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Abstract

Background: Triage is the process of accurately assessing patients’ symptoms and providing them with proper clinical treatment
in the emergency department (ED). While many countries have developed their triage process to stratify patients’ clinical severity
and thus distribute medical resources, there are still some limitations of the current triage process. Since the triage level is mainly
identified by experienced nurses based on a mix of subjective and objective criteria, mis-triage often occurs in the ED. It can not
only cause adverse effects on patients, but also impose an undue burden on the health care delivery system.

Objective: Our study aimed to design a prediction system based on triage information, including demographics, vital signs,
and chief complaints. The proposed system can not only handle heterogeneous data, including tabular data and free-text data, but
also provide interpretability for better acceptance by the ED staff in the hospital.

Methods: In this study, we proposed a system comprising 3 subsystems, with each of them handling a single task, including
triage level prediction, hospitalization prediction, and length of stay prediction. We used a large amount of retrospective data to
pretrain the model, and then, we fine-tuned the model on a prospective data set with a golden label. The proposed deep learning
framework was built with TabNet and MacBERT (Chinese version of bidirectional encoder representations from transformers
[BERT]).

Results: The performance of our proposed model was evaluated on data collected from the National Taiwan University Hospital
(901 patients were included). The model achieved promising results on the collected data set, with accuracy values of 63%, 82%,
and 71% for triage level prediction, hospitalization prediction, and length of stay prediction, respectively.

Conclusions: Our system improved the prediction of 3 different medical outcomes when compared with other machine learning
methods. With the pretrained vital sign encoder and repretrained mask language modeling MacBERT encoder, our multimodality
model can provide a deeper insight into the characteristics of electronic health records. Additionally, by providing interpretability,
we believe that the proposed system can assist nursing staff and physicians in taking appropriate medical decisions.
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Introduction

Background
Emergency services are an essential aspect of the health care
system in hospitals, and the demand for these services has
increased exponentially in recent years. For instance, due to a
rising number of elderly patients, a high volume of low-acuity
patients waiting for the emergency department (ED), and limited
access to medical resources in the community, it may take a
long time for patients to receive medical treatment in the ED.
Additionally, the situation has worsened with the shortage of
experienced health care providers. In the ED, this can cause
many severe clinical outcomes, such as delayed diagnosis,
longer patient wait times, and increased mortality rates.
Moreover, the patient and the standard health care operation
procedure may be disturbed. Therefore, prioritizing ED visits
and maintaining the regular operation of the health care system
are essential.

Triage is the process of accurately assessing patients’ symptoms
and providing them with proper clinical treatment in the ED.
Patients are assigned different priorities depending on their vital
signs and chief complaints, and the judgment description from
the nursing staff [1]. Many countries have developed their triage
process to stratify the clinical severity of patients and thus
distribute medical resources. For instance, the US Emergency
Severity Index (ESI), Canadian Triage and Acuity Scale (CTAS)
[2], and Taiwan Triage Acuity Scale (TTAS) are designed to
improve the triage prioritizing process [3-5]. In terms of
personnel, hospitals employ dedicated nurses who have been
certified by the authorities to undertake the triage process. It is
also essential to maintain the quality of education, training, and
evaluation of those professionals, which is more difficult
nowadays with the increase in the complexity of emergency
care and the increase in the number of patients visiting the ED
nationwide [6]. Although many standardized scales have been
adopted to improve the process, there are still some limitations
of the current triage system [7-9]. Among these issues, the lack
of capability to prioritize patients and assign patients to
appropriate triage levels is the most serious problem. According
to records collected in Taiwan from 2009 to 2015, 167,598 out
of 268,716 (nearly 60%) visits in the ED were assigned to level
3 in the triage process. In addition, 5-level triage mainly relies
on an experienced nurse’s diagnosis that is based on a mix of
subjective and objective criteria. Any human judgement errors
or even inaccurate measurements that occur during the triage
assessment can severely affect the outcome.

Related Work

Contextualized Word Embedding
A word vector is an attempt to mathematically capture the
syntactic and semantic features of a word and represent its
meaning simultaneously. Computers calculate how often words
appear next to each other by going through a large corpus. For
instance, with GloVe [10] or word2vector [11], the word can
be projected into a high-dimensional vector for further tasks.

Although these traditional word embedding methods are easy
to understand and simple to implement, some limitations still

need to be addressed. For example, after applying word vectors,
it would be tough to train systems equipped with the softmax
function owing to a large number of categories. On the other
hand, the GloVe word embedding involves a numeric
representation of a word regardless of where the word occurs
in the sentence and the different meanings the word may have.
Hence, several language models have been proposed to address
these limitations, including embeddings from language models
(ELMo) [12], bidirectional encoder representations from
transformers (BERT) [13], and generative pretrained transformer
(GPT) [14]. These celebrated language models generate general
contextualized sentence embeddings by using a large scale of
unlabeled corpora.

Among these famous models, BERT is the most popular model
commonly used in solving natural language processing (NLP)
tasks. BERT is a language model trained bidirectionally, which
means that as compared to single-direction language models,
it can provide a more profound sense of language context and
flow. Moreover, instead of predicting the next word in the
sentence, BERT also uses a novel method called “mask language
modeling” (MLM). This novel algorithm randomly masks the
words and then predicts them. BERT relies on the transformer
architecture; however, since BERT aims to generate a language
representation model, it only uses the transformer encoder by
stacking them up. Later, with the help of MLM and “next
sentence prediction” (NSP), BERT can achieve significant
performance on lots of NLP downstream tasks by further
fine-tuning on specific domains.

Deep Learning for Tabular Data
In statistics, tabular data refer to data organized in a table.
Within the table, the rows and columns represent observations
and attributes for those observations, respectively. Although
many domains like vision, NLP, and speech enjoy the benefit
of deep learning models, tabular data using deep learning
methods remain questionable. On the other hand, when it comes
to handling tabular data, the traditional machine learning method
dominates most of the benchmarks and is commonly used in
competitions, such as Kaggle, around the world. The
conventional machine learning methods include methods based
on decision tree (DT) such as extreme gradient boosting
(XGBoost) [15], category boosting (CatBoost) [16], and light
gradient boosting machine (LightBGM) [17]. The strength of
these DT-based methods is that their output is easy to understand
and available to provide interpretability without requiring any
statistical knowledge. However, there are still some limitations
of DT-based methods. Among these limitations, the most serious
is that DT-based methods do not allow efficient learning with
image or text encoders. Hence, many experts turn to deep
learning methods instead of DT-based methods. Deep learning
models enable end-to-end learning for tabular data and have
many benefits at the same time. First, they can achieve better
performance in a bigger data set. Second, they can alleviate the
need for feature engineering. Finally, they encode multiple data
types efficiently, like images along with tabular data.

However, the shortcoming of most deep learning methods is
that they cannot provide interpretability. Fortunately, researchers
have been aware of the problem in recent years, and several
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deep learning models with interpretability have been proposed,
such as TabNet [18], neural oblivious decision ensembles
(NODE) [19], and TabTransformer [20].

Current Work in the Triage System
Although current triage systems, such as the ESI and TTAS,
follow clear guidelines to assign patient acuity, it implicitly
leaves room for clinician interpretation. Hence, the diagnosis
still depends heavily on the judgment and experience of
individual nursing staff. Several studies have shown that
cognitive biases can influence clinical judgments [6]. In written
case scenarios at multiple EDs, the average accuracies of nurses
were 56.2%, 59.2%, and 59.6% in Taiwan, Brazil, and
Switzerland, respectively [21]. In view of this, some studies
[6,21,22] have turned to the use of artificial intelligence (AI)
systems to assist with decision-making in triage. They also
demonstrate the system’s effectiveness with higher accuracy
from the assisted means.

Numerous studies have attempted to use traditional machine
learning methods in their approaches. Choi et al [6] used 3 types
of conventional machine learning methods, including logistic
regression, random forest, and XGBoost, to predict the Korea
Triage Acuity Scale (KTAS) level. They used patients’ chief
complaints as categorical features, meaning that they assigned
a key code to each symptom. Their best model using random
forest achieved precision, recall, and area under the receiver
operating characteristic curve values of 0.737, 0.730, and 0.917,
respectively. Liu et al [22] used CatBoost as their model;
however, the study focused on distinguishing the mis-triage of
patients in levels 3 and 4 since they believed that the
under-triage of critically ill patients could be life-threatening.
Their model was able to reduce the life-threatening mis-triage
rate from 1.2% to 0.9% prospectively. Ivanov et al [21] carried
out a series of experiments to demonstrate the effectiveness of
their novel idea “clinical natural language processing (C-NLP).”
To cope with free-text data, C-NLP uses sentence tokenization,
word tokenization, and part-of-speech tagging to extract the
meaning behind free-text data. Their best model included C-NLP
and XGBoost, and it was able to achieve an accuracy of 75.7%,
which is 26.9% higher than the average nurse’s accuracy.

The previously mentioned studies [6,21,22] achieved great
performance in dealing with triage-level problems; however,
these methods still have some limitations. Our proposed model
aims to address these limitations and alleviate them. Multimedia
Appendix 1 presents comparisons between earlier work and our
study in different aspects.

Goal of This Study
Although the studies mentioned in the previous section
successfully demonstrated that AI improved the triage system
for predicting triage level, they unfortunately had some serious

drawbacks. In this study, we attempted to overcome these
drawbacks while developing an appropriate prediction system
based on triage information, including demographics, vital signs,
and chief complaints. We propose a system that can handle the
collected heterogeneous data, including tabular data and free-text
data. The proposed system is capable of providing precise
suggestions for ED staff in hospitals, and it has interpretability
for better acceptance by users. Moreover, it is applicable to
real-world situations.

Methods

System Overview
In this study, we have proposed a system comprising 3
subsystems, with each of them handling 1 task. As shown in
Figure 1, these tasks include triage level prediction,
hospitalization prediction, and length of stay prediction, which
are important outcomes in the ED of a hospital. Since these
subsystems are developed in a similar training process, we will
first introduce the conceptual level of the typical training process
of each model in each subsystem and then provide further
information. Finally, we will show the detailed design of each
model in each subsystem.

Our study focuses on establishing an effective and precise AI
system to predict the criticality of patients waiting in the ED of
hospitals. By leveraging a model trained on a data set where
data labels include different scales, we look forward to
developing a robust model that can provide more information
to the physician and nursing staff. Moreover, to assist them in
making precise medical decisions, our proposed system offers
multiple prediction outcomes, including triage-level
classification, hospitalization estimation, and length of stay.

The system flowchart is shown in Figure 2. The system can be
divided into 3 stages: pretraining stage, fine-tuning stage, and
testing stage. Additionally, 2 data sets were used in our study.
One was the National Taiwan University Hospital (NTUH)
retrospective data set, and the other was the NTUH prospective
data set collected from May 26, 2020, till February 21, 2022.
These 2 data sets will be elaborated in the following sections.

In the pretraining stage, a large amount of retrospective data
were used to pretrain the encoders to learn the basic information
of the medical data. In addition, the pretrained encoders were
transferred to the second stage. In the fine-tuning stage, we used
prospective data with golden labels to fine-tune the pretrained
encoder. Therefore, when the diagnosis outcomes from the
physician are treated as the ground truth label, the model is
more applicable to real-world situations. Finally, in the testing
stage, we implemented our system in the hospital and assessed
the effectiveness of the system.
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Figure 1. The proposed system comprising 3 subsystems that are responsible for different tasks. AI: artificial intelligence.

Figure 2. System flowchart.

Ethical Considerations
This study has been approved by the NTUH Institutional Review
Board (201606072RINA, 201911054RINA, 202108090RINC).

Data Preparation

NTUH Retrospective Data Set
The NTUH is a tertiary academic medical center that has almost
2400 beds and 100,000 emergency room visits per year. After
receiving approval from the NTUH Institutional Review Board,
we obtained the NTUH retrospective data set, which contained
a total of 745,441 electronic health records (EHRs) of patients
who visited the ED from the years 2009 to 2015. Since triage
is the starting point of care for the ED, it is essential to ensure
consistent and precise estimation of patients. The records were
evaluated by dedicated personnel who were certified by the
Taiwan Union of Nurses Association (TUNA), following a
standard protocol.

As shown in Figure 2, in the first stage, we used the NTUH
retrospective data set to pretrain our model. However, in the
NTUH retrospective data set, we needed to unify the uncleaned
data (Multimedia Appendix 2) initially as the members of the
nursing staff have their own ways to record the estimation. We
included all patients aged 20 years or older who attended the
ED and excluded patients whose EHR data contained missing
or unreasonable values. Unreasonable data had unreasonable
values, which may have resulted from typing errors. For
instance, the diastolic pressure and systolic pressure may be
typed in reverse, or a nurse may accidentally omit a digit when
entering values on the computer. In such a scenario, even though
we may be able to infer the original intended values by
examining individual data, we cannot consider this a correct
sample for use. After data cleaning and merging, only 268,716
patients were enrolled in our program (Figure 3).
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Figure 3. Preprocessing of the National Taiwan University Hospital (NTUH) retrospective data set. ED: emergency department.

NTUH Prospective Data Set
Each patient who visits the ED will have a PDF document form
generated (triage examination and evaluation record). These
records are kept for the physician to make a diagnosis. The
records comprise 2 types of information. The first is structural
data, including patient demographics, triage information, and
vital signs, and the second is textual data, including chief
complaints, historical medical information, and drug allergy.

In general, it is impossible to directly use the aforementioned
records to train the model, and thus, data preprocessing is needed
to extract the data from the records. We used the PDFMiner
library in Python code to extract the information from the
document forms as “structural data” and applied a
transformation function to generate “textual data.”

The information extracted from the forms and records can be
divided into 2 groups: target prediction and patient feature.

Detailed explanations of the patient features are provided in
Table 1. On the other hand, the target ground truth contains 3
different tasks. The first task is triage level prediction, which
is a 4-class classification problem, where the physician’s
suggestion is considered (golden standard label that is obtained
from the physician by observing the process of patient diagnosis)
instead of the traditional triage level. A lower level indicates
that the patient more urgently requires immediate attention. The
second task is hospitalization prediction, which is a 2-class
classification problem, where “0” represents that the patient
needs to be discharged by the hospital and “1” represents that
the patient needs to be admitted. The last task is length of stay,
which is a 3-class classification problem, where “0” represents
that the patient will stay in the ED for less than 6 hours, “1”
represents that the patient will stay in the ED for 6 to 24 hours,
and “2” represents that the patient will stay in the ED for more
than 24 hours.
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Table 1. Detailed explanation of structural variables.

ExplanationVariable

Demographics

Patient ageAge

Patient genderSex

Triage information

Patient arrival timeSession

Number of times the patient revisited the EDa in 24 hoursReturn in 24 hours

Patient arrival modeClinic visit mode

Whether the patient visited the ED because of a work accidentWork related

Whether the patient was on the way to work before visiting the EDOn the way to work

Vital sign information

Systolic blood pressureSystolic pressure

Diastolic blood pressureDiastolic pressure

PulsePulse

Oxygen saturationOxygen

RespirationRespiration

Body temperatureBody temperature

Any acute changes before entering the EDAcute change

Whether the patient has feverFever

Self-evaluated pain scorePain index

Glasgow Coma Scale score of the patient (eye opening)GCS-E

Glasgow Coma Scale score of the patient (verbal response)GCS-V

Glasgow Coma Scale score of the patient (motor response)GCS-M

Whether the patient has an ICb card for severe illnessMajor disease

The number of times the patient went to the hospital in 1 yearAdmission count

The judgement code for describing the patient’s conditionJudgement code

Textual data

The patient’s description of the symptomsChief complaint

The record that describes the patient’s symptoms written by the nursing staffJudgment description

aED: emergency department.
bIC: integrated circuit.

Data Augmentation
After analyzing our prospective data set, we observed an
imbalanced data distribution. As machine learning algorithms
tend to increase accuracy by reducing errors, most of them are
biased toward the majority class and tend to ignore the minority
class. For instance, 758 out of 901 (84.1%) ED patients were
discharged from the hospital in our prospective data set, and
the system could achieve 85% accuracy if it kept on predicting
discharge. However, we did not want the system to only indicate
discharge. Therefore, to avoid the above situation, we used the
“synthetic minority oversampling technique” (SMOTE) to
generate some synthesized data to ensure that the system could
learn the different patterns between each class. In our study, the
iteration of the SMOTE algorithm started by selecting 1 minority

sample and finding its top 5 nearest neighbors. These 5
neighbors were chosen to generate new synthesized data by the
interpolation method. Finally, the iteration was repeated several
times until we obtained the minority class where the number
was the same as that of the majority class. However, as the
synthesized data may be too diverse, some of the data can have
negative influences on the model. Therefore, we used the Tomek
Links algorithm to remove some ambiguous data that may hurt
model performance by pairing samples and removing the pairs
with different labels. An example of the augmentation process
is shown in Multimedia Appendix 3. In the original data set,
we can observe that only 143 patients are admitted. After
applying the SMOTE algorithm on our data set, the number of
admitted patients increases to 758. We then use the Tomek
Links algorithm to remove some samples that are regarded as
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ambiguous samples by the algorithm. Finally, in this example,
a total of 1294 patients are included in our new augmented
prospective data set.

As for text data, since the SMOTE algorithm cannot generate
text, we set up a mapping relation to add the text feature for
each synthesized sample. First, we created a number of lists,
each of which stores the chief complaints from data samples
sharing the same class label. After these lists and the synthesized
data were ready, for each synthesized sample, we randomly
selected 1 chief complaint from the list according to its label
and added it as a text feature of the synthesized sample.

Pretraining of the Vital Sign Encoder
The TabNet architecture is composed of feature transformers
and attentive transformers. In TabNet’s design, the mask from
the attentive transformer can select the most vital feature from
several features, eliminating noise caused by irrelevant features.
Furthermore, the mask can be calculated to provide some
interpretable information about the feature’s importance.

Therefore, considering the objective of this study, our work
takes advantage of the encoder-decoder architecture of TabNet,
which is inspired by Arik [18], and we adopted this architecture
to construct our vital sign encoder (Figure 4).

Before training on the prospective data set, the vital sign encoder
was pretrained on retrospective data by unsupervised learning
to learn some basic information about such structural data.
Structural features of demographics, triage information, and
vital sign information (Table 1) were used in this step.

Figure 5 shows the process used for pretraining our vital sign
encoder. In triage level prediction and length of stay prediction,
since we did not have a triage golden label and length of stay
label for pretraining the vital sign encoder, we used only
unsupervised learning. On the other hand, both unsupervised
learning and supervised learning were used for hospitalization
prediction. The reason why we used the unsupervised learning
algorithm is that the model can discover hidden data patterns
without human intervention by analyzing and clustering the
unlabeled information.

Figure 4. Vital sign encoder architecture (adapted from TabNet). FC: fully connected networks; ReLU: rectified linear unit.
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Figure 5. The flow of pretraining the vital sign encoder.

In our study, we used the encoder-decoder architecture. We
masked some of the input features in our data and then
reconstructed the masked features. The reconstruction loss
during unsupervised learning is described as follows:

where B denotes the batch size, D denotes the dimension of
features (number of features), S is a binary mask sparse matrix
with size B×D for masking some of the features, and fB×D and

are matrices of features with size B×D representing the
ground truth feature values and the predicted outputs,
respectively [18].

The purpose of Equation 1 is to calculate the distance between
the ground truth feature and the predicted feature. In each
iteration, the binary mask Sb,j is sampled independently from
Bernoulli distribution, and the mask can only have a value of
0 or 1. During this process involving the masked value and its
reconstruction, models are believed to learn implicit
relationships between features.

Pretraining of the MacBERT Encoder
BERT is a well-known language model that can be used to
transform a word into a representation and understand the
meaning behind the sentence. In addition, it performs
consistently better than other language models (eg, ELMo [12]
and GPT [14]) and also performs well in many different tasks.

However, although the BERT model can be easily fine-tuned
with an additional output layer to achieve outstanding
performance, the pretraining process of the model is designed
for general purposes. In this study, to better understand our
medical data, we repretrained MacBERT (Chinese version of
BERT) by applying MLM again. We extracted the text
information from the NTUH prospective data set and then used
the information to accomplish further training of MLM. All the
settings of the training process followed the original set in
MacBERT. By further training with MLM, the fine-tuned
MacBERT could enrich its knowledge in specific domains.

Overall Model Architecture
The typical model architecture of each subsystem is shown in
Figure 6. After the pretrained encoders are ready, the encoder
weights are copied to the fine-tuning stage encoders. The typical
model architecture can be divided into 4 main parts: input,
encoders, classifiers, and output. First, in the input part, there
are 2 data types, namely, structural data and free-text data. Since
the prospective data set has only a limited amount of data, we
sent it to the augmentation algorithm to obtain synthesized data
and added them to the original data set. Second, the structural
data and the free-text data are sent to the pretrained TabNet
encoder and the pretrained MacBERT encoder, respectively.
Afterward, to obtain a comprehensive representation of the data,
2 embeddings coming out from the pretrained TabNet encoder
and pretrained MacBERT encoder are concatenated together.
Third, the concatenated embeddings are passed through
classifiers for output prediction.
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Figure 6. Typical model architecture in the fine-tuning stage. MacBERT: Chinese version of bidirectional encoder representations from transformers;
NTUH: National Taiwan University Hospital.

Input
We used the augmented NTUH prospective data set in the
fine-tuning stage. The data set contains 2 data types. The first
is structural data, including patient demographics, triage
information, and vital sign information. The second is free-text
data, including patient chief complaints, nursing staff judgment
descriptions, and transformed information from the structural
data (Multimedia Appendix 4). However, since MacBERT is a
Chinese BERT model, which is trained on simplified Chinese,
we translated our text data from traditional Chinese to simplified
Chinese to achieve better performance.

Encoders
As shown in Figure 6, since there were 2 types of data to be
processed, we used the TabNet encoder and MacBERT encoder
to extract feature information from structural data and free-text
data, respectively. We then transformed these information pieces
into high-dimensional embeddings for further training.

Pretrained Vital Sign Encoder

We used the pretrained TabNet encoder as our vital sign
encoder. In the pretraining stage, we obtained some basic
information of these medical data from the NTUH retrospective
data set. As a result, to achieve better starting, the pretrained
weights were directly deployed into our vital sign encoder. We

stacked up 10 decision steps to build our vital sign encoder, and
the dimensions of both the input and output were set to 64. A
1×64 vector was the final context vector.

Pretrained Language Model Encoder

As chief complaints are manually recorded by nurses and most
of them are written in traditional Chinese, it is better to find a
language model that has been trained on a Chinese corpus and
can handle Chinese text well. MacBERT is an improved BERT
model with novel MLM as a correction pretraining task, which
mitigates the discrepancy between pretraining and fine-tuning.
Moreover, it has been trained on simplified Chinese corpora,
which is more suitable for our work. As a result, we decided to
adopt MacBERT from Hugging Face as the chief complaint
text encoder in our proposed model, instead of the original
BERT model. On the other hand, we observed that the text in
our data set might contain different languages, including English
and Chinese. Therefore, to make MacBERT applicable to our
case, we translated the text into a uniform language, namely,
simplified Chinese, before sending it into MacBERT. However,
since we wanted the contributions from the vital sign encoder
and the MacBERT encoder to be comparable, a fully connected
layer was placed after the output vector from MacBERT to
decrease the vector dimension from 1×768 to 1×64. The entire
process explaining how we handled the text data is shown in
Figure 7.
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Figure 7. The entire process of handling text data. MacBERT: Chinese version of bidirectional encoder representations from transformers.

Classifiers
All the inputs were encoded into high-dimensional embeddings
by the encoders mentioned in the previous stage. It is believed
that both embeddings have different facets of information;
therefore, instead of adding these vectors together, we
concatenated these 2 vectors to obtain richer patient information

before sending them into the classifiers. Moreover, in our study,
we adopted the multi-task learning architecture to learn shared
representation and avoid overfitting problems. As a result, there
were 2 classifiers for predicting different targets, where each
classifier had a 1-layer convolutional neural network and a
2-layer multi-layer perceptron. The details of the process are
shown in Figure 8.

Figure 8. Components of the classifiers.

Output
In contrast to most single-output machine learning methods,
our proposed model has a multi-task model architecture.
Multi-task learning is a type of machine learning method by
which the multi-output outcome can be learned simultaneously
in a shared model. In addition to the data efficiency advantages,

such an approach can reduce overfitting by leveraging auxiliary
information and allowing fast learning. Since target prediction
loss will update the encoders, the encoders can avoid being
overfitted and learn more general knowledge. As there were 3
medical outcomes in our system, we designed 3 models with
slight differences to handle different tasks. The details of these
3 models are shown in Figures 9 to 11.
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Figure 9. The model architecture of triage level prediction. FL: focal loss; MacBERT: Chinese version of bidirectional encoder representations from
transformers; NTUH: National Taiwan University Hospital.

Figure 10. The model architecture of hospitalization prediction. FL: focal loss; MacBERT: Chinese version of bidirectional encoder representations
from transformers; NTUH: National Taiwan University Hospital.

JMIR Med Inform 2024 | vol. 12 | e48862 | p. 11https://medinform.jmir.org/2024/1/e48862
(page number not for citation purposes)

Lin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 11. The model architecture of length of stay (LoS) prediction. FL: focal loss; MacBERT: Chinese version of bidirectional encoder representations
from transformers; NTUH: National Taiwan University Hospital.

Loss Function
Total loss combines focal loss and sparse entropy loss as
follows:

where λ1 is a hyperparameter for determining the learning
direction of the model via controlling the balance between the
main task and related task, and λsparse is a hyperparameter for
controlling the sparsity of the TabNet encoder, where a greater
parameter is associated with a greater effect of the tabular data
on the entire model, and the TabNet encoder tends to select 1
feature in 1 decision step.

In order to assess the performance of the model, the focal loss
function was utilized by comparing the ground truth label with
the probability distributions over network predictions, which
has been shown as follows:

where ŷ is the model prediction, y is the ground truth value,
superscript i refers to sample i, yk is 0 or 1 (indicating whether

a class label is the correct classification among K classes), 
denotes the confidence score of class k, and γ is a
hyperparameter that is set to 2 in our study.

TabNet uses sparse entropy loss (first proposed in [23]) to
provide a favorable inductive bias for data sets where most
features are redundant. The sparse entropy loss can not only
help the model to select salient features from all attributes of
the sample, but also fasten the training process. The equation
is as follows:

where Nsteps denotes how many decision steps are stacked up
in the model, B is the batch size, D is the total number of
features, M represents the mask, Mb,j [i] refers to the mask at

the ith step with batch sample b and feature j, and ε is a small
number to maintain numerical stability.

Results

Experimental Setup
A series of experiments were conducted to validate the
effectiveness of our design. The details of our system
environment are presented below. We conducted our
experiments on the Ubuntu 20.04 operating system with PyTorch
1.7.1 and Python 3.9.7, and all training procedures were
performed on a computer with a Nvidia RTX 3090 graphics
card, an Intel Core i7-1070K processor, and 32 GB of RAM.

Training Settings
The Adam optimizer with an initial learning rate of 0.01 was
used in our experiments, and it was adjusted by the
“ReduceLROnPlateau” scheduler with the patient value set as
15. Meanwhile, if the loss did not improve for 50 epochs, an
early stop action was taken.

All experiments were carefully conducted in the following steps:
(1) The data set was divided into 3 parts (training set, validation
set, and testing set in the ratio of 8:1:1); (2) The training set was
used to generate synthesized data to make up the gap between
classes, and the synthesized data were added into the original
training data set; (3) Our design was evaluated by taking the
average test performance for 10 trials, as the division of the data
set might have varied effects on the experiment results.

Evaluation Metrics
Since our data set was obviously imbalanced, the accuracy
performance cannot represent the effectiveness of our system.
As a result, in our experiment, the evaluation metrics included
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precision, recall, and F1-score. Precision measures the rate of
ground truth classes that are predicted correctly. Recall measures
the portion of each class of our prediction that is actually that
class. Finally, F1-score represents the harmonic mean between
precision and recall. Their formulas are as follows:

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively.

Data Characteristics
Our study included 2 data sets. One data set was the NTUH
retrospective data set, which contains a collection of the past
EHRs of 268,716 visits from 2009 to 2015, and the other data
set was the NTUH prospective data set, which contains data
collected with patient consent in the NTUH ED from May 26,
2020, to February 21, 2022, and includes 901 ED patient records
after removal of unreasonable and missing data. Table 2

summarizes the data characteristics of vital sign information in
these 2 data sets. Despite similar average values across all fields
in the 2 data sets, on performing statistical tests using P-values,
we found that there was a significant difference between the 2
data sets. However, we believe that using data with the same
data collection background but different distributions can still
effectively improve the robustness and generalization ability of
the model. By pretraining on diverse data, the model can learn
more general representations, leading to improvements in the
final predictions.

On the other hand, the distributions for different tasks are shown
in Multimedia Appendix 5. It is worth mentioning that the
distribution gap of the triage level between the retrospective
data set and prospective data set was greater than the distribution
gaps for hospitalization and length of stay. This is because
hospitalization and length of stay are based on facts, and in
contrast to the triage level in the retrospective data set, the triage
level in the prospective data set comes from physician diagnosis.
As it is believed that the doctor’s triage level can assign patient
acuity more accurately, we used it as our golden label for
predicting the triage level. Another reason for the distribution
gap could be the difficulty in collecting data from more severe
patients.

Table 2. Patient characteristics in the National Taiwan University Hospital retrospective and prospective data sets.

NTUH prospective data setNTUHa retrospective data setVariable

52.4 (18.98)49.1 (19.98)Age (years), mean (SD)

Sex, n (%)

450 (50.1)141,783 (52.8)Female

450 (49.9)126,933 (47.2)Male

Arrival time, n (%)

518 (57.4)10,2256 (42.8)7 AM to 3 PM

289 (32.1)11,4970 (38.0)3 PM to 11 PM

94 (10.5)5,1490 (19.2)11 PM to 7 AM

132.4 (24.78)136.3 (26.79)Systolic blood pressure (mmHg), mean (SD)

79.8 (13.91)80.8 (15.22)Diastolic blood pressure (mmHg), mean (SD)

89.5 (18.74)88.8 (18.74)Pulse (beats/min), mean (SD)

97.7 (1.69)97.0 (3.09)Oxygen saturation (%), mean (SD)

18.8 (2.04)18.2 (2.16)Respiration (breaths/min), mean (SD)

36.7 (0.65)37.0 (0.82)Body temperature (°C), mean (SD)

Pain index (scale), n

357134,2920

3689,5541-3

14060,5264-6

3664,3447-10

aNTUH: National Taiwan University Hospital.
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Experimental Results
We compared our model’s performance regarding triage level,
hospitalization, and length of stay against the performance of
other machine learning methods. As the data of only 901 ED
visits were finally included in our study, it was a challenge to
obtain a robust model with great capability to identify critical
patients.

Unlike other work on triage level prediction, since we
endeavored to fix the bias of traditional rule-based system triage,
such as the ESI and TTAS, we used the diagnosis results
provided by the physician as our golden label. As shown in
Table 3, it is worth noting that our triage model achieved a
nearly 30% improvement in 4 metrics, including accuracy,
precision, recall, and F1-score, when compared to the results
obtained from other models. These outstanding results show
the promising potential of our proposed model.

As shown in Table 4, we can observe that our hospitalization
model achieved the highest performance in 3 metrics, including

precision, recall, and F1-score. Although the support vector
machine (SVM) model achieved an accuracy of 91.2%, it may
tend to predict the majority (discharge) owing to the low
precision and recall values. From the previous discussion, it can
be seen that our model is the most discriminative model.

Additionally, our proposed model outperformed other models.
Although the study design and data set in our study are different
from those in other studies, it is worth indicating that with the
help of retrospective data pretraining, the model can learn more
than with only the use of prospective data. Our proposed model
achieved promising results, with 3%-6% improvement in
accuracy (Table 5).

As shown in Table 6, although most of the models achieved an
accuracy of higher than 70%, their performances on other
metrics revealed that these models tend to predict the majority
class. Nevertheless, except for accuracy, our length of stay
model outperformed other machine learning methods in the
other 3 metrics, indicating the capability of our length of stay
model for discrimination.

Table 3. Performance comparison between our model and other machine learning methods in the “triage level” task.

F1-scoreRecallPrecisionAccuracyMethod

0.4230.4100.4360.425TabNet [18]

0.3240.3280.3240.472NODEa [19]

0.3760.3000.5060.354Random forest [24]

0.3450.3080.3940.351XGBoostb [15]

0.3670.2680.5810.340SVMc [25]

0.658d0.633d0.686d0.633dOur model

aNODE: neural oblivious decision ensembles.
bXGBoost: extreme gradient boosting.
cSVM: support vector machine.
dHighest value.

Table 4. Performance comparison between our model and other machine learning methods in the “hospitalization” task.

F1-scoreRecallPrecisionAccuracyMethods

0.7010.7020.7010.791TabNet [18]

0.6530.6890.6220.752NODEa [19]

0.7170.6740.7650.821Random forest [24]

0.6550.6790.6510.829XGBoostb [15]

0.4770.5000.4560.912dSVMc [25]

0.817d0.823d0.811d0.822Our model

aNODE: neural oblivious decision ensembles.
bXGBoost: extreme gradient boosting.
cSVM: support vector machine.
dHighest value.
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Table 5. Performance comparison between our model and the models in other related studies in the “hospitalization” task.

F1-scoreRecallPrecisionAccuracyStudy typeData setStudy

—0.750——bRetrospectiveNHAMCSaStudy by Raita et al [26]

0.8040.7900.820c0.775RetrospectiveNHAMCSStudy by Yao et al [27]

0.7980.7900.8060.805ProspectiveNTUHdStudy by Leung et al [28]

0.817c0.823c0.8110.822cProspectiveNTUHOur study

aNHAMCS: National Hospital Ambulatory Medical Care Survey.
bNot reported.
cHighest value.
dNTUH: National Taiwan University Hospital.

Table 6. Performance comparison between our model and other machine learning methods in the “length of stay” task.

F1-scoreRecallPrecisionAccuracyMethods

0.6590.6650.6540.683TabNet [18]

0.6020.5890.6160.721NODEa [19]

0.5120.4440.6060.754Random forest [24]

0.4810.4460.5230.744XGBoostb [15]

0.2940.3330.2630.791dSVMc [25]

0.747d0.713d0.786d0.713Our model

aNODE: neural oblivious decision ensembles.
bXGBoost: extreme gradient boosting.
cSVM: support vector machine.
dHighest value.

Ablation Studies

Effectiveness of Multimodality
Experiments were conducted to demonstrate the superior
performance of our proposed model. Since our model comprised
the TabNet encoder and the language model encoder, we
designed an experiment to show that the performance of a model
leveraging both vital sign information and text information is

better than that of a model using only 1 information modality.
Table 7 shows that the proposed model achieved the best
performance when both modalities were used. The results
suggest that both structural and text data contribute to model
prediction. The greater performance of the model using only
tabular data than that using only text data could be attributed
to the advantage of pretraining, as the vital sign encoder was
pretrained with a large volume of retrospective data.

Table 7. The effectiveness of different modalities in the “triage level” task.

F1-scoreRecallPrecisionAccuracyMethods

0.5890.5680.6130.575Only tabular data

0.1620.2500.1190.439Only text data

0.658a0.633a0.686a0.633aOur method (tabular data + text data)

aHighest value.

Effectiveness of Multitask Training and Data
Augmentation
Multitask learning experiments confirmed that the approach
does offer advantages like improving data efficiency, reducing
overfitting through shared representations, and allowing fast
learning by leveraging auxiliary information. However, in order
to obtain a more robust feature extractor, in a general setting,
the targets in the multitask learning model should be related.

As a result, in the experiments, we selected triage level
prediction and hospitalization as our 2 outputs. It is believed
that a patient assigned to level 1 or 2 should have a higher
probability of admission to the hospital after being discharged
from the ED. Moreover, since data distribution in triage labels
is unbalanced, we attempted to narrow the distribution gap by
using the method of data augmentation. Table 8 shows that both
multitask learning and augmentation contributed to better
performance.
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Table 8. The effectiveness of different architectures in the “triage level” task.

F1-scoreRecallPrecisionAccuracyMethods

0.4250.5000.3690.500Multitask

0.5910.5820.6000.583Single task + augmentation

0.4790.4550.5060.458Single task

0.658b0.633b0.686b0.633bOur method (multitask + augmentationa)

aThe method of data augmentation used in our proposed model is described in the “Data Augmentation” subsection.
bHighest value.

Effectiveness of Different Language Models
Experiments were conducted to evaluate the performance
between different language models (Table 9). In our original
data set, the chief complaint was written in traditional Chinese.
However, no language model has been trained on traditional

Chinese. Hence, to solve this problem, we first translated the
text features into different languages before sending them to
the respective language models. The results showed that the
model using MacBERT as the language encoder was better than
models using other approaches.

Table 9. The effectiveness of different language models in the “triage level” task.

F1-scoreRecallPrecisionAccuracyData languageMethods

0.4250.5000.3690.500Simplified ChineseMultilingual BERTa

0.5910.5820.6000.583EnglishMultilingual BERT

0.4790.4550.5060.458EnglishBERT

0.658c0.633c0.686c0.633cSimplified ChineseOur method (MacBERTb)

aBERT: bidirectional encoder representations from transformers.
bMacBERT: Chinese version of BERT.
cHighest value.

Effectiveness of Different Fusion Methods
Experiments were conducted to demonstrate the superior
performance of our proposed model. As our model directly
concatenated the decreased embedding from the language model
and the embedding from the vital sign encoder, we designed an
experiment to show that it is necessary to make contributions
for the text data and structural data to be comparable, and direct
concatenation fusion can preserve more information than

addition fusion. In Table 10, the first experiment involves the
model adding 2 embeddings (text and vital sign embeddings)
together with a learnable scale value to balance the gap between
the text and vital sign embeddings, and the second experiment
involves directly using the embedding from the language model
instead of passing another fully connected network to decrease
its dimension. The results suggest that making 2 embeddings
to be comparable and using a direct concatenation fusion method
can contribute to better performance.

Table 10. The effectiveness of different fusion methods in the “triage level” task.

F1-scoreRecallPrecisionAccuracyMethods

0.5630.5470.5800.548Experiment 1 (addition fusion)

0.6070.5830.6340.583Experiment 2 (no concatenation fusion)

0.658a0.633a0.686a0.633aOur method

aHighest value.

Interpretability
Although machine learning models can provide remarkably
good prediction results, models need to provide explanations
of the results that humans can understand easily. In our proposed
model, for structural features, the attentive transformer from
TabNet generated the mask to mask out different features in
each decision step and observed how these features affect the
model performance. As a final step, the attentive transformer

calculated the importance of features by adding up the mask
values of each step. On the other hand, BertViz [29] is an
interactive tool that can visualize attention in transformer
language models such as BERT. By acquiring attention scores
from transformer layers in language models, BertViz can point
out important words that contribute to the predicted result.

Multimedia Appendix 6 provides an inference example from
the field test, and Multimedia Appendix 7 provides the
prediction results of the inference sample for hospitalization.
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In this example, the patient shows acute change during the triage
process, extremely high systolic and diastolic blood pressure,
and an unusual Glasgow Coma Scale (GCS) score. As shown
in Multimedia Appendix 7 our system recommended admission
of the inferenced patient, and the patient was actually admitted
to the hospital. Our system not only successfully provided the
correct suggestion to the nursing staff, but also indicated that
acute change, systolic blood pressure, diastolic blood pressure,
GCS-E, and GCS-M have important effects on the prediction
result. As for text analysis, we used the concept from BertViz
to extract attention scores for each token from the language
model and visualize these attention scores. Although the
language model had a hierarchy of linguistic signals from phrase
to semantic features, it is believed that the deeper layer of the
language model holds more information of the whole sentence
[30]. Hence, we extracted the attention score from the ninth
layer of the language model for further visualization
(Multimedia Appendix 8).

System Application
Triage aims to prioritize patients in the ED and ration care
toward those patients who need immediate care. However,
recently, owing to the rising number of elderly patients and the
high volume of low-acuity ED visits under waiting, patients
tend to wait for very long to see the physician. This situation
can cause several severe clinical outcomes such as increased
mortality rates.

With the advancement in technology and popular application
of computers nowadays, we wonder whether machine learning
methods can help to mitigate the overcrowding problem in the
ED. Therefore, we developed a triage system based on our
proposed model and adopted it in the NTUH ED to provide
stable and reasonable clinical AI suggestions to nursing staff.
For application in the real world, we should take the running
time of the system into account. The entire running time of each
part is shown in Multimedia Appendix 9. The system takes no
more than 10 seconds to make clinical predictions.

Before the system is officially launched, we planned a field test
to ensure that the system can achieve promising performance
in the real world. Finally, we included almost 6500 ED patients
in our analysis from September 30, 2022, to December 30, 2022.
The distributions of hospitalization and length of stay between
these patients were quite different as compared to the NTUH
prospective data set (Multimedia Appendix 10 and Multimedia
Appendix 11). Especially for length of stay, patients who stayed
in the ED for over 24 hours were much less in this data set than
in both NTUH data sets (Multimedia Appendix 11). Moreover,
since our golden triage level depended on the physician’s
diagnosis, it was challenging to label all patients in the field
test; however, we evaluated our system in another way, which
will be discussed later. The distribution gap between both NTUH
data sets and the field test is presented in Multimedia Appendix
12.

As shown in Multimedia Appendix 13 and Multimedia
Appendix 14, there was a slight performance gap between the
experiments on the earlier mentioned data sets and the real-world
data. However, from the results of the confusion matrix, it can
be seen that in the case of “patients actually discharged,” 2085

out of 2539 (82.1%) discharged patients were accurately
predicted and were recommended to be discharged by the
system. On the other hand, in the case of “patients actually
admitted,” 194 out of 316 (61.4%) patients were accurately
predicted and were recommended to stay in the hospital.

As mentioned previously, for length of stay, there was a large
distribution gap between our field test data set and the NTUH
prospective data set. Multimedia Appendix 15 and Multimedia
Appendix 16 show that the system cannot perform as good as
it does in local experiments. However, from the results of the
confusion matrix, we can observe that the system has a better
capability of discriminating patients who stay for less than 6
hours, and the system tends to underestimate patients who stay
in the ED for 6 to 24 hours.

Finally, Multimedia Appendix 17 and Multimedia Appendix
18 show that although the newly collected data did not have the
golden triage level labels provided by the doctors, the
distribution of the triage level indicated that the model predicted
a fairly even distribution, while the system triage still mainly
predicted level 3.

Discussion

Limitations
Although our proposed model showed good preliminary results
compared to the results of other machine learning methods, it
still has a long way to go. For instance, despite our model’s
ability to incorporate various language models, it may not
perform well for languages where specific language models are
not available in the training data set. Second, as we need to
translate the text into a uniform language initially and the
sentence in the data is not always complete, a better translator
and some postprocessing techniques are needed to alleviate the
problems. Additionally, as retrospective data lack a label in
triage level prediction, expansion of the data set for training the
model should help the model to learn a wider range of patterns
and should enhance model performance. Moreover, since our
proposed model can allow efficient learning of image or text
encoders in the presence of multimodality along with tabular
data, further work can add images or speech information into
our model to help it achieve better performance.

Conclusion
Emergency services are an essential aspect of the health care
system in hospitals, and the demand for these services has
increased exponentially in recent years. Although Taiwan has
established a standard process of assigning patients to different
emergency levels, there is insufficient capacity to ensure precise
assignment. Most patients are over-triaged or under-triaged,
which can waste limited medical resources or have severe
consequences such as patient mortality.

In this study, we aimed to design a deep learning prediction
system that can prioritize patients and assign patients to
appropriate triage levels. To obtain rich information from
patients, our proposed model not only uses vital sign
information, but also leverages text information.
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Our system included a well-pretrained vital sign encoder and a
repretrained MacBERT encoder. Additionally, by using the
multitask learning and data augmentation method, we
successfully obtained promising results for triage level
prediction, hospitalization prediction, and length of stay
prediction. For triage level prediction, there were nearly 30%
improvements in 4 metrics compared with other machine
learning methods, including accuracy, precision, recall, and
F1-score. Different modalities and model architectures have
also been studied for ablation effectiveness. Moreover, our

proposed model also provides clinicians with interpretability
to understand the reasons behind the model predictions.

In conclusion, our system improved the prediction of 3 different
medical outcomes when compared with other machine learning
methods. With the pretrained vital sign encoder and repretrained
MLM MacBERT encoder, our multimodality model can provide
a deeper insight into the characteristics of EHRs. Additionally,
by providing interpretability, we believe that the proposed
system can assist nursing staff and physicians in taking
appropriate medical decisions.
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