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Abstract
Background: Acute kidney injury (AKI) is a marker of clinical deterioration and renal toxicity. While there are many studies
offering prediction models for the early detection of AKI, those predicting AKI occurrence using distributed research network
(DRN)–based time series data are rare.
Objective: In this study, we aimed to detect the early occurrence of AKI by applying an interpretable long short-term memory
(LSTM)–based model to hospital electronic health record (EHR)–based time series data in patients who took nephrotoxic drugs
using a DRN.
Methods: We conducted a multi-institutional retrospective cohort study of data from 6 hospitals using a DRN. For each
institution, a patient-based data set was constructed using 5 drugs for AKI, and an interpretable multivariable LSTM (IMV-
LSTM) model was used for training. This study used propensity score matching to mitigate differences in demographics and
clinical characteristics. Additionally, the temporal attention values of the AKI prediction model’s contribution variables were
demonstrated for each institution and drug, with differences in highly important feature distributions between the case and
control data confirmed using 1-way ANOVA.
Results: This study analyzed 8643 and 31,012 patients with and without AKI, respectively, across 6 hospitals. When
analyzing the distribution of AKI onset, vancomycin showed an earlier onset (median 12, IQR 5-25 days), and acyclovir
was the slowest compared to the other drugs (median 23, IQR 10-41 days). Our temporal deep learning model for AKI
prediction performed well for most drugs. Acyclovir had the highest average area under the receiver operating characteristic
curve score per drug (0.94), followed by acetaminophen (0.93), vancomycin (0.92), naproxen (0.90), and celecoxib (0.89).
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Based on the temporal attention values of the variables in the AKI prediction model, verified lymphocytes and calcvancomycin
ium had the highest attention, whereas lymphocytes, albumin, and hemoglobin tended to decrease over time, and urine pH and
prothrombin time tended to increase.
Conclusions: Early surveillance of AKI outbreaks can be achieved by applying an IMV-LSTM based on time series data
through an EHR-based DRN. This approach can help identify risk factors and enable early detection of adverse drug reactions
when prescribing drugs that cause renal toxicity before AKI occurs.
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Introduction
Acute kidney injury (AKI) is associated with a mortality rate
of 40%‐70% in hospitalized patients who develop AKI and
causes significant kidney damage even after recovery, leading
to dialysis, longer hospital stays, and increased costs of care
[1-4]. Early detection of AKI increases the likelihood of AKI
prevention, associated morbidity, and costs [5]. As no specific
treatment can reverse AKI and the recognition of patients
at risk of AKI before diagnosis contributes to better clinical
outcomes than treatment after AKI occurs [6], early detection
of AKI is essential for prompt therapeutic intervention.

Several studies have attempted to predict AKI occurrence.
With the increasing availability of clinical databases, they
developed models to predict the occurrence of AKI using
electronic health records (EHRs) [7-18]. Although these
studies used EHRs, the number of patients in the patient
population was small because they focused on specific
patients, such as surgical patients, patients with sepsis, and
older adults. There have also been a number of studies
using artificial intelligence (AI) models to predict AKI.
Although attempts have been made to predict the occurrence
of AKI early, few models have provided clear rationales and
explanations [19-21]. Therefore, time series data analysis is
required for AKI prediction models to reflect the temporal
information between variables [22]. Time series analysis for
AKI is necessary because the length of time each patient stays
in a hospital or intensive care unit can differ from person to
person, and the frequency of measurements can vary from
values that are measured continuously (eg, blood pressure)
to laboratory values that are measured on an as-needed
basis. Recently, an interpretable multivariable long short-term
memory (IMV-LSTM) method for considering time series
data has been published [23]; however, little research has
been conducted on this method.

To address these issues, this study aimed to apply and
validate a multicenter-based explainable time series AI model
for predicting the occurrence of AKI caused by specific
nephrotoxic drugs in 6 hospitals in South Korea by using a
large clinical database with a common data model (CDM)
through a distributed research network (DRN).

Methods
Ethical Considerations
This study was approved by the institutional review com-
mittees of Severance Hospital (SH; 4-2021-1209), Gang-
nam Severance Hospital (GSH; 3-2021-0005), Konyang
University Hospital (KYUH; 2021-10-003-001), Ajou
University Hospital (AJUH; AJIRB-MED-MDB-21‐676),
Seoul National University Cancer Hospital (SNUH;
E-2207-151-1342), and the National Cancer Center (NCC;
2022-0184). All retrospective data were anonymized and
appropriate measures were taken to protect participant
information.

Study Design
This retrospective observational cohort study analyzed the
EHRs from 6 hospitals in South Korea between 1994
and 2021 to predict AKI. The EHRs were converted to
OMOP-CDM (Observational Medical Outcomes Partnership
Common Data Model) version 5.3.1. The 6 hospitals were
SH, GSH, KYUH, AJUH, SNUH, and the NCC. An overall
diagram of the cohort composition is provided in Figure 1.

In our cohorts, we adopted criteria based on serum
creatinine (SCr) to define AKI according to the Kidney
Disease: Improving Global Outcomes (KDIGO) Clinical
Practice Guidelines and the previously defined AKI classifi-
cation stages mapped in the “injury” category [24-26]. The
criterion is an increase in the SCr level to 2 times the baseline
value. As an alternative to the baseline SCr levels, we defined
the upper limit of normal (ULN) value of SCr as 1.2 mg/dl
[27].

The targeted drugs were selected from 5 medications
associated with a high risk of AKI according to the US
Food and Drug Administration (FDA) and previous studies:
acetaminophen; vancomycin; 2 nonsteroidal anti-inflamma-
tory drugs (NSAIDs), naproxen and celecoxib; and 1 antiviral
drug, acyclovir [21,22].

The inclusion criteria were as follows: (1) the target drugs
were administered, (2) the patient had a visit record of at least
30 days prior to the observation period, and (3) the patient
underwent at least 2 SCr tests during the preobservation
period (0‐60 days before the study). The exclusion criteria
were as follows: (1) the patient had at least 1 SCr test outside
the ULN value in the preobservation period. Participants were
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divided into case and control cohorts based on whether they
met previously defined AKI criteria for 60 days after taking
the first medicine. The observation period refers to the time
range before and after the initial medication intake for each
patient within the cohort. The cohort definitions were created
using ATLAS, a web-based tool (Observational Health Data
Sciences and Informatics), and are available as JSON files on
GitHub [28].

To adjust for differences between cases and controls
to reduce the effect of confounding variables, we used

propensity score matching (PSM). Covariates included were
age, sex, and SCr value at baseline. We normalized the
covariates by applying standard scaling to ensure consistent
dimensions across variables. A propensity score for each
patient was generated by logistic regression. Patients were
matched in a 1:3 ratio using a K-nearest neighbor (K-NN)
algorithm using the Python scikit-learn library.

Figure 1. Overall flowchart for predicting acute kidney injury events. AJUH: Ajou University Hospital; GSH: Gangnam Severance Hospital;
IMV-LSTM: interpretable multivariable long short-term memory; KYUH: Konyang University Hospital; NCC: National Cancer Center; OMOP:
Observational Medical Outcomes Partnership; SH: Severance Hospital; SNUH: Seoul National University Cancer Hospital; ULN, upper limit of
normal.

Candidate Predictors for Time Series
Candidate predictors were extracted from several key
domains within the CDM containing per-patient observational
data using structured query language tools in Python. Age
and sex were used in the person domain, clinical labora-
tory tests in the measurement domain, medications in the
drug exposure domain, diagnostic records in the condition
occurrence domain, and surgical/procedure records in the
procedure occurrence domain. Lab tests were treated as
continuous variables, while other medications, conditions,

and procedures were treated as binary variables. Statisti-
cal methods were used to select the variables. To iden-
tify predictors, we tested the statistical significance of the
difference between the enrollment time of the cohort and
the onset date of AKI using a 2-tailed paired t test and the
McNemar test for continuous and dichotomous variables,
respectively. To create a time series table, the candidate
variables were pivoted into columns and dates were placed
into rows. Missing values were handled in the following
ways: forward fill for laboratory tests and diagnoses and
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zero fill for medications and treatments. The window size for
predictions used 4-week sequence data and was processed by
shifting the data of the prediction cycle by 2 weeks.

AKI Prediction Modeling
LSTM models based on recurrence have been designed
to process time series data [29]. Attention-based LSTM
models were initially proposed for learning words and the
relationships between words in natural language processing
[30,31] and later evolved into a key component of deep
learning, becoming one of the methods used to provide
interpretations, including importance scores for predicted
outcomes.

As an advanced LSTM model, we used the IMV-LSTM
module for the learning model, which is a multivariate
LSTM neural network for the prediction and interpretation
of multivariate time series [23]. This model improves on the
LSTM-attention model, which can predict variable impor-
tance using multivariate inputs to configure variable-wise
hidden states and mix both temporal and variable levels
of attention for improved interpretability. The model was
trained for 200 epochs with a batch size of 64 and a learn-
ing rate of 1e-3. An Adam optimizer was used with early
stopping after 20 epochs. The data set was divided into
training, test, and validation sets at a 6:2:2 ratio. Prediction
performance was evaluated using the area under the receiver
operating characteristic curve (AUROC) value. Additionally,
we used the accuracy, precision, F1-score, and area under
the precision-recall curve (AUPRC) to ensure robustness for
unbalanced data.

In this study, AKI prediction models were created for each
hospital and drug. Each model had a different selection of
candidate variables. To interpret the predictors in each model,
variable- and temporal-wise attention scores were extracted
from all trained models. These scores were then aggregated
by calculating the overall temporal attention score, which
was obtained by taking the weighted average of the temporal
attention value over the attention value for each predictor
variable. The resulting scores were plotted as heat maps for
interpretation.

Statistical Analysis
We used statistical packages based on Python and R (R
Project for Statistical Computing) for the statistical analysis.
First, to compare the AKI and non-AKI groups, we calcula-
ted significance using the χ2 test for categorical variables
and an independent-sample 2-tailed t test for continuous
variables. Second, to identify differences in the pattern of
AKI occurrence between cohorts and drugs, a histogram was
plotted for patients in each cohort from the date of cohort
entry (the first day of administration of the target drug) to
the date of AKI occurrence. Differences between drugs were
analyzed using an independent-sample2-tailed t test. Third,
we compared the distribution of the aggregated temporal
attention scores with the actual trained data with box plots of
the data for 4 weeks at 1-week intervals. A repeated ANOVA
test was performed to identify temporal differences.

Results
Demographic and Clinical Characteristics
The demographics of the 31,012 patients without AKI and the
8643 patients with AKI across the 6 hospitals after PSM are
shown in Table 1.
By hospital, the cohort consisted of 14,046 patients from
SH, 2180 from GSH, 2493 from KYUH, 4331 from AJUH,
13,174 from SNUH, and 4431 from NCC after matching the
propensity scores. Propensity matching was performed using
age, sex, and SCr levels at baseline. As for the changes in
covariates, the difference in mean age decreased from 6.39
(60.65 – 54.26) to 0.44 (60.65 – 60.21) years, the difference
in male ratio decreased from 16.49% (63.17% – 46.68%)
to 7.02% (63.17% – 56.15%), and the difference in SCr at
baseline decreased from 0.14 mg/dL (0.71 – 0.58 mg/dL)
to 0.03 mg/dL (0.71 – 0.67 mg/dL) (Table S2 in Multime-
dia Appendix 1). There were still statistically significant
differences in PSM age (60.66, SD 15.86 vs 60.22, SD 15.94
years; P=.03), gender (63.17% vs 56.15% male; P<.001), and
SCr at baseline (0.71, SD 0.61 vs 0.68, SD 0.41 mg/dL;
P<.001). Patients who developed AKI had more severe
neoplasms (ie, active cancers; 70.6% vs 44.26%; P<.001) and
chronic liver disease (15.83% vs 6.55%; P<.001). More-
over, the analysis revealed the following differences: sepsis
(6.5% vs 1.94%; P<.001), diabetes mellitus (19.43% vs
14.57%; P<.001), hypertension (27.81% vs 23.5%; P<.001),
anemia (9.81% vs 4.8%; P<.001), and heart failure (4.79%
vs 3.07%; P<.001). There was no significant difference
between hypotension (0.24% vs 0.21%; P=.56), potassium
(4.11, SD 0.57 vs 4.11, SD 0.51 mmol/L; P=.48), or renal
artery stenosis (0.07% vs 0.03%; P=.13). Hypoalbuminemia,
obesity, peripheral vascular disease, renal artery stenosis,
liver dysfunction, and prior kidney surgery had low incidence
rates (<2%).
Distribution of Adverse Drug Events
To analyze the differences in drug patterns at the time of
AKI occurrence, we assessed the pattern for each drug. The
median number of days for the occurrence of AKI among
the drug and cohort patients in the entire hospital was 17
(IQR 7-33 days). Vancomycin appeared after a median period
of 12 days, followed by naproxen (18 days), acetaminophen
(19 days), celecoxib (22 days), and acyclovir (23 days).
When comparing the IQR values, celecoxib (10‐41 days) and
Acyclovir (10‐41 days) showed a relatively broad distribu-
tion, whereas acetaminophen (9‐34 days) and naproxen (8‐34
days) were distributed over 25 days. Vancomycin (5‐25
days) exhibited the narrowest distribution. Celecoxib and
acyclovir tended to be relatively distributed compared to
acetaminophen, vancomycin, and naproxen. We compared the
onset times of all drug pairs and hospital pairs to check the
similarity in AKI occurrence (Figure 2). The patterns between
specific drugs was similar for celecoxib and acyclovir (P=.88)
and for acetaminophen and naproxen (P=.57). The patterns
between hospitals were similar for SH and AJUH (P=.98), SH
and GSH (P=.36), GSH and AJUH (P=.42), GSH and NCC
(P=.24), and SNUH and NCC (P=.26).

JMIR MEDICAL INFORMATICS Heo et al

https://medinform.jmir.org/2024/1/e47693 JMIR Med Inform 2024 | vol. 12 | e47693 | p. 4
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e47693


Ta
ble

 1.
 D

em
on

str
ati

on
 an

d c
lin

ica
l c

ha
rac

ter
ist

ics
 of

 pa
tie

nts
 w

ith
 an

d w
ith

ou
t A

KI
 ac

ros
s 6

 ho
sp

ita
ls 

aft
er 

pro
pe

ns
ity

 sc
ore

 m
atc

hin
g. 

Th
e P

 va
lue

s w
ere

 ob
tai

ne
d b

y c
on

du
cti

ng
 a 

2-s
am

ple
 t t

est
 to

 co
mp

are
the

 m
ea

ns
 fo

r c
ase

s a
nd

 co
ntr

ols
.

Ca
se 

gro
up

Co
ntr

ol 
gro

up
P 

va
lue

SH
a

(n=
30

28
)

GS
Hb

(n=
49

1)
KY

UH
c

(n=
53

9)
AJ

UH
d

(n=
10

03
)

SN
UH

e
(n=

26
16

)
NC

Cf
(n=

96
6)

To
tal

(n=
86

43
)

SH (n=
11

,01
8)

GS
H

(n=
16

89
)

KY
UH

(n=
19

54
)

AJ
OU

(n=
33

28
)

SN
UH

(n=
95

58
)

NC
C

(n=
34

65
)

To
tal

(n=
31

,01
2)

Ag
e (

ye
ars

), m
ea

n
(S

D)
61

.83
(15

.23
)

62
.6

(15
.04

)
67

.91
(13

.64
)

59
.52

(15
.79

)
57

.89
(16

.49
60

.55
(12

.24
)

60
.65

(15
.5)

61
.14

(15
.37

)
62

.26
(14

.81
)

67
.71

(13
.55

)
59

.67
(15

.77
)

57
.46

(16
.61

)
60

.14
(12

.71
)

60
.21

(15
.61

)
.02

Ge
nd

er
, n

 (%
)

M
ale

19
65

(64
.89

)
28

6
(58

.25
)

36
0

(66
.79

)
62

8
(62

.61
)

16
52

(63
.15

)
56

9
(58

.9)
54

60
(63

.17
)

70
92

(64
.37

)
98

5
(58

.32
)

95
0

(48
.62

)
17

65
(53

.03
)

46
02

(48
.15

)
20

18
(58

.24
)

17
,41

2
(56

.15
)

<.0
01

Fe
ma

le
10

63
(35

.11
)

20
5

(41
.75

)
17

9
(33

.21
)

37
5

(37
.39

)
96

4
(36

.85
)

39
7

(41
.1)

31
83

(36
.83

)
39

26
(35

.63
)

70
4

(41
.68

)
10

04
(51

.38
)

15
63

(46
.97

)
49

56
(51

.85
)

14
47

(41
.76

)
13

,60
0

(43
.85

)
<.0

01

Se
ps

is,
 n 

(%
)

32
5

(10
.73

)
50 (10

.18
)

7 (
1.3

)
13

9
(13

.86
)

40
 (1

.53
)

1 (
0.1

)
56

2 (
6.5

)
37

3 (
3.3

9)
37

 (2
.19

)
21

 (1
.07

)
12

8 (
3.8

5)
41

 (0
.43

)
1 (

0.0
3)

60
1 (

1.9
4)

<.0
01

Di
ab

ete
s m

ell
itu

s, 
n

(%
)

91
5

(30
.22

)
11

7
(23

.83
)

65 (12
.06

)
22

3
(22

.23
)

30
0

(11
.47

)
59

 (6
.11

)
16

79
(19

.43
)

24
62

(22
.35

)
26

6
(15

.75
)

19
5 (

9.9
8)

59
3

(17
.82

)
83

6 (
8.7

5)
16

7 (
4.8

2)
45

19
(14

.57
)

<.0
01

Ch
ron

ic 
kid

ne
y

dis
ea

se,
 n 

(%
)

14
2 (

4.6
9)

3 (
0.6

1)
24

 (4
.45

)
13

 (1
.3)

18
 (0

.69
)

2 (
0.2

1)
20

2 (
2.3

4)
27

1 (
2.4

6)
8 (

0.4
7)

51
 (2

.61
)

11
 (0

.33
)

40
 (0

.42
)

3 (
0.0

9)
38

4 (
1.2

4)
<.0

01

Ch
ron

ic 
liv

er 
dis

ea
se,

n (
%)

46
2

(15
.26

)
56 (11

.41
)

52
 (9

.65
)

13
9

(13
.86

)
50

6
(19

.34
)

16
 (1

.66
)

12
31

(14
.24

)
76

6 (
6.9

5)
82

 (4
.85

)
71

 (3
.63

)
12

6 (
3.7

9)
75

9 (
7.9

4)
42

 (1
.21

)
18

46
 (5

.95
)

<.0
01

Hy
po

alb
um

ine
mi

a, 
n

(%
)

7 (
0.2

3)
2 (

0.4
1)

0
0

0
0

9 (
0.1

)
9 (

0.0
8)

2 (
0.1

2)
0

0
0

0
11

 (0
.04

)
.01

Hy
po

ten
sio

n, 
n (

%)
12

 (0
.4)

4 (
0.8

1)
0

1 (
0.1

)
4 (

0.1
5)

0
21

 (0
.24

)
30

 (0
.27

)
3 (

0.1
8)

0
4 (

0.1
2)

28
 (0

.29
)

0
65

 (0
.21

)
.56

Hy
pe

rte
ns

ion
, n

 (%
)

14
62

(48
.28

)
17

9
(36

.46
)

77 (14
.29

)
35

1 (
35

)
26

4
(10

.09
)

71
 (7

.35
)

24
04

(27
.81

)
41

78
(37

.92
)

45
5

(26
.94

)
36

0
(18

.42
)

11
43

(34
.34

)
92

4 (
9.6

7)
22

9 (
6.6

1)
72

89
 (2

3.5
)

<.0
01

Ne
op

las
m 

(ac
tiv

e
ca

nc
ers

), n
 (%

)
21

12
(69

.75
)

32
0

(65
.17

)
25

5
(47

.31
)

65
2 (

65
)

20
81

(79
.55

)
58

1
(60

.14
)

60
01

(69
.43

)
55

12
(50

.03
)

53
1

(31
.44

)
41

7
(21

.34
)

12
82

(38
.52

)
44

50
(46

.56
)

24
70

(71
.28

)
14

,66
2

(47
.28

)
<.0

01

He
art

 fa
ilu

re,
 n 

(%
)

26
6 (

8.7
8)

13
 (2

.65
)

34
 (6

.31
)

33
 (3

.29
)

62
 (2

.37
)

6 (
0.6

2)
41

4 (
4.7

9)
62

9 (
5.7

1)
20

 (1
.18

)
10

5 (
5.3

7)
60

 (1
.8)

12
7 (

1.3
3)

10
 (0

.29
)

95
1 (

3.0
7)

<.0
01

Ob
esi

ty,
 n 

(%
)

3 (
0.1

)
2 (

0.4
1)

0
2 (

0.2
)

3 (
0.1

1)
0

10
 (0

.12
)

36
 (0

.33
)

3 (
0.1

8)
4 (

0.2
)

10
 (0

.3)
50

 (0
.52

)
0

10
3 (

0.3
3)

<.0
01

Pe
rip

he
ral

 va
scu

lar
dis

ea
se,

 n 
(%

)
25

 (0
.83

)
9 (

1.8
3)

19
 (3

.53
)

18
 (1

.79
)

10
 (0

.38
)

0
81

 (0
.94

)
51

 (0
.46

)
26

 (1
.54

)
69

 (3
.53

)
35

 (1
.05

)
37

 (0
.39

)
2 (

0.0
6)

22
0 (

0.7
1)

.03

Li
ve

r d
ys

fun
cti

on
, n

(%
)

62
 (2

.05
)

2 (
0.4

1)
2 (

0.3
7)

40
 (3

.99
)

31
 (1

.19
)

2 (
0.2

1)
13

9 (
1.6

1)
71

 (0
.64

)
4 (

0.2
4)

25
 (1

.28
)

46
 (1

.38
)

59
 (0

.62
)

3 (
0.0

9)
20

8 (
0.6

7)
<.0

01

An
em

ia,
 n 

(%
)

54
1

(17
.87

)
25

 (5
.09

)
35

 (6
.49

)
89

 (8
.87

)
15

4 (
5.8

9)
4 (

0.4
1)

84
8 (

9.8
1)

90
3 (

8.2
)

53
 (3

.14
)

68
 (3

.48
)

17
6 (

5.2
9)

28
2 (

2.9
5)

7 (
0.2

)
14

89
 (4

.8)
<.0

01

Pr
ior

 ki
dn

ey
 su

rge
ry,

n (
%)

0
0

1 (
0.1

9)
3 (

0.3
)

14
 (0

.54
)

0
18

 (0
.21

)
0

0
0

0
11

 (0
.12

)
1 (

0.0
3)

12
 (0

.04
)

<.0
01

La
bo

ra
tor

y v
alu

es 
(b

efo
re

 m
ed

ica
tio

n)
, m

ea
n (

SD
)

 

JMIR MEDICAL INFORMATICS Heo et al

https://medinform.jmir.org/2024/1/e47693 JMIR Med Inform 2024 | vol. 12 | e47693 | p. 5
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e47693


 
Ca

se 
gro

up
Co

ntr
ol 

gro
up

P 
va

lue
SH

a
(n=

30
28

)
GS

Hb
(n=

49
1)

KY
UH

c
(n=

53
9)

AJ
UH

d
(n=

10
03

)
SN

UH
e

(n=
26

16
)

NC
Cf

(n=
96

6)
To

tal
(n=

86
43

)
SH (n=

11
,01

8)
GS

H
(n=

16
89

)
KY

UH
(n=

19
54

)
AJ

OU
(n=

33
28

)
SN

UH
(n=

95
58

)
NC

C
(n=

34
65

)
To

tal
(n=

31
,01

2)
Se

rum
cre

ati
nin

e
(m

g/d
L)

0.4
6

(0.
74

)
0.7

9
(0.

23
)

0.9
9

(0.
37

)
0.8

7
(0.

37
)

0.8
7

(0.
47

)
1.0

1
(0.

29
)

0.7
5

(0.
59

)
0.4

4 (
0.5

1)
0.7

6
(0.

19
)

0.9
8

(0.
22

)
0.8

4 (
0.2

)
0.8

3
(0.

18
)

0.9
8

(0.
16

)
0.7

2 (
0.4

)
<.0

01

Gl
uc

os
e

(m
g/d

L)
12

6.8
9

(58
.33

)
13

2.1
(52

.11
)

15
0.7

5
(82

.36
)

18
7.0

(23
.0)

12
1.4

8
(48

.26
)

12
5.8

5
(50

.05
)

12
6.9

3
(56

.28
)

12
1.7

2
(55

.7)
12

4.3
(49

.43
)

14
0.1

1
(78

.81
)

15
1.5

(39
.5)

11
5.6

5
(40

.5)
12

0.8
8

(46
.23

)
12

0.9
5

(51
.85

)
<.0

01

Po
tas

siu
m

(m
mo

l/L
)

3.9
2 (

0.6
)

4.2
1

(0.
47

)
4.1

4
(0.

6)
4.1

7
(0.

55
)

4.2
2 (

0.5
)

4.2
9

(0.
56

)
4.1

1
(0.

57
)

3.9
3 (

0.5
5)

4.2
2 (

0.4
)

4.0
9

(0.
54

)
4.1

5
(0.

46
)

4.2
2

(0.
43

)
4.2

8
(0.

52
)

4.1
1 (

0.5
1)

.48

So
diu

m
(m

mo
l/L

)
13

8.6
(4.

16
)

13
7.2

7
(4.

36
)

13
6.4

9
(4.

61
)

13
8.4

8
(4.

23
)

13
8.4

6
(3.

96
)

13
8.3

1
(3.

67
)

13
8.3

(4.
14

)
13

9.4
4

(3.
75

)
13

8.3
1

(3.
58

)
13

7.7
4

(3.
73

)
13

9.2
7

(3.
85

)
13

9.7
1

(3.
23

)
13

8.9
6

(3.
37

)
13

9.2
8 (

3.6
)

<.0
01

BU
N

(bl
oo

d
ure

a
nit

rog
en

)
(m

g/d
L)

17
.83

(9.
66

)
15

.44
(6.

58
)

17
.67

(8.
87

)
14

.68
(6.

36
)

14
.72

(7.
61

)
15

.55
(6.

13
)

16
.13

(8.
28

)
16

.82
 (7

.48
)

15
.78

(5.
86

)
17

.19
(7.

62
)

14
.9

(6.
41

)
14

.67
(5.

14
)

14
.63

(4.
96

)
15

.67
 (6

.47
)

<.0
01

a S
H:

 Se
ve

ran
ce

 H
os

pit
al.

b G
SH

: G
an

gn
am

 Se
ve

ran
ce

 H
os

pit
al.

c K
YU

H:
 K

on
ya

ng
 U

niv
ers

ity
 H

os
pit

al.
d A

JU
H:

 A
jou

 U
niv

ers
ity

 H
os

pit
al.

e S
NU

H:
 Se

ou
l N

ati
on

al 
Un

ive
rsi

ty 
Ca

nc
er 

Ho
sp

ita
l.

f N
CC

: N
ati

on
al 

Ca
nc

er 
Ce

nte
r.

JMIR MEDICAL INFORMATICS Heo et al

https://medinform.jmir.org/2024/1/e47693 JMIR Med Inform 2024 | vol. 12 | e47693 | p. 6
(page number not for citation purposes)

https://medinform.jmir.org/2024/1/e47693


Figure 2. (A) Comparison of acute kidney injury (AKI) onset time between drugs and (B) AKI onset time between hospitals. The P values were
obtained by conducting independent 2-tailed t tests between each aggregated pair. AJUH: Ajou University Hospital; GSH: Gangnam Severance
Hospital; KYUH: Konyang University Hospital; NCC: National Cancer Center; SH: Severance Hospital; SNUH: Seoul National University Cancer
Hospital.

AKI Prediction Model Performance
The AUROC for each drug and hospital to evaluate the
AKI predictive model, based on respective test sets (internal
validation) is shown in Figure 3. A total of 26 trained models
achieved a high AUROC value, of 0.92 on average, with each
verification data set. In addition, among the averages of the
drugs, acyclovir had the highest average AUROC score of
0.94, followed by acetaminophen (0.93), vancomycin (0.92),
naproxen (0.90), and celecoxib (0.89). The highest AUROC
value (0.97) was observed for the model of SH’s celecoxib
and acyclovir, SNUH’s vancomycin, and KYUH’s acyclovir
prescription patients.

Multimedia Appendix 2 presents data on the precision,
accuracy, F1-score, and AUPRC of each predictive model.
Overall, the average accuracy of the AKI prediction models
was 0.88, whereas the average AUPRC and F1-scores were
both 0.78. The acyclovir prescription model achieved the
highest accuracy score (0.91), followed by vancomycin
(0.90), acetaminophen (0.89), naproxen (0.89), and celecoxib
(0.86). Individually, the acyclovir SH model showed the best
performance, with an AUPRC of 0.92 and an accuracy of
0.91.
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Figure 3. Receiver operating characteristic (ROC) curves and areas under the curve (AUCs) of the acute kidney injury prediction model for each
hospital and each drug. The square brackets indicate the 95% CI. AJUH: Ajou University Hospital; GSH: Gangnam Severance Hospital; KYUH:
Konyang University Hospital; NCC: National Cancer Center; SH: Severance Hospital; SNUH: Seoul National University Cancer Hospital.

Temporal Feature Importance of the AKI
Prediction Model
To interpret the AKI prediction model, we demonstrated the
temporal attention values of each contributing variable in the
4 weeks prior to AKI onset, which were weighted aggregates
from the model for each drug and hospital, as shown in Figure
4A. The temporal change pattern of the actual data corre-
sponding to each variable in the 4 weeks prior to AKI onset
is shown in Figure 4B. We also confirmed the difference in
the distribution of highly important features between the case
and control data using a 1-way ANOVA. The attention scores
for all variables across all hospitals are detailed in Multimedia
Appendix 3

The last week of lymphocytes (attention score at −1 week:
0.41) and the second week of calcium (attention score at −3
weeks: 0.41) showed the highest attention scores, followed by
albumin (attention score at −1 week: 0.37; attention score at
−4 weeks: 0.37), hemoglobin (attention score at −4 weeks:
0.37), and cholesterol (attention score at −4 weeks: 0.37).
In Figure 5, the distribution of data by variable between
the 2 groups was confirmed using actual data. There was a
difference in data distribution between the case and control
groups from the beginning. The values of lymphocytes,
albumin, and hemoglobin in the case group decreased over
time, while urine pH and prothrombin time in the case group
tended to increase over time.
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Figure 4. (A) Temporal attention score of important features of acute kidney injury (AKI) prediction model and (B) distribution of data over time (P
values: repeated measures ANOVA). The figure shows the change over a 4-week period prior to the AKI event.
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Figure 5. Acute kidney injury (AKI) onset time after drug administration at various medical centers. The red lines shows the median value. AJUH’s
naproxen and GSH’s acyclovir cases were excluded as the number of AKI case groups was less than 20. AJUH: Ajou University Hospital; GSH:
Gangnam Severance Hospital; KYUH: Konyang University Hospital; NCC: National Cancer Center; SH: Severance Hospital; SNUH: Seoul National
University Cancer Hospital.

Discussion
Principal Findings
In this study, we developed time series–based IMV-LSTM
models to predict AKI in patients taking specific nephrotoxic
drugs using CDM-based DRNs in a 6-hospital EHR-based
system. The principal findings are as follows: first, this study
provides an interpretation of the temporal importance of
variables for predicting AKI, and the models also achieved
high performance, with an average AUC of 0.92%. Second,
our study is a scalable multicenter study using a DRN,
which can contribute to understanding drug-induced AKI. To
the best of our knowledge, this is the first study to build
an AKI prediction model by applying a time series–based
IMV-LSTM model to a CDM using EHR data from 6
hospitals.

We established a retrospective cohort of patients who took
nephrotoxicity-inducing drugs at 6 hospitals. With respect
to demographic characteristics, we observed variations in
the overall patient count and prevalence of comorbidities
when comparing individuals with AKI and without AKI
across different hospitals. Nevertheless, the majority of
patients who developed AKI at most hospitals were older
than 60 years and had a high prevalence of comorbidities,
including cancer (n=6001, 69.43%), hypertension (n=2404,
27.81%), diabetes (n=1679, 19.43%), and chronic liver
disease (n=1231, 14.24%), which is consistent with findings
reported in previous studies [32-35].

The pattern of each drug’s association with AKI (Figure
5) showed that the median number of days for AKI onset
when using nephrotoxic drugs was 17 (IQR 7-33) days. The
onset occurred earliest with vancomycin (12, IQR 5-25 days)
and latest with acyclovir (23, IQR 10-41 days). In previous
studies [36,37], the time to onset of vancomycin-induced
AKI showed a similar pattern to our results. We also found
differences in the AKI onset between different classes within
the same NSAID, and the multicenter AKI cohort showed
similarities between hospitals. The finding of similar patterns
in the AKI onset in the multicenter cohort supports the
reliability of the AKI cohort and increases the explanatory
power of AKI prediction models.

AKI is common among inpatients [38,39]. Previous
models predicted AKI in the intensive care unit (ICU) and
in surgical patients during hospital admission. For example,
Zimmerman et al [40] predicted the occurrence of AKI in
ICU inpatients (AUC 0.783), and Tseng et al [41] developed
a predictive score for the development of AKI after cardiac
surgery (AUC 0.839). Hsu et al [42] developed a risk score
function for community-acquired AKI for inpatients (AUC
0.818). Koyner et al [10] developed a model to predict AKI in
hospitalized patients (AUC 0.90). Despite this progress, few
studies have applied time series deep learning to provide a
temporal interpretation of drug-induced AKI, and our model
stands out because it can predict nephrotoxic drug–induced
AKI in a diverse hospital population.
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This study achieved improved performance compared to
previous AKI studies using recurrent neural networks (RNNs)
[21,43-45]. Our model improves performance up to an AUC
of 0.97 and an overall average of 0.92, which outperforms
previous studies showing AKI prediction with RNN-based
methods by Kim et al [43] in hospitalized patients (AUC
0.927), Rank et al [45] in cardiac surgery patients (AUC
0.893), and Xu et al [44] in inpatients (AUC 0.908). These
results show promise for our model as a tool to predict AKI
and facilitate early intervention and mitigation strategies for
patients.

This study also provides additional interpretations
regarding the temporal importance of features for AKI
prediction. Some studies have reported information on
interpretability or provided information about the interpret-
ability of variables at the feature importance level [46].
However, our results show the importance of variables and
the temporal importance of variables in the development of
AKI. In this study, we highlight the vital role of temporal
patterns of various indicators, such as lymphocytes, calcium,
albumin, hemoglobin, and cholesterol, in predicting disease
states, particularly the onset of AKI. The temporal pattern
of lymphocytes increased gradually, peaking 1 week before
AKI onset. The use of lymphocyte and neutrophil counts as
predictive factors for AKI is consistent with other studies
[47,48]. Calcium shows a pattern of peaking 3 weeks before
AKI onset, and Prior studies showed an association between
impacted calcium metabolism and AKI [49,50]. Albumin
shows the highest pattern 1 and 4 weeks before onset, and
low serum albumin levels (hypoalbuminemia) are a predictor
of AKI [48,51,52]. Hemoglobin shows a pattern with a peak
4 weeks before onset, and previous studies have shown that
the risk of AKI increases stepwise with a further decrease
in hemoglobin concentration [53]. Temporal variations in
variables based on reported laboratory data for the early
detection of AKI emphasize the importance of monitoring and
early intervention in populations.

In addition, this retrospective study can be followed by
a subsequent study to validate the practicality of the AKI
prediction model in clinical practice by applying it to a
prediction system in a hospital EHR.
Limitations
This study has several limitations. First, because we used
the CDM, it does not reflect the full range of clinical data.
For example, we could not include admission records, which
would have revealed a patient’s condition. However, the use
of CDM data allowed for a multicenter study that could be
easily extended to other institutions that have converted to the
CDM. Second, this was a retrospective study and could not
address the underlying causes of AKI. Therefore, prospec-
tive studies are needed for validation with actual clinical
data. Third, as with all retrospective studies, there may
be unintentional patient selection bias and unaccounted-for
confounders. However, to compensate for these limitations,
we tried to equalize the distribution of patient characteristics
through PSM. We also used a limited follow-up period to
minimize the impact of these factors.
Conclusions
This study demonstrates the high performance of the IMV-
LSTM method for AKI prediction using hospital EHR-based
time series data. Our model can provide real-time assessment
of AKI occurrence and individualized risk factors for AKI
using time series data. We also demonstrated the robustness
of our model through multicenter validation using a CDM
through a DRN of 6 hospitals in South Korea, which also
proves that scalability to other institutions that are conver-
ted to the CDM is possible. This may provide an objective
quantitative tool for identifying patients at risk of developing
AKI.
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