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Abstract

Background: The phenomenon of patients missing booked appointments without canceling them—known as Did Not Show
(DNS), Did Not Attend (DNA), or Failed To Attend (FTA)—has a detrimental effect on patients’ health and results in massive
health care resource wastage.

Objective: Our objective was to develop machine learning (ML) models and evaluate their performance in predicting the
likelihood of DNS for hospital outpatient appointments at the MidCentral District Health Board (MDHB) in New Zealand.

Methods: We sourced 5 years of MDHB outpatient records (a total of 1,080,566 outpatient visits) to build the ML prediction
models. We developed 3 ML models using logistic regression, random forest, and Extreme Gradient Boosting (XGBoost).
Subsequently, 10-fold cross-validation and hyperparameter tuning were deployed to minimize model bias and boost the algorithms’
prediction strength. All models were evaluated against accuracy, sensitivity, specificity, and area under the receiver operating
characteristic (AUROC) curve metrics.

Results: Based on 5 years of MDHB data, the best prediction classifier was XGBoost, with an area under the curve (AUC) of
0.92, sensitivity of 0.83, and specificity of 0.85. The patients’ DNS history, age, ethnicity, and appointment lead time significantly
contributed to DNS prediction. An ML system trained on a large data set can produce useful levels of DNS prediction.

Conclusions: This research is one of the very first published studies that use ML technologies to assist with DNS management
in New Zealand. It is a proof of concept and could be used to benchmark DNS predictions for the MDHB and other district health
boards. We encourage conducting additional qualitative research to investigate the root cause of DNS issues and potential solutions.
Addressing DNS using better strategies potentially can result in better utilization of health care resources and improve health
equity.

(JMIR Med Inform 2024;12:e48273) doi: 10.2196/48273
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Introduction

Adding to the existing pressures on the health care system [1,2],
further substantial disruptions are caused when patients fail to
attend their prescheduled appointments [3]. This is defined as
Did Not Show (DNS), which is a scheduled but not utilized
clinical appointment that patients failed to attend without
canceling or rescheduling. This phenomenon is also known as

Did Not Attend (DNA) or Failed To Attend (FTA). Causes
include the patient forgetting about their appointment,
miscommunication [4], logistical difficulties, appointment
scheduling conflicts, and family/work commitments [3,5].

DNS can adversely affect patients’ well-being, cause them and
the system financial stress, and disturb health care operations
and systems. Globally, DNS has an overall rate of 23%, with a
wide geographical variation (13.2% in Oceania, 19.3% in
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Europe, 23.5% in North America, 27.8% in Asia, and 43% in
South America [6]). DNS is expensive for health systems; for
example, estimated annual losses amounting to £790 million
(over US $1 billion) were found in the United Kingdom [7] and
$564 million in the United States [8]. It affects both primary
and secondary health care [9], although secondary care losses
are higher.

Patients mostly fail to comply with their clinical appointments
when symptoms become less severe or unnoticeable [10,11],
which might deteriorate underlying syndromes [12,13]. Patients
are more likely to demand immediate medical attention when
contracting serious health issues or require acute and emergency
care if they miss scheduled health care appointments [12,14-16].

Eliminating DNS is hard to achieve, and its adverse effects
necessitate methods and approaches for managing DNS such
as sending digital reminders by text, phone, and email [17,18].
These approaches have not been very effective, as they are
time-consuming and costly, and the health care system still
faces DNS issues. Overbooking [3,19], open access [20], and
DNS penalty approaches have also been used to enhance clinical
slot utilization but can cause longer waiting times for patients
and overtime for clinical staff [21].

Inspired by the success of artificial intelligence (AI) in different
sectors, including health care [22,23], we considered the
application of AI for DNS management via predicting the
probability of DNS appointments [13,19,24,25]. AI and its
subset techniques, such as machine learning (ML), are powerful
for extracting cognitive insights from massive amounts of data
[26,27].

The predicted DNS probabilities proved to be successful in
providing the required information for DNS management [25]
and supporting health care managers in making informed
decisions for prioritizing patients and delivering clinical
assistance. This enables health care providers to reschedule and
reuse limited clinical resources for urgent cases while also
expanding access to health care services for patients from
diverse backgrounds, thereby promoting health care equity.

Therefore, clinical capabilities and medical resources can be
used more effectively and efficiently, decreasing patients’ wait
times, increasing their satisfaction, and enhancing health
productivity.

Most studies concerned with predicting DNS have mainly
comprised small data sets or specific groups of people to develop
models for DNS learning and prediction; however, DNS tends
to be varied across populations. For example, longer distances
to a medical facility increase DNS [8], but this finding was
contradicted in another study [28]. Likewise, patients with
chronic illnesses adhere to their scheduled appointments [13],

while other studies [29] have shown that patients with more
severe diseases have a higher DNS rate. Even within a single
medical organization, DNS factors vary across different clinics
[14]. These examples highlight the inconsistent nature of DNS
predictors, showcasing the complexity of predicting tasks in
this domain. Such variations pose challenges in creating a
universal formula or model to effectively address DNS
prediction issues on a global scale.

Considering the very limited DNS research in New Zealand
and the complexity of developing a general DNS predictive
model, we concentrated on the DNS issue in the MidCentral
District Health Board (MDHB) hospital as a proof of concept.
MDHB is located in the center of the North Island, New

Zealand, covering a land area of over 8912 km2 and with a
population of over 191,100 people. In this region, about 18%
of people are aged 65 years or older, with over 20% being
Māori, and a higher proportion than the national average resides
in more deprived areas [30]. These demographic factors could
lead to inequity in access to health care services. To support
MDHB in addressing health equity and providing additional
support for patients, this study aimed to develop ML models
and compare their performance in predicting the probabilities
of future DNS appointments at MDHB. This study utilized a
data set spanning 5 years of collected data.

Methods

Overview
Our research was organized into the following phases (Figure
1). The initial phase involved data extraction, defining the data
set to be used, and outlining the data extraction process. The
data preparation phase involved conducting exploratory data
analysis (EDA) to profile data and exclude irrelevant
observations from the research. Subsequently, the data set was
split into 2 parts—70% (454,831 records) for training and 30%
(194,927 records) for testing. To avoid data linkage, the training
and testing data sets were not mixed during the ML modeling
phase. Moreover, the training set underwent a 10-fold
cross-validation strategy to prevent bias as much as possible
and fully utilize its limited training information. Next, the data
preprocessing phase involved cleaning and transforming the
cross-validation sets, ensuring that the training set was ready
for the data modeling stage. A 10-fold cross-validation
resampling strategy was applied to further optimize the
utilization of the 70% training data. In the data modeling phase,
we used 3 ML algorithms and tuned their hyperparameters to
identify the best performance among the algorithms. Finally,
in the model evaluation phase, various evaluation metrics were
employed to determine the best-performing ML model for DNS
prediction.
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Figure 1. Research flow and procedure. AI: artificial intelligence; MDHB: MidCentral District Health Board.

Data Access and Extraction
Our data were sourced from MDHB reporting SQL farm and
contained only outpatient visits with no link to other data sets.
This significantly mitigated risks related to patient
reidentification. Data deidentification and encryption were
applied before data access, and New Zealand National Health
Index numbers were encrypted to protect patients’ privacy. We

acquired 1,080,566 outpatient visit records from 38 clinics
between January 1, 2016, and December 31, 2020, satisfying
the research requirements with almost 57,000 DNS incidents
(5% of the entire data set). The steps of data exclusion are
presented in Figure 2. Because not many missing records were
identified in the data sets, those with missed values were directly
excluded.
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Figure 2. Research data exclusion. DNS: Did Not Show; MDHB: MidCentral District Health Board.

Ethical Considerations
This study received ethics approval from the Auckland
University of Technology (AUT; 20/303) and MDHB
(2020.008.003), following which data access to the MDHB
reporting data warehouse was granted.

Data Preparation

Phase Description
In this phase, understanding the data was important to
adequately prepare them for the experiments. The data
preparation process included data transformation and derivation
(Figure 3). Following suggestions from the literature, new
research variables were derived and introduced because some
valuable DNS predictors were absent in the MDHB data set.
For example, no direct information was available on the patients’
DNS history [21,31], appointment lead time [31,32], or latest
appointment DNS outcome [13]. The lead time was calculated
by comparing the difference in days between the appointment

creation date and the visit date. Appointments with longer lead
times were expected to have greater DNA probability than those
with shorter lead times [29].

Therefore, to better understand patient behavior and DNS
patterns, we derived 10 new variables on top of the original
variables (Figure 3). These attributes were introduced to support
us in understanding when patients were more likely to miss
their appointments in general and to identify regular nonadherent
patients.

Initially, we extracted a data set with 17 columns and over 1
million records (Multimedia Appendix 1). Informed by the
literature review [14,29,31-33], we derived and introduced
another 10 variables on top of the original data and increased
the data columns to 27. Among all the variables, 16 (59%) were
used for ML modeling, and the redundant ones were excluded.
The dna_flag attribute was the dependent (target) variable.
Figure 3 demonstrates the original variables in addition to 10
newly derived ones.
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Figure 3. Variable transformation and derivation visualization.

Cardinality Reduction
We conducted a cardinality reduction analysis to reduce variable
categories with low frequency and small samples. The data set
mostly included categorical variables, with numeric variables
being rare. Each categorical level is called a cardinality, which
means how many distinct values are in a column. In our data
set, some categorical variables had fewer levels, such as patient
gender—M (male), F (female), and U (unknown)—while others
had hundreds of variations, such as suburbs or diagnosis codes.

Developing ML models often involves numerous categorical
attributes, necessitating examination of the variables’cardinality,
as most ML algorithms are distance-based and require
converting categorical variables to numeric values. Categorical
variables with high cardinality levels will derive massive new
columns and expand the data set. This expansion increases
model complexity, elevates computational costs, and decreases
model generalization, which makes handling the data set
challenging [34]. Therefore, we investigated the cardinality of
our research variables and deployed a reduction strategy
accordingly.

Cardinality reduction analysis was conducted to reduce the
number of categories within variables with low frequency and

small sample sizes. Following suggestions from the literature,
new research variables were also derived and introduced,
including patients’ prior DNS history [14,16,21] and the
appointment lead time [14,16,29,32].

Statistical Test
The chi-square test was used for analyzing homogeneity among
different groups within variables [35] and for testing the
independence between categorical variables [36]. The chi-square

statistics (χ2) and their P values were calculated to investigate
whether different levels of a variable contributed differently to
DNS events.

The confidence level (α=.05) was adopted as the P value
threshold in the chi-square test. A P value less than .05 provided
enough confidence to reject the null (H0) hypothesis and accept
the alternative hypothesis (HA). The tested categorical variable
was associated with DNS events [36]. Hence, we may consider
using it for future prediction.

After the data preparation process, 16 variables were selected
to predict the target dna_flag. Among them, 12 modeling
predictors were nominal variables, including binary variables
(Multimedia Appendix 2). We, therefore, conducted the

chi-square (χ2) statistical test to investigate the relationship
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between those predictors and DNS events (Table 1). The
chi-square was calculated using the following equation, where
O and E are observed and expected values [36,37]:

After preparing the data set and before developing the ML
models, an EDA was conducted to gain a deeper understanding

of the research data landscape. EDA is a fundamental data
analysis required before hypothesis and modeling formulation
[38]. Its findings can be used to verify misleading models at a
later stage [38] and reveal unexpected patterns [39]. The EDA
helped uncover patients' DNS patterns through data aggregation
and data visualization analysis. Finally, the EDA findings were
validated against the ML model outcomes to verify their
accuracy.

Table 1. Chi-square test on categorical variables.

Chi-square P valueChi-square statisticCategorical variables

<.01118,461dna_history_count

<.0177,600is_last_appt_dna

<.0135,201Clinictypedesc

<.0134,810age_bins

<.0117,098primaryethnicityethbroadgroup3

<.0111,048leadtime_bins

<.0110,527maritalstatus_group

<.013525visit_type_group

<.013447visittime_bin

<.012655patcurrentdomiciledeprivationindex

<.011913is_multiple_appt_same_day

<.011,496op_prioritycode_group

<.011,244is_working_day_ind

.064Gender

Data Preprocessing
Due to the high number of categorical variables in our data set,
the one-hot encoding technique was used in the preprocessing
phase. Because distance-based algorithms can only deal with
numerical values, in the cardinality reduction section, we used
the one-hot encoding method to convert our categorical variables
to numbers. After the conversion, different variables were
introduced to our training data set, also known as indicator

variables. For example, the variable gender derived 3 variables,
gender_male, gender_female, and gender_unknown. Each of
those variables can have a value of either 1 or 0.

As the predictive performance of classifiers is highly impacted
by the selection of the hyperparameters [40], we conducted
hyperparameter tuning to optimize our algorithms’ learning
process. We further optimized this process using the Grid Search
method to boost the performance of our chosen models. Table
2 outlines specific details regarding the hyperparameters utilized.
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Table 2. Hyperparameter tuning of the data modeling.

PurposeRangeR packageModels and hyperparameters

Logistic regression

Total amount of regularization used to prevent overfit and underfit1e-10- 1Glmnetpenalty

Random forest

Number of trees in the forest300- 1000RangerTrees

Minimum amount of data to further split a node3-10RangerMin_n

Maximum number of features that will be randomly sampled to
split a node

3-5RangerMtry

XGBoosta

Number of trees in the forest300-1000XGBoostTrees

Minimum amount of data to further split a node3-10XGBoostMin_n

Maximum number of features that will be randomly sampled to
split a node

3-10XGBoostmtry

Maximum depth of the tree3-12XGBoosttree_depth

aXGBoost: Extreme Gradient Boosting.

Data Modeling
Addressing the imbalanced data set posed the main data
modeling challenge. The annual DNS rate for MDHB was
around 5%, which means 95% of the appointments were
attended visits. This imbalance significantly affected the
accuracy of our ML model in predicting attended cases. To
tackle this issue, various internal and external strategies exist
[41,42]. In this study, we employed an external approach that
involved utilizing standard algorithms intended for a balanced
data set but applying resampling techniques to the trained data
set to reduce the negative impact caused by the unequal class.
Our focus was on the resampling strategy, known for its
effectiveness in handling imbalanced classification issues and
its portability [42].

The resampling strategy involved 2 methods: (1) oversampling,
where the size of the minority class is increased randomly to
approach the majority class in a class-imbalance data set [43,44];
and (2) undersampling, where the size of the majority class
decreases randomly to align with the minority class [43,44].
This strategy falls under both the oversampling and
undersampling categories. Given the lack of definitive guidance
on the effectiveness of these methods [42-44], we adopted both
and compared their results.

Since we dealt with a binary classification prediction problem,
supervised and classification algorithms were selected.
Algorithms with good interpretability were also considered to
explain which predictive variables influence DNS prediction
more significantly. In a study concerning variable importance,
tree-based models, such as random forest (RF) and
gradient-boosted decision trees, were shown to inherently
possess features that measure variable importance [45].

For the imbalanced data set, we used ensembling methods due
to their proven advantages [46,47]. The following algorithms
were chosen for developing DNS prediction models: logistic

regression (LR), RF, and Extreme Gradient Boosting
(XGBoost).

LR was chosen because it is a suitable analysis method across
multiple fields for managing binary classification [48]. Our
research concerned a supervised classification problem to predict
whether a future outpatient appointment will become a DNS
visit. With the response variable (dna_flag) offering
dichotomous outcomes—either yes (1) or no (0)—LR stood as
a fitting choice due to its proficiency in predicting binary
outcomes and its established effectiveness in prior studies
[7,13,33,49]. Tree-based ensembling algorithms were also
chosen for their proven ability to deal with imbalanced data sets
and model explainability [46,47]. RF can effectively handle
combining random resampling strategies in imbalanced
prediction. Tree-ensembling methods have more advanced
prediction ability than a single model because they integrate
prediction strength from several base learners [50].

Model Implementation and Evaluation
We used 10-fold cross-validation for model selection and bias
reduction. The hyperparameters were tuned to boost each
classifier’s performance. We followed suggestions from the
literature suggestions to use sensitivity, specificity, and the area
under the receiver operating characteristic (AUROC) curve to
quantify the models’ prediction strength for the imbalance
problem prediction.

During this phase, we used the testing data to validate the best
predictive model chosen based on the model evaluation criteria.
For this study, data before 2021 were used in the data modeling
process. We coordinated with MDHB to access outpatient
appointments from 2021 for model validation. Specifically, we
used both weekly and monthly data for prediction, comparing
these with actual appointment outcomes to validate the model.
The benefit of using a new data set for validation was to assess
model bias and goodness of fit outside the research environment.
Positive performance and high prediction accuracy would
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indicate potential real-life implementation of our research model
after further investigation.

Results

Our study only included new patients and follow-up
appointments. Therefore, we analyzed DNS costs limited to
new patient and follow-up outpatient services over the last 5
years. The MDHB provided us with costing information for 34
different departments, and we calculated the DNS cost for each
department (Table 3). In 2020, there were 2812 new patient
DNS visits and 6240 follow-up DNA visits causing a loss of at
least $2.9 million (US $1.8 million) at MDHB. More
information regarding this calculation is provided in Multimedia
Appendix 3 [51].

Each department was assigned a corresponding outpatient
appointment price for a new patient and follow-up outpatient
appointment services. We aggregated the total DNS occurrences
of new patients and follow-up appointments, multiplying
corresponding unit prices to quantify their financial impact. For
instance, in 2020, there were 301 new patients and 745
follow-up patients who missed their scheduled bookings, which
caused a revenue loss of $300,442 (US $190,000) in the
orthopedics department.

Although the initial research expected to address the DNS issue
for all outpatient clinics and patients at the MDHB, due to the
broad scope of the DNS, we concentrated on clinics with a
higher percentage of DNS and narrowed down the research
scope to prioritize workloads. To successfully build a model
for our focused patient groups, we eliminated as many irrelevant
data points as possible. Then, data used for the model training
were more fit for purpose for the high-needs population.

The modeling data set was created using 649,758 records and
17 columns (Figures 1 and 3). We developed ML models based
on LR, RF, and XGBoost algorithms, with hundreds of
hyperparameter combinations in our data modeling. To evaluate
the models’ prediction performance, accuracy, sensitivity,
specificity, AUROC curves, and cost (computation time) were
calculated (Table 4). The aim was to identify the best model
and hyperparameters that resulted in optimal sensitivity and
AUROC performances. Model prediction accuracy is critical;
however, it was not a primary concern in this research as we
dealt with an imbalanced data set [52].

Table 4 presents a summary comparison of the models’
performance. As shown in the table, the LR-based model was
the fastest and RF the slowest in terms of computation time.
LR had the lowest AUROC scores (ie, the low DNS events
prediction accuracy), while RF and XGBoost had a similar area
under the curve (AUC) performance (around 0.92).

The undersampling strategy significantly improved our models’
sensitivity. Sensitivity was chosen over accuracy because we
were dealing with an imbalanced data set [52]. Sensitivity
quantified the models’ability to correctly predict positive (DNS)
cases that help detect high-risk DNS patients. RF and XGBoost
had a very close sensitivity of 0.82. However, considering the
computation cost factor, XGBoost had the lowest modeling
time. XGBoost with undersampling was our best ML model for
the DNS prediction. Its ROC curve is illustrated in Figure 4.

A further investigation was also performed to identify the top
predicting factors for each model (Multimedia Appendix 4).
The purpose of calculating variable significance scores was not
to plug them into a calculation formula but to showcase which
variables were more relatively critical in calculating the risk of
DNS. Variable importance is critical to AI model development,
as variables do not contribute evenly to the final prediction.
Therefore, we focused on the most influential predictors and
excluded irrelevant ones by scoring the variables’ prediction
contributions [53]. Variable importance is a measurement
quantifying the relationship between an independent variable
and the dependent [46].

The results shown in Multimedia Appendix 4 matched the
chi-square statistical test results (Table 1). The leading factors
were determined and selected using the variable (feature)
importance. It was evident that the dna_history_count variable
was the most influential predictor following is_last_appt_dna,
age_when_visit, and lead_time. Additionally, ethnicity played
an important role in constructing the XGBoost model for the
DNS prediction.

We also aggregated outpatient appointment data and ranked the
observed DNS rate of all outpatient clinics (Multimedia
Appendix 5). We carried out this analysis to initiate an
understanding of how disease type might influence the DNS
rate.
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Table 3. DNSa costs in 2020 at the MDHBb hospitalc.

Total DNS

cost

Total FU

cost

FU DNS

price
FUe

DNS count

Total NP

DNS cost

NP DNS

price
NPd

DNS count

Clinics

$300,442$196,299$263745$104,143$346301Orthopedics

$217,302$176,643$307576$40,658$45290Diabetes

$205,099$152,322$174874$52,776$239221Ophthalmology

$203,637$129,271$395327$74,366$600124Pediatric medicine

$189,316$98,744$269367$90,571$358253Ear nose throat

$179,446$108,124$280386$71,322$403177Gynecology

$128,223$80,834$348232$47,389$63275Hematology

$126,656$73,259$299245$53,397$490109Cardiology

$123,846$102,652$293350$21,194$50542Radiation oncology

$121,225$64,369$309208$56,856$387147General surgery

$115,459$58,157$214272$57,302$214268Audiology

$109,612$15,204$40038$94,408$617153Neurology

$101,794$67,401$362186$34,393$50668Gastroenterology

$94,030$82,327$360229$11,703$65018Medical oncology

$80,151$47,019$244193$33,132$244136Dental

$64,995$62,201$344181$2,793$5595Renal medicine

$60,213$42,021$347121$18,192$47938Respiratory lab

$55,337$32,431$227143$22,906$227101Obstetrics

$46,815$41,403$271153$5412$27120Respiratory sleep

$46,432$23,253$27485$23,178$35765Urology

$45,751$29,449$175168$16,302$17593Dietetics

$44,948$22,200$32269$22,747$51744General medicine

$42,980$24,309$34770$18,671$47939Respiratory

$35,051$14,174$23660$20,877$31666Dermatology

$31,984$25,185$203124$6799$29623Oral and maxillofacial

$24,411$11,284$33234$13,127$52525Endocrinology

$22,336$10,693$34531$11,643$64718Rheumatology

$19,335$14,014$20369$5321$29618Plastic surgery (excluding
burns)

$18,843$18,843$36252$0$5060GIf endoscopy

$15,948$3953$39510$11,994$60020Community pediatrics

$15,321$10,152$53419$5169$7387Infectious diseases

$13,496$12,990$44829$507$5071Neurosurgery

$13,259$9737$20747$3522$20717Podiatry

$12,939$8545$24435$4394$24418Aged ATRg health

$1953$1221$2445$732$2443Under 65 ATR

$1698$1698$4254$0$5730Cardiothoracic

$0$0$03$009Anesthetics

aDNS: Did Not Show.
bMDHB: MidCentral District Health Board.
cA currency exchange rate of NZD $1=US $0.61 is applicable for the listed costs.
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dNP: new patient.
eFU: follow-up.
fGI: gastrointestinal.
gATR: assessment, treatment, and rehabilitation.

Table 4. Comparison of the MLa models’ performance.

Modeling costAccuracyAUCbSpecificitySensitivityClassifier and resampling strategy

Logistic regression

Less than 1 hour (5 minutes)0.88970.84740.92270.5146Undersampling (under_ratio=2)

Less than 1 hour (14 minutes)0.89110.85920.92470.5091Oversampling (over_ratio=0.5)

Random forest

Over 8 hours (8.4)0.85010.92360.85240.8243Undersampling (under_ratio=2)

Over 137 hours0.89900.92200.92600.5940Oversampling (over_ratio=0.5)

XGBoostc

Over 4 hours (4.8)0.91170.92390.84900.8278Undersampling (under_ratio=2)

Over 51 hours (51.83)0.85290.92670.85490.8297Oversampling (over_ratio=0.5)

aML: machine learning.
bAUC: area under the curve.
cXGBoost: Extreme Gradient Boosting.

Figure 4. The receiver operating characteristic (ROC) of the best classifier, Extreme Gradient Boosting (XGBoost). AUC: area under curve.

Discussion

Principal Findings
Our results are comparable to similar previously published
analyses [9], although the AUC for XGBoost was slightly higher
in our case. This may be due to the data selection and local
characteristics. We initially built a generic DNS prediction
model for all outpatient clinics at MDHB. However, in light of
the literature and DNS complexity, the project scope was
narrowed down to clinics with higher DNS rates. As discussed
previously in this paper, we excluded irrelevant and missed
data, invalid lead time appointments, and clinics with very low
DNS rates. This approach improved the ML models'

performance and made sense from an operational perspective.
The developed models provided insights useful for
understanding the contributing factors for DNS. We found that
patient DNS history, appointment characteristics, work
commitments, and socioeconomic status substantially
contributed to DNS events.

Patient DNS History
Understanding patients’DNS history was crucial for predicting
future DNS patterns (Table 5) and developing the ML models.
This also aligned with the chi-square test results (Table 1),
which ranked the dna_history_count and is_last_appt_dna
variables as the most important factors. Total DNS counts and
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the latest appointment’s DNS outcome are pivotal for calculating
the probabilities of future DNS occurrences. These factors are
consistent with the findings in the literature [14-16,21,32,54].

Managing DNS involves identifying patients with low adherence
to scheduled visits for additional attention. Centralizing and
managing DNS history can provide a comprehensive view,

preventing data silos or gaps. Centralized monitoring can
enhance the visibility of recurring DNS incidents and proactively
alert clinicians of potential DNS cases. Our models account for
changes in DNS behavior. To reduce the prediction bias, we
screen for the most recent appointment DNS outcome
(is_last_appt_dna).

Table 5. Top prediction variables in the developed MLa models.

Oversampling modelUndersampling modelAlgorithm and variable importance ranking

Logistic regression

dna_history_countdna_history_count1

is_working_dayis_working_day2

is_multiple_appt_same_dayis_last_appt_dna3

is_last_appt_dnais_multiple_appt_same_day4

lead_timelead_time5

Random forest

dna_history_countdna_history_count1

age_when_visitis_last_appt_dna2

lead_timelead_time3

is_last_appt_dnaage_bins4

clinic_type_descclinic_type_desc5

XGBoosta

dna_history_countdna_history_count1

age_when_visitis_last_appt_dna2

is_last_appt_dnaage_when_visit3

ethnicitylead_time4

lead_timeEthnicity5

aXGBoost: Extreme Gradient Boosting.

Appointment Characteristics
Certain appointments expected more nonadherence, with distinct
predictors related to appointment characteristics such as
“working day” and “high lead time.” Longer lead times
correlated with increased DNS probability, while appointments
on working days were more prone to DNS than nonworking
days. These findings align with reports from [33,54,55] and
emphasize the significant impact of appointment lead time on
DNS prediction, as also indicated in [8,14,16,32,33,54]. This
underscores how appointment characteristics directly affect
DNS outcomes immediately after scheduling. Therefore,
incorporating ML-predicted DNS risk estimations during
appointment scheduling could automatically flag higher DNS
probability for proactive management.

Furthermore, our analysis of the op_prioritycode variable
(Multimedia Appendix 1) indicated that, in general, patients
with more serious health conditions were more likely to attend
their appointments. This observation is reflected in Multimedia

Appendix 5, which compares the DNS rates of different clinics
with the overall average DNS rate of 0.053% (depicted red line).
For example, patients visiting the audiology clinic had a
potential DNS rate of 19.1% compared to a 0.9% DNS rate for
the radiation oncology clinic. Our analysis of the
op_prioritycode variable was based on categorical data types
reflecting appointment urgency and not based on a detailed
analysis of each patient’s diagnosis.

Work Commitments
Our findings suggest that patients struggled to adhere to
appointments on working days or during working hours.
Younger adults, particularly those between 20 and 30 years of
age, had higher DNS rates due to work commitments, while
older adults aged 65 years and above rarely missed their visits.

Furthermore, the XGBoost-based model highlighted that being
single was an indicator of DNS visits (Figure 4). This could
relate to time constraints among young professionals, a finding
consistent with other studies [8,28,33,56]. For this group, a
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targeted reminder system could be developed to concentrate on
appointments with higher DNA probability compared to the
DNS risk threshold. Consequently, the population-based
reminding system could help optimize resource allocation,
including staff efforts and costs.

Socioeconomic Status
We explored the deprivation index and clustered patient
populations by using their ethnicity (Multimedia Appendix 6).
Our findings indicated a strong association between European
and Māori ethnicities and DNS outcomes, ranked among the
top 5 predicting factors (Multimedia Appendix 4). Māori and
Pacific populations had the highest DNS rates, in line with other
research findings [56], while the European ethnicity had the
lowest DNS rates. Māori and Pacific populations tended to
reside in areas characterized by higher deprivation rates, whereas
the percentage of other ethnicities living in higher deprivation
regions decreased when the deprivation index increased.

In New Zealand, Māori and Pacific ethnical groups required
increased health care attention [57] to ensure equity in the health
care system. As indicated in Table 6, a larger proportion of these

ethnic groups are situated in suburbs and areas with higher
deprivation indexes (such as 8, 9, and 10) [58]. The higher
deprivation index was also a strong indicator of socioeconomic
deprivation geographically [58]. According to the New Zealand
Index of Deprivation, neighborhoods with higher deprivation
were more likely to experience adverse living conditions such
as damp, cold, and crowded housing.

Moreover, regions with higher deprivation exhibit higher rates
of unemployment, increased dependence on benefits, and more
single-parent families [58]. Consequently, these living
conditions and income disparities made patients living in these
regions more susceptible to illness, while also encountering
more barriers and obstacles in addressing their medical needs.

At MDHB, dedicated working groups were established to
support Māori and Pacific patients in attending their scheduled
hospital appointments. Our research reiterates the importance
and necessity of those working groups, acknowledging the value
of their work. Moreover, our model can support them further
by providing tangible DNS probability scores to prioritize
patients who require additional attention and support.

Table 6. Percentage of population residing at each deprivation level [58].

Other, n (%)Asian, n (%)European, n (%)Pacific, n (%)Māori, n (%)Deprivation level

835 (2)2077 (5)37,314 (86)293 (1)3113 (7)1

1071 (2)1470 (3)46,405 (85)429 (1)4951 (9)2

821 (2)613 (1)42,565 (84)489 (1)6367 (13)3

1593 (1)4574 (4)84,728 (79)1747 (2)14,736 (14)4

1590 (1)6015 (6)83,568 (77)3398 (3)14,400 (13)5

1248 (1)2974 (3)74,351 (79)1759 (2)14,103 (15)6

870 (1)1858 (2)58,187 (75)3601 (5)13,442 (17)7

1988 (1)5434 (3)148,605 (75)5402 (3)36,843 (19)8

2442 (1)5443 (3)111,319 (67)7324 (4)40,642 (24)9

521 (1)1610 (2)52,064 (56)6283 (7)31,998 (35)10

Operational and Managerial Implications
The total DNS loss incurred by the MDHB hospital was around
$2.9 million (US $1.8 million) in 2020. Notably, we observed
that clinics with less life-threatening diseases (diabetes,
audiology, and dental) had higher DNS rates. Considering our
use of MDHB data, we expect to identify similar patterns in
other district health boards for which the same DNS predicting
factors can be applied for DNS management.

While the primary objective of our research was to calculate
DNS risk for promoting health equity, we believe that leveraging
DNS prediction can aid in managing limited health care
resources more efficiently. By quantifying the DNS probability
for future appointments on a scale from 0.00 to 1, clinicians or
hospital operation managers can develop more personalized
health care services for their patients. This leads to enhancing
equity in accessing health care services for a wider population.

The predictions derived can support MDHB managers in
designing, planning, and implementing more informed DNS

management strategies. For example, a DNS appointments
threshold (eg, 0.7) can be set, and all appointments with
predicted odds greater than 0.7 can be selected, releasing 70%
of resources and allocating some (or all) to the remaining 30%
of patients with a higher DNS risk. Potentially, these released
resources can subsidize interventions to support attendance.
Without DNS prediction, the hospital cannot decide where to
focus on solving the DNS problem and must invest money
uniformly for every patient, leading to equality rather than equity
in health care service access. Equality is not fit for purpose,
especially considering the high attendance rate of 95% over the
past 5 years, indicating that most patients attend appointments
without additional support. However, for more optimum use of
health care resources, other policies and guidance for
appointment scheduling should be considered [59].

Potential Interventions to Reduce DNS

DNS Suggests Life Hardships
When patients miss medical appointments, it is a critical
indicator suggesting they may be experiencing hardships in
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their lives [15,54,60]. Considering that a higher DNS rate
correlates with a higher deprivation index, we can assume that
people residing in these areas may face greater transportation
limitations. Moreover, people with severe mental health or
addiction issues may not be able to independently visit their
doctors [15]. These vulnerable groups require additional and
ongoing appointment assistance. Unfortunately, they have been
historically disadvantaged and marginalized by the current
health care system [61].

The DNS prediction model we developed can help health care
practitioners identify patients at higher risk of DNS. Targeted
DNS improvement solutions can be designed based on predicted
DNS probability, patient demography, and clinical history. This
type of application can leverage the DNS prediction model to
help identify and deliver patient-centric medical services to
patients requiring additional help. Some examples are discussed
in the subsequent sections.

Expanding Integrated Health Care Networks
For patients not facing life-threatening illnesses or requiring
long-term health management (such as patients with diabetes),
expanding services closer to patients might help meet their
needs. MDHB could consider deploying clinicians to outsourced
sites to supervise practitioners or attend to patients directly.
Moreover, increasing collaborations with primary health care
networks, promoting nurse-led services, and contracting private
specialists can also be viable options for decreasing DNS rates.
Developing a one-stop medical hub with multidisciplinary
clinics for patients with lower clinical risk could encourage
attendance and reduce DNS visits [19]. This is consistent with
the New Zealand Ministry's latest health care system reform
strategies, which aim to uplift health care equity [61]. The
reform emphasizes the establishment of more locality networks
in the community, resonating well with our research findings.

After-Hour Appointment Slots
To support young adults who are occupied by daily work, it
might be favorable to increase more after-hour service slots in
clinics when possible. If more appointment slots can be
organized before or after working hours, working professionals
may have more chances to adhere to their clinical appointments.
Piloting more weekend clinics can also be a choice to meet
younger generations’needs. In consonance with our suggestion,
the recent New Zealand health care reform also promoted more
affordable after-hours services [61]. Additionally, offering
transportation assistance and improved wraparound well-being
support for patients with a high-risk score could increase
attendance. At-home patient visits could also be offered and
delivered to patients facing severe transport limitations.

Limitations
Despite the success of our DNS prediction model, we need to
acknowledge that it has some limitations. First, our model was
trained on 5-year period data from MDHB. The single data
source prevented us from exploring other critical dimensions
such as household data or beneficiary data. We believe adding
those data points would improve the prediction model and
discover more patients’ DNS patterns.

Furthermore, we pairwise compared the attribute dna_flag with
other DNS predictor factors. However, future research should
consider investigating and analyzing the association between
variables and adding further variables to the conditioning set.
This expanded analysis would offer deeper insights into patients'
DNS behaviors.

Conclusions
To the best of our knowledge, this study represents one of the
first attempts in New Zealand to develop ML prediction models
supporting DNS management. We successfully developed and
tested ML models to predict probabilities of outpatient
appointments’ DNS. Our selected model had an AUROC of
0.92 and a sensitivity performance of 0.82.
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