. Health care workers often argue that entering
structured data is a cumbersome task and that the information
archived can be of little use in daily clinical practice. In contrast,
administrators and EHR engineers often advocate that
structuring data is the only reliable solution, enabling a
meaningful analysis of the data. Technological advances may
help resolve this conflict.

We were able to demonstrate the importance of maintaining
free text in EHR. Indeed, using the chief complaints attributed
by a physician from a drop-down menu and a corresponding
free-text field as a case in point, we were able to show that free
text contains a wealth of information that is not routinely
captured by structured data.

Moreover, we developed an approach that could enable the
information captured in free text to be easily extracted and
processed by hospital informatics systems and fed into a
workflow, possibly improving the efficiency of patient
management.

Therefore, future EHRs should include the possibility of entering
free text.
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