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Abstract

Background: Infants born at extremely preterm gestational ages are typically admitted to the neonatal intensive care unit (NICU)
after initial resuscitation. The subsequent hospital course can be highly variable, and despite counseling aided by available risk
calculators, there are significant challenges with shared decision-making regarding life support and transition to end-of-life care.
Improving predictive models can help providers and families navigate these unique challenges.

Objective: Machine learning methods have previously demonstrated added predictive value for determining intensive care unit
outcomes, and their use allows consideration of a greater number of factors that potentially influence newborn outcomes, such
as maternal characteristics. Machine learning–based models were analyzed for their ability to predict the survival of extremely
preterm neonates at initial admission.

Methods: Maternal and newborn information was extracted from the health records of infants born between 23 and 29 weeks
of gestation in the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database. Applicable machine
learning models predicting survival during the initial NICU admission were developed and compared. The same type of model
was also examined using only features that would be available prepartum for the purpose of survival prediction prior to an
anticipated preterm birth. Features most correlated with the predicted outcome were determined when possible for each model.

Results: Of included patients, 37 of 459 (8.1%) expired. The resulting random forest model showed higher predictive performance
than the frequently used Score for Neonatal Acute Physiology With Perinatal Extension II (SNAPPE-II) NICU model when
considering extremely preterm infants of very low birth weight. Several other machine learning models were found to have good
performance but did not show a statistically significant difference from previously available models in this study. Feature
importance varied by model, and those of greater importance included gestational age; birth weight; initial oxygenation level;
elements of the APGAR (appearance, pulse, grimace, activity, and respiration) score; and amount of blood pressure support.
Important prepartum features also included maternal age, steroid administration, and the presence of pregnancy complications.

Conclusions: Machine learning methods have the potential to provide robust prediction of survival in the context of extremely
preterm births and allow for consideration of additional factors such as maternal clinical and socioeconomic information. Evaluation
of larger, more diverse data sets may provide additional clarity on comparative performance.
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Introduction

Preterm birth has long been a leading cause of infant mortality,
with the lowest gestational age births associated with the highest
rates of mortality [1]. In 2019, 59,506 infants were born at 31
weeks or less in the United States, and the infant mortality rate
in this cohort was 18% [2]. When a patient is expected to deliver
an extremely preterm infant, counseling on possible outcomes,
methods of resuscitation, and anticipated course in the neonatal
intensive care unit (NICU) ideally begins prior to birth. Many
providers have used the National Institute of Child Health and
Human Development (NICHD) risk calculator to initiate this
discussion on the chances of infant mortality and severe
morbidity after birth. The calculator is based on a logistic
regression model using 5 prepartum factors (gestational age,
estimated weight, sex, antenatal steroids, and multiple birth),
derived from the preterm birth data of a network of US hospitals.
With advances in NICU care and more knowledge about
long-term outcomes, the calculator was updated in 2020 and
maintains a similar performance (mean 0.744, SD 0.005) [3,4].
After initial resuscitation, several scoring systems are also
available to predict mortality after a neonate arrives in the NICU
[5-7]. However, they are less predictive with extremely low
birth weight infants, as evidenced by the Score for Neonatal
Acute Physiology With Perinatal Extension II (SNAPPE-II)
survival model having a mean performance of 0.78 (SD 0.01)
for infants weighing less than 1500 g at birth versus 0.91 (SD
0.01) overall. On review of several models, Clinical Risk Index
for Babies (CRIB) had the highest performance in predicting
very low birth weight neonate survival, with a mean of 0.88
(SD 0.02), although the CRIB and SNAPPE models were
developed with data from geographically separate populations
(Europe vs North America) [8].

Despite counseling supported by available risk calculators,
decisions surrounding the continuation of life support and
redirection to end-of-life care remain extremely difficult in the
context of birth at the periviable preterm gestational ages
because the postnatal course can be highly variable [9-11]. In
addition, perceptions regarding the clinical situation can differ
among providers and family members, and consideration of
clinical and social context may be helpful [12,13].

Numerous machine learning models have been tested to improve
the prediction of adult intensive care unit outcomes. The Medical
Information Mart for Intensive Care III (MIMIC-III) database,
which contains electronic health record (EHR) information of
critical care patients at the Beth Israel Deaconess Medical Center
from 2001 to 2012, has often been a source of data used in their
development and testing [14-17]. Using the NICU data from
MIMIC-III, this study builds and compares different types of
machine learning algorithms that predict neonatal mortality and

examines the value of incorporating features representing both
structured and unstructured clinical elements for extremely
preterm infants.

Methods

Ethical Considerations
The institutional review board of the University at Buffalo
determined the study (ID STUDY00003721) to be exempt as
a secondary analysis of a publicly available data set. A data use
agreement was obtained for the MIMIC-III database, which
contains deidentified protected health information freely
available for secondary analysis. The primary data collection
for MIMIC-III was originally approved by the institutional
review boards of Beth Israel Deaconess Medical Center and
Massachusetts Institute of Technology with a waiver of
individual patient consent, and no compensation was provided
at that time.

Data Selection
Records of extremely preterm neonates admitted to the NICU
in the MIMIC-III database were extracted using PostgreSQL
(The PostgreSQL Global Development Group). A query was
performed for admissions with ICD-9 (International
Classification of Diseases, Ninth Revision) codes corresponding
to extremely preterm delivery less than 30 weeks as well as very
low birth weight. From the resulting records, those of neonates
born outside of 23 to 29 weeks were excluded, as well as
duplicate records and readmissions. Some records corresponded
to nonneonatal admissions, for example, where an infant had a
prior history of preterm birth, and they were excluded. When
the remaining records were reviewed, it was found that some
neonates were transferred outside of the hospital for surgery
and had an unknown outcome. These records were also excluded
(Figure 1).

From the 459 neonatal admission records that were selected,
the patients’ demographics, vital signs, laboratory results,
medications, procedures, and clinical text were queried from
the database and reviewed. Of the available information, relevant
elements were extracted based on factors found to be pertinent
in previous scoring systems and expert knowledge. By manually
curating the clinical text, including completed admission and
discharge notes, we were able to incorporate features found
only in unstructured form, including maternal clinical
comorbidities and pregnancy complications. For this study,
consideration of neonatal assessment and treatment was limited
to data found initially at the time of NICU admission. The
nonnumerical elements were encoded. Data that varied by
clinical severity were encoded in that order, and the remaining
categorical data underwent binary encoding. Median imputation
was used to complete missing data.
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Figure 1. Flowchart of selection criteria. GA: gestational age; MIMIC-III: Medical Information Mart for Intensive Care III; NICU: neonatal intensive
care unit.

Ultimately, 83 features that could be used in machine learning
algorithms were generated, of which approximately half
represented maternal clinical and demographic information,
with the remaining features representing infant findings at the
time of admission (Multimedia Appendix 1).

Model Analysis
Several machine learning classification algorithms were
implemented using Python 3.8 scikit-learn 1.2, and the resulting
models were tested for their efficacy in predicting mortality.
The same algorithms were also examined considering only
prepartum features, assuming birth weight would be an estimated
weight, to produce models that could be of assistance for
clinicians counseling patients prior to an extremely preterm
birth.

The performance of each model was endeavored to be
optimized. To ensure that feature value range did not drive
performance, standard scaling as well as min-max scaling were
applied to quantitative features and used for models that were
dependent upon distance calculations (eg, logistic regression,
neural network, and support vector machine [SVM]). The final
reported models used standard scaling due to improved
performance over min-max scaling. Scaling was not performed
for models invariant to monotonic transformations, such as
random forest [18]. For the decision tree–based models, the
hyperparameters of number of trees and maximum depth were
adjusted. Number of trees began at 50 estimators and was
increased by 50 until performance plateaued, which was at 250
trees with a maximum depth of 6 for the random forest method
and 350 trees with a maximum depth of 5 for AdaBoost. The k
value in the k-nearest neighbor algorithm was adjusted from
the default value of 3 up to 20 (approximating the square root
of the number of samples), and performance peaked at 4 in the

final model. Because of the expected relatively small and
imbalanced class sizes (8.1% in the minority class), a held-out
test set was not used, and 10-fold stratified cross-validation with
an 80:20 training and testing ratio was performed to ensure
similar ratios across folds [19]. Mean performance metrics for
F1-score, area under the receiver operating characteristic
(AUROC), and average precision are reported, as well as log
loss and Brier score, where a smaller value is ideal when
considering imbalanced classification.

Features most correlated with the predicted outcome were
determined for the higher-performing methods. For the logistic
regression model, coefficients most positively and negatively
associated with mortality could be determined. For the remaining
machine learning models, the most influential features were
either directly queried using an available scikit-learn method
or through the calculation of feature permutation importance.

Results

Of the included neonatal patients, 37 of 459 (8.1%) expired
during the admission period after birth. The average length of
stay for infants who survived after initial admission was 62.5
(SD 37.3) days. The average gestational age of the neonates at
birth was 27 (SD 1.67) weeks, and 236 (51.4%) were male
versus 223 (48.6%) female. Birth weights ranged from 365 to
2165 g, with the average birth weight being 1016 (SD 278) g,
and 441 neonates were considered to have a very low birth
weight (<1500 g). The average maternal age was 31.4 (SD 6.02)
years. In terms of race and ethnicity, the majority of the included
infants were in a category considered to be White (n=278,
60.1%), followed by Black (n=69, 15%), unknown (n=42, 9.2%),
other (n=25, 5.4%), Hispanic (n=25, 5.4%), Asian (n=16, 3.5%),
and Native American (n=4, 0.9%; Table 1).
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Table 1. Demographics of patients whose records were included in the study.

Expired (n=37, 8.1%), n (%)Survived (n=422, 91.9%), n (%)Total (N=459), n (%)

Gestational age (weeks)

5 (71.4)2 (28.6)7 (1.5)23

12 (30)28 (70)40 (8.7)24

5 (12.2)36 (87.8)41 (8.9)25

3 (5.8)49 (94.2)52 (11.3)26

3 (3.4)84 (96.6)87 (19)27

8 (7.5)98 (92.5)106 (23.1)28

1 (0.8)125 (99.2)126 (27.5)29

Sex

22 (9.3)214 (90.7)236 (51.4)Male

15 (6.7)208 (93.3)223 (48.6)Female

Race

1 (6.3)15 (93.7)16 (3.5)Asian

7 (10.1)62 (89.9)69 (15)Black

2 (8)23 (92)25 (5.4)Hispanic

1 (25)3 (75)4 (0.9)Native American

23 (8.3)255 (91.7)278 (60.1)White

2 (8)23 (92)25 (5.4)Other

1 (2.4)41 (97.6)42 (9.2)Unknown

Insurance

32 (9.3)311 (90.7)343 (74.7)Private

3 (2.6)113 (97.4)116 (25.3)Government

2 (100)0 (0)2 (0.4)Uninsured

Family religion

9 (9)91 (91)100 (21.8)Catholic

2 (8.3)22 (91.7)24 (5.2)Protestant

1 (6.3)15 (93.7)16 (3.5)Jewish

5 (16.7)25 (83.3)30 (6.5)Other

20 (6.9)269 (93.1)289 (63)Unknown

Type of delivery

25 (7)331 (93)356 (77.6)Cesarean section

12 (11.7)91 (88.3)103 (22.4)Vaginal delivery

Pregnancy type

17 (6.9)230 (93.1)247 (53.8)Singleton

20 (9.4)192 (90.6)212 (46.2)Multiple

Antenatal steroids

22 (6)347 (94)369 (80.4)Received

6 (8.5)65 (91.5)71 (15.5)Partially received

5 (26.3)14 (73.7)19 (4.1)Not received

Logistic regression, Naïve Bayes, k-nearest neighbor, SVM,
random forest, AdaBoost, and neural network classifiers were
compared for efficacy in predicting mortality (Figure 2 and

Table 2). Standard scaling transformation improved performance
only for the logistic regression, SVM, and neural network
methods. The random forest model had the highest predictive
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performance when considering overall AUROC (mean 0.91,
SD 0.07), F1-score (0.67), and Brier score (0.06). The AdaBoost
model had the next highest AUROC (mean 0.88, SD 0.10);
however, the F1-score (0.45) was low due to poor precision. On
the other hand, the neural network model yielded the top
F1-score (0.67) and Brier score (0.05) despite having a lower
AUROC (mean 0.84, SD 0.16). SVM was overall next best

performing model (mean 0.86, SD 0.13; F1-score 0.62; Brier
score 0.06), followed by logistic regression (mean 0.82, SD
0.16; F1-score 0.61; Brier score 0.08). The Naïve Bayes (mean
0.74, SD 0.22; F1-score 0.40; Brier score 0.25) and k-nearest
neighbor (mean 0.64, SD 0.13; F1-score 0.34; Brier score 0.07)
methods were the worst performing.

Figure 2. Receiver operating characteristic curves for the highest-performing models in Table 2. A: Logistic regression; B: SVM (support vector
machine); C: Random forest; D: AdaBoost; E: Neural networks, F: Naïve Bayes; AUROC: area under the receiver operating characteristic; FP: false
positive; TP: true positive.
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Table 2. AUROCa, average precision, F1-score, log loss, and Brier scores for 10-fold stratified cross-validation predicting mortality using initial
neonatal intensive care unit admission features (lower log loss and Brier scores are ideal when considering imbalanced classification).

Brier scoreLog loss scoreF1-scorePrecision, mean (SD)AUROC, mean (SD)Method

0.080.350.610.55 (0.25)0.82 (0.16)Logistic regression

0.060.200.620.61 (0.24)0.86 (0.13)SVMb

0.060.190.670.61 (0.22)0.91 (0.07)Random forest

0.070.800.450.55 (0.25)0.88 (0.10)AdaBoost

0.050.300.670.65 (0.24)0.84 (0.16)Neural network

0.253.900.400.39 (0.17)0.74 (0.22)Naïve Bayes

0.071.740.340.24 (0.16)0.64 (0.13)K-nearest neighbor

aAUROC: area under the receiver operating characteristic.
bSVM: support vector machine.

On post hoc chi-square analysis of the categorical variables, the
factors that most influenced the outcome were insurance status,
initial breathing assessment of the infant, and presence of a
serious fetal anomaly (Table 3). When examining Pearson
correlation of continuous variables, higher levels of ventilation
and blood pressure support as well as higher arterial blood gas
base deficit were properties mildly to moderately correlated
with mortality. Larger gestational age, birth weight, and higher
APGAR (appearance, pulse, grimace, activity, and respiration)
scores at birth negatively correlated with mortality to a similar
degree (Table 4).

Similar features were most strongly associated with outcome
in the machine learning–based models, although they varied in

importance (Table 5). For example, in the random forest model,
gestational age, birth weight, and initial oxygen level were of
higher importance, whereas in the neural network model, initial
blood pressure support and activity level were the most
influential features.

Evaluation of classifiers using only prepartum features,
assuming birth weight as the estimated weight, also yielded the
highest performance measures with the random forest method
(Table 6). The random forest features that were consistently of
highest importance included gestational age, weight, and
maternal age (Table 7).

Table 3. Chi-square: categorical features significantly associated with outcome.

Chi-square (df)DescriptionFeature

22.8 (1)Uninsuredun_ins

21.4 (2)Initial breathing assessmentbreathing1

20.8 (1)Serious fetal anomalyanomaly

17.1 (4)Initial type of airway or ventilationairway1

11.4 (1)Religion Jehovah’s Witnessreligion_jehovahs

9.4 (1)Twin-twin transfusion syndrometwintwin

7.9 (1)Uncertain pregnancy datinguncertain

4.9 (1)Religion otherreligion_other

4.7 (1)Medicaid or Medicare insurancegov_ins

4.6 (4)Muscle tonemuscle1
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Table 4. Pearson correlation: correlation of continuous features with mortality.

CorrelationDescriptionFeature

0.28Initial amount of oxygen ventilationFiO2_1

0.23Initial arterial blood gas base deficitBD1

0.20Initial IVa dopamine ratedopa1

0.14Initial temperaturetemp1

0.13Initial arterial blood gas pCO2
bpCO2_1

0.07Maternal gravidityG

0.06Maternal parityP

0.06Initial IV blood transfusion amountPRBC1

0.05Maternal agematernal_age

0.03Initial glucosegluc1

0.03Initial bandsbands1

0.02Number of fetuses at deliverymultiple

–0.01dInitial arterial blood gas pO2
cpO2_1

–0.02Initial white blood cellswbc1

–0.04Initial mean blood pressureBPmean1

–0.05Initial monocytesmonos1

–0.05Initial heart rateHR1

–0.07Initial hematocrithct1

–0.07Initial neutrophil countneuts1

–0.20Initial oxygen saturationSaO2_1

–0.22Birth weightbirth_wt

–0.32Gestational age at birthGA

–0.32One-minute APGARe scoreapgar1

–0.35Five-minute APGAR scoreapgar5

aIV: intravenous.
bpCO2: partial pressure of carbon dioxide
cpO2: partial pressure of oxygen.
dNegative correlations with mortality imply a correlation with survival.
eAPGAR: appearance, pulse, grimace, activity, and respiration.
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Table 5. Features of highest importance in various models, listed in order of importance. Positive and negative associations with mortality can be
calculated only in logistic regression models. For the tree-based random forest and AdaBoost algorithms, an impurity-based method was used to determine

overall feature importance. For the remaining algorithms, importance was found via feature permutationa.

Neural networkSVMbAdaBoostRandom forestLogistic regression: negatively associ-
ated with mortality

Logistic regression: positively associ-
ated with mortality

dopa1activity1neuts1GAGArace_hispanic

activity1GAhct1birth_wtrace_unkcolor1

multipleHTNSaO2_1SaO2_1apgar1anomaly

uncertainanomalywbc1BD1gov_insrace_asian

race_unkbreathL1apgar1apgar1activity1un_ins

twintwinbreathR1monos1gluc1monos1dopa1

anomalytwintwintemp1dopa1breathL1abdomen1

muscle1birth_wtHR1apgar5PRBC1pvt_ins

wbc1antfont1FiO2_1FiO2_1infertmultiple

abdomen1caprefill1bands1neutsdmFiO2_1

aThe descriptions of variable names are present in Multimedia Appendix 1.
bSVM: support vector machine.

Table 6. AUROCa, average precision, F1-score, log loss, and Brier scores for 10-fold stratified cross-validation predicting mortality when only prepartum
features are available (lower log loss and Brier scores are ideal when considering imbalanced classification).

Brier scoreLog loss scoreF1-scorePrecision, mean (SD)AUROC, mean (SD)Method

0.070.290.510.41 (0.18)0.77 (0.14)Logistic regression

0.070.250.460.37 (0.15)0.76 (0.10)SVMb

0.060.220.590.54 (0.27)0.80 (0.14)Random forest

0.070.270.540.44 (0.29)0.75 (0.17)AdaBoost

0.070.310.530.44 (0.18)0.76 (0.11)Neural network

0.596.090.190.30 (0.11)0.68 (0.21)Naïve Bayes

0.091.770.300.20 (0.12)0.62 (0.12)K-nearest neighbor

aAUROC: area under the receiver operating characteristic.
bSVM: support vector machine.
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Table 7. Prepartum features of highest importance in various models, listed in order of importancea.

Neural networkSVMbAdaBoostRandom forestLogistic regression: negatively associ-
ated with mortality

Logistic regression: positively associ-
ated with mortality

un_insGAbirth_wtGAGAmaternal_age

steroidssteroidsmaternal_agebirth_wtrace_unkanomaly

HTNPGAmaternal_agedmun_ins

GAinfertGanomalydepressionasthma

anomalyGmultipleGPTLreligion_jehovahs

twintwinuncertainreligion_unkPsteroidspvt_ins

race_unkbirth_wtsteroidsun_insgov_insrace_hispanic

sexsexsexsteroidsHTNtwintwin

Pmultipleanomalyuncertaininfertuncertain

SVDanomalyPtwintwinPmultiple

aThe descriptions of variable names are present in Multimedia Appendix 1.
bSVM: support vector machine.

Several of the important features found in the top-performing
models were among those manually curated in unstructured
form, including the presence of maternal hypertensive disease
and diabetes, uncertain pregnancy dating (uncertain), fetal
anomaly (anomaly), and twin-twin transfusion syndrome.

Discussion

Principal Findings
There is a potential for existing risk calculators to be
outperformed by tree-based machine learning algorithms, as
indicated by the higher performance of our random forest model
versus SNAPPE-II in the context of extremely premature or
very low birth weight infants (in fact AUROC increased to mean
0.92, SD 0.05 when only the neonates <1500 g were considered
in the random forest model to directly compare to SNAPPE-II).
Performance difference compared with CRIB is inconclusive,
however. In terms of estimating neonatal mortality prior to
preterm birth, although the point estimates of several of the
machine learning algorithms using additional features extracted
from the EHR were higher than that of the NICHD calculator,
overlapping CIs preclude any conclusion about significant
differences in performance.

Comparison to Prior Work
Examination of prior work further points to the importance of
using data available from the EHR, including unstructured health
data. For example, the relatively high-performing CRIB score
includes the presence of fetal malformation as a variable. Saria
et al [20] incorporated signal processing of short-term time
series data from neonatal vital sign sensors to produce a model
classifying infants at high risk for severe morbidity or mortality.
To maintain accuracy over time, Meadow et al [11] proposed
a longitudinal NICU survival model combining adverse events,
imaging report information, and caretaker intuition. Hamilton
et al [21] more recently applied tree-based machine learning in
the context of preterm birth to determine clusters of pregnancy
characteristics that were at the highest risk for severe neonatal
morbidity or mortality.

Strengths and Limitations
This study is limited by a small data set with data from a single
institution, which in turn limits the ability to establish statistical
significance in performance differences and the variety of
machine learning methods that can be examined. Because of
the retrospective nature of the study, there is less control over
the format of the data and the amount of missing data. Although
a single-institution data set is usually considered a limitation,
Rysavy et al [4] emphasized that extremely preterm neonatal
outcomes are significantly influenced by the hospital of birth
and suggested maintaining ongoing and updated prediction
models from outcomes within hospital systems. Using machine
learning would be ideal for this task, allowing for consideration
of a number of features retrievable from the EHR with a high
tolerance for missing or outlier data as the volume of data
increases. Tree-based machine learning algorithms may be
additionally advantageous due to their ability to iteratively
combine numerous weakly predictive features into stronger
predictors.

Knowledge of the most influential features, which was possible
to visualize in the majority of the presented models, provides
transparency. Understanding which factors contribute most to
the prediction of outcomes in a model can help clinical providers
derive greater intuition regarding how applicable the model is
to a particular patient.

The inclusion of maternal information and pregnancy
characteristics found in unstructured form in the MIMIC-III
database allowed for consideration of factors beyond the
numerical neonatal data. Some of these additional variables,
such as the presence of fetal anomalies or twin-twin transfusion
syndrome, were found to be of high importance in several
top-performing models, especially in those used in the prepartum
period prior to an anticipated extremely preterm delivery. This
illustrates that machine learning–based models could potentially
be helpful for continuity of care, starting in the prepartum
timeframe with ongoing predictive ability after birth. Maternal
demographic information had an influence on mortality
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prediction in some of the higher-performing models but not
others. Although demographic data can provide additional
knowledge of social context, unintended bias can also be
introduced into the resulting model [22].

Future Directions
Future work anticipates further evaluation of these methods on
larger, more diverse data sets to determine if there is a
significant and reproducible performance advantage. Expanding
the study to include additional data would also allow the
evaluation of more powerful machine learning methods such
as deep learning methods. Eventually, the maintenance of a
more representative and up-to-date cohort for training could
potentially be accomplished via collaborative or federated
learning techniques across institutions [22,23]. To address the
possibility of algorithmic bias, further work could include a
comparison of prediction results using models with and without
protected demographic features and a calculation of the level
of discrimination that could result. Assessment of more data
from underrepresented groups may also aid in producing
increasingly accurate and less discriminatory models [24,25].

In this study, unstructured information was manually extracted
from admission and discharge notes in the MIMIC-III database
and allowed for consideration of additional relevant features in
our models. This suggests that the use of natural language
processing to better understand clinical context may further
improve the prediction of outcomes of extremely preterm births.
As automated natural language processing of clinical notes

becomes more mature and prevalent, the use of these features
gleaned from unstructured EHR data will be increasingly
applicable [26].

Additional potential future directions include integrating with
or adding functionalities found in other intensive care unit
models, such as time series modeling, and predicting outcomes
other than mortality, such as the development of comorbidities,
discharge location, length of stay, and likelihood of readmission.

Conclusions
This study examined machine learning models produced from
the MIMIC-III NICU data set and their predictive ability in the
clinically challenging situation of extremely preterm birth. The
tree-based random forest model was found to have higher
performance than the SNAPPE-II model when predicting the
survival of extremely preterm infants of very low birth weight.
Several other models, including those using only features that
would be known prepartum, also appeared to have good
predictive performance but failed to show a statistically
significant difference from prior models. Features of highest
importance in these models were explored and included
traditional variables, such as gestational age and birth weight,
but also information that may be found in unstructured form in
the EHR. Evaluation of these and even more advanced machine
learning methods on larger data sets may offer further clarity
about performance differences, and natural language processing
techniques would allow for greater use of unstructured clinical
information.
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