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Abstract
Background: Radiology reports are usually written in a free-text format, which makes it challenging to reuse the reports.
Objective: For secondary use, we developed a 2-stage deep learning system for extracting clinical information and converting
it into a structured format.
Methods: Our system mainly consists of 2 deep learning modules: entity extraction and relation extraction. For each module,
state-of-the-art deep learning models were applied. We trained and evaluated the models using 1040 in-house Japanese
computed tomography (CT) reports annotated by medical experts. We also evaluated the performance of the entire pipeline
of our system. In addition, the ratio of annotated entities in the reports was measured to validate the coverage of the clinical
information with our information model.
Results: The microaveraged F1-scores of our best-performing model for entity extraction and relation extraction were 96.1%
and 97.4%, respectively. The microaveraged F1-score of the 2-stage system, which is a measure of the performance of the
entire pipeline of our system, was 91.9%. Our system showed encouraging results for the conversion of free-text radiology
reports into a structured format. The coverage of clinical information in the reports was 96.2% (6595/6853).
Conclusions: Our 2-stage deep system can extract clinical information from chest and abdomen CT reports accurately and
comprehensively.
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Introduction
Radiology reports are important for radiologists to com-
municate with referring physicians. The reports include
clinical information about observed structures, diagnostic
possibilities, and recommendations for treatment plans. Such
information is also valuable for various applications such

as case retrieval, cohort building, diagnostic surveillance,
and clinical decision support. However, since most radiology
reports are written in a free-text format, important clinical
information is locked in the reports. This format presents
major obstacles in secondary use [1,2]. To address this
problem, a system for extracting structured information from
the reports would be required.
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Natural language processing (NLP) has demonstrated
potential for improving the clinical workflow and reusing
clinical text for various clinical applications [3-5]. Among the
various NLP tasks, information extraction (IE) plays a central
role in extracting structured information from unstructured
texts. IE mainly consists of two steps: (1) the extraction of
specified entities such as person, location, and organization
from the text and (2) the extraction of semantic relation
between 2 entities (eg, location_of and employee_of) [6,7].

Earlier IE systems mainly used heuristic methods such as
dictionary-based approaches and regular expressions [8-10].
To extract clinical information from radiology reports, the
Medical Language Extraction and Encoding system [11] and
Radiology Analysis tool [12] have been developed. To detect
clinical terms, these systems mainly use predefined dictionar-
ies such as the Unified Medical Language System [13] and
their customized dictionaries and apply some grammatical
rules to present them in a structured format.

The major issues of these systems include the lack of
coverage and scalability [14]. A dictionary-based sys-
tem often fails to detect clinical terms such as misspel-
led words, abbreviations, and nonstandard terminologies.
Building exhaustive dictionaries to enhance the coverage
and maintaining them are highly labor-intensive. It is also
challenging to apply complicated grammar rules according to
the context of the reports. In addition, IE systems based on
dictionaries and grammar rules are highly language dependent
and do not scale to other languages. The Medical Language
Extraction and Encoding system and Radiology Analysis tool
only cover English clinical texts and cannot handle non-Eng-
lish clinical texts. Languages other than English, including
Japanese, do not have sufficient clinical resources such as the
Unified Medical Language System. This has been a major
obstacle in developing clinical NLP systems in countries
where English is not the official language [15].

Recently, machine learning approaches have been widely
accepted in clinical NLP systems [16,17]. Hassanpour and
Langlotz [18] used a conditional random field (CRF) [19]
for extracting clinical information from computed tomogra-
phy (CT) reports. They showed that their machine learning
model had a superior ability compared to the dictionary-based
systems.

Deep learning approaches have drawn a great deal of
attention in more recent studies. Cornegruta et al [20] built a
bidirectional long short-term memory (BiLSTM) model [21]
to extract clinical terms from chest x-ray reports. Miao et
al [22] built a BiLSTM model to handle Chinese radiology
reports. Both studies reported that deep learning approaches
yielded better results than dictionary-based approaches.

Various state-of-the-art deep learning models have been
applied to extract named entities [18,20,22]. Clinical systems
such as concept extraction can be achieved though extracting
named entities alone, whereas the relation extraction step is
needed to obtain structured information about concepts and
their attributes [23,24]. Extracting comprehensive information
in a structured format is desirable when developing a complex
system.

Xie et al [25] developed a 2-stage IE system for process-
ing chest CT reports. They exploited a hybrid approach
involving deep learning to extract named entities and a
rule-based method to organize the detected entities in a
structured format. They reported that their deep learning
model achieved better performance, whereas the rule-based
structuring approach degraded the overall performance, since
the rule-based approach could not capture the contextual
relations in the reports. Jain et al [26] developed RadGraph,
an end-to-end deep learning system for structuring chest x-ray
reports. They reported that their schema had a higher report
coverage in their corpus.

In this study, we developed a 2-stage deep learning system
for extracting clinical information from CT reports. For
secondary use of the radiology reports, we believe that our
system has some advantages compared with recent related
works [18,20,22,25,26]. First, our 2-stage NLP system can
represent clinical information in a structured format, which
can be challenging when only using an entity extraction
approach. Second, although the rule-based approach struggled
to extract relations between entities in the reports [25],
leveraging state-of-the-art deep learning models leads to
superior performance. Third, previous studies [18,20,26] have
combined clinical information about factual observations and
radiologist interpretations into single entity, even though they
have different semantic roles in the context. According to the
context, distinct entity types are defined in our information
model, which allows it to capture detailed clinical information
in the reports. To structure the report more appropriately,
we defined distinct entities for 2 different clinical pieces of
information.

The rest of this paper is organized as follows. First, an
information model was built, mainly comprising observation
entities, clinical finding entities, and their modifier entities.
Second, a data set was created using in-house CT reports
annotated by medical experts. Third, state-of-the-art deep
learning models were trained and evaluated to extract the
clinical entities and relations. The entire performance of our
2-stage system was also evaluated. Finally, we evaluated the
coverage of the clinical information in the CT reports using
our information model.

The development of the information model was already
reported in our previous study [27]. However, the previous
study only focused on extracting entities and did not cover
extracting relations between the entities. This study developed
a 2-stage system containing entity extraction and relation
extraction modules. Furthermore, although the previous study
only used chest CT reports, a data set using abdomen CT
reports was created in this study to validate the generalizabil-
ity of our information model and 2-stage system.

Methods
Our Information Model
An information model was built for extracting comprehen-
sive clinical information from free-text radiology reports.
Our information model contained observation entities, clinical
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finding entities, and modifier entities. Observation entities are
specific terms representing observed abnormal features such
as “nodule” or “pleural effusion.” Clinical finding entities
encompass terms such as “cancer,” including diagnoses given
by the radiologists based on the observation entities. Modifier
entities are subdivided into the following entities: anatomical
location, certainty, change, characteristics, and size. Thus,
7 entity types were defined in our information model. A
detailed description of our information model is provided in
our previous study [25].

Furthermore, modifier and evidence relations between
entities were defined. A modifier relation is derived from
an observation or a clinical finding entity and a modifier
entity. This relation type gives clinical information, such as
the anatomical location of the observations and the charac-
teristics of the clinical findings. An evidence relation is
derived from an observation entity and a clinical finding
entity. This relation is also clinically meaningful in capturing
the diagnostic process of the radiologist. Report examples of
entities and relations are shown in Figure 1.

Figure 1. Report examples of entities and relations. IPMN: intraductal papillary mucinous neoplasm.

Data Set
Radiology reports from 2010 to 2021 that were stored in the
radiology information system at Osaka University Hospi-
tal, Japan, were used. They consisted of 912,505 reports
written in Japanese. To create a gold standard data set, 540
chest CT reports and 500 abdomen CT reports were ran-
domly extracted. The remaining unannotated reports (911,465
reports) were used to pretrain the model.
Ethical Considerations
This study was performed in accordance with the World
Medical Association Declaration of Helsinki, and the study
protocol was approved by the institutional review board
of the Osaka University Hospital (permission 19276). Only
anonymized data were used in this study, and we did not have
access to information that could identify individual partici-
pants during the study.
Annotation Scheme
Overall, 3 medical experts (2 clinicians and 1 radiological
technologist) performed the annotation process. The gold
standard data sets of chest and abdomen CT reports were
developed by different annotation methods.

For the chest CT reports, the data set that was developed
in our previous study was leveraged [25]. After making
minor adjustments for entities, the relation types between
entities were newly annotated by 2 clinicians. Following a
guideline describing the rules and annotation examples, they
independently annotated each report. Disagreements between

the annotators were resolved by discussion. The interanno-
tator agreement (IAA) score for the entities was 91%, as
reported in our previous study [27]. To calculate the IAA
score for the relations, we used Cohen κ [28], resulting in
an IAA score of 81%. Both IAA scores indicated very high
agreement [29].

For the abdomen CT reports, to reduce the burden of the
annotation work, a deep learning model trained on the chest
CT reports was implemented to preannotate the entities and
relations in the reports. Annotators were provided with the
preannotated reports, and they modified the result according
to the guidelines. We did not compute IAA scores for the
abdomen data set because it was preannotated by the deep
learning model.

All entities and relations were annotated using BRAT
(Stenetorp et al [30]). The number of annotated entities and
relations are shown in Multimedia Appendix 1.
Our 2-Stage System

Overview
An overview of our 2-stage system is shown in Figure 2. The
system pipeline mainly consists of 2 deep learning modules.
In the first step, our module extracts the clinical entities
in the radiology reports according to the predefined informa-
tion model. The extracted entities are fed into subsequent
modules. In the second step, the relation between clinical
entities is extracted. The details of each module are described
in the subsequent sections.
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Figure 2. Overview of our 2-stage deep learning system.

Entity Extraction
According to the predefined information model, this module
extracts clinical entities from a report. Named entity
recognition (NER) [31] is well suited for this task. As
a preprocessing pipeline, the report was segmented into
sentences using regular expressions, and each sentence
was tokenized with MeCab (Kyoto University Graduate
School of Informatics and Nippon Telegraph and Telephone

Corportation’s Communication Science Research Institute)
[32]. Then, a sequence of tokens was fed into the model.
To represent the spans of specified entities, the IOB2 format
[33], which is a widely used tagging format in NER tasks,
was used. In this format, the B and I tags represent the
beginning and inside of an entity, respectively, and the O
tag represents the outside of an entity. A tagging example is
illustrated in Figure 3.

Figure 3. An illustration of the entity extraction module. BERT: Bidirectional Encoder Representations from Transformers; BiLSTM: bidirectional
long short-term memory; CRF: conditional random field.

State-of-the-art deep learning models for NER—BiLSTM-
CRF [34], BERT [35], and BERT-CRF—were compared.

Relation Extraction
Following the implementation of the entity extraction
module, reports with clinical entities were obtained. As a
preprocessing pipeline of relation extraction, the original
sentences of the report were reconstructed by concatenating

sentences from the beginning to the end. This was imple-
mented for extracting relations across multiple sentences in
a report. Next, the pipeline generated possible candidate
relations by each relation type in a report (see Figure 4).
Then, this module solved a binary classification problem
to determine the existence of relations given the candidate
relations.
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Figure 4. Example of instances generated for relation extraction. In this case, 6 candidate relations were generated from 2 observations and 3
modifiers. CT: computed tomography.

Next, we explain how we represented each relation candidate
in a fixed-length sequence. Previous studies have introduced a
method to add position indicator tokens to the input sequence
to indicate the entity span of the pair in the sequence [36,37].
We expanded this method to allow the representation of the
entity types. These position indicator tokens are referred to
as “entity span tokens.” For example, the input sequence
of the model representing the relation between an observa-
tion entity and an anatomical location modifier entity was

represented as follows: “A 3 cm <OBS> nodule </OBS>
is in the <AE> right upper lobe </AE>.” Here, “<OBS>,”
“</OBS>,” “<AE>,” and “</AE>” are entity span tokens.
Possible entity span tokens were appended to the vocabulary,
and thus, an entity span token was treated as a single token.
The input sequence containing 4 entity span tokens was fed
into the model. A classification example is illustrated in
Figure 5. All generated relation candidates were transformed
into fixed-length sequences and fed into the model.

Figure 5. An illustration of the relation extraction module. BERT: Bidirectional Encoder Representations from Transformers; BiLSTM: bidirectional
long short-term memory.

The BiLSTM attention model [38] and BERT model were
compared. For the BiLSTM attention model, the output
vector representation for classification was obtained from the
weighted sum of the sequence vector representations. For the
BERT model, the representation of the first “[CLS]” token for
classification was used, which is a straightforward sequence
classification tasks introduced by the original BERT.

Experimental Settings

Data Set Splitting
A total of 540 annotated chest CT reports were divided into 3
groups: 378 reports for training, 54 reports for development,
and 108 reports for testing. Similarly, a total of 500 annotated
abdomen CT reports were divided into 3 groups: 350 reports
for training, 50 reports for development, and 100 reports
for testing. In total, 728 reports for training, 94 reports for
development, and 208 reports for testing were prepared.
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Parameter Optimization
For the BiLSTM-CRF model, a minibatch stochastic gradient
descent with momentum was used, and the initial learning
rate and momentum were set to 0.1 and 0.9, respectively. The
learning rate was reduced when the F1-score of the develop-
ment data set stopped improving. Learning rate decay and a
gradient clipping of 5.0 were used. Dropout [39] was applied
on both the input and output vectors of the BiLSTM model.
A batch size of 16, a dropout rate of 0.1, a word embedding
dimension of 100, and a hidden layer dimension of 512 were
chosen. For the BERT model, BERTBASE was used, which
has 12 layers of transformer blocks, 768 hidden units, and 12
self-attention heads. The model was fine-tuned with the initial
learning rate of 5 × 10–5, a batch size of 16, and training
epochs of 10. The best hyperparameter setting was chosen
using a development data set.

Domain Adaptation
Previous studies have reported that pretraining the domain
corpora improved the model performance for various
downstream tasks [27,40,41]. However, some studies have
pointed out that domain adaptation (DA) leads to a deg-
radation in model performance due to forgetting general
domain knowledge [42,43]. To validate the effect of DA in
our experiments, we evaluated the model performance with
and without DA for both the entity extraction and relation
extraction models.

For pretraining the word embeddings of the BiLSTM
model with the general domain, Japanese Wikipedia articles
[44] (12 million sentences) were used. For pretraining the
word embeddings of the BiLSTM model with DA, 911,465
in-house radiology reports were used. We used word2vec
(Mikolov et al [45]) for both tasks of pretraining the word
embeddings.

For the BERT model, the publicly available pretrained
Japanese BERT (Tohoku NLP Group and Tohoku Univer-
sity) [46] was first initialized. The model was pretrained
using Japanese Wikipedia articles. The BERTBASE subword
tokenization model pretrained with whole word masking
was chosen. For DA, continued pretraining using 911,465
in-house radiology reports for approximately 100,000 steps
using a batch size of 256 was implemented.

Evaluation Metrics
To validate the capability of our system, we conducted 2
experiments. First, the performances of the deep learning
modules were calculated. In this experiment, the mean scores
were obtained over 5 runs with different parameter initializa-
tions to mitigate the effects of a random seed. For both the
entity extraction and relation extraction, the F1-score was
used for evaluation. For the entity extraction, entity-level
F1-score was used as an evaluation metric, and the results
were aggregated by microaveraging. Second, to validate that
our information model encompassed clinical information in
the reports, we measured the coverage with the following
formula:

Coverage % = B‐tagged tokens + I‐tagged tokens
B‐tagged tokens + I‐tagged tokens + O‐tagged tokens

where B-tagged tokens and I-tagged tokens were annotated
as entities represented in the IOB2 format [33], and O-tag-
ged tokens as outside entities were not annotated. Follow-
ing to the scope definition of our information model, the
sentences that only contained information about the technique
of the imaging test, the surgical procedures of the patients,
and recommendations were excluded. Punctuations and stop
words were also excluded from the calculation. The list of
stop words is presented in Multimedia Appendix 2.

Results
Entity Extraction
Table 1 shows the performance metrics for the entity
extraction model. The BiLSTM-CRF model with DA
achieved a microaveraged F1-score of 96.1%. In our
experiments, the BiLSTM-CRF model with DA achieved the
best performance of all the microaveraged scores. For the
BERT model, concatenating the CRF layer to the output of
the BERT improved the mean F1-scores with and without
DA. Given that the BiLSTM-CRF model with DA yielded
the highest mean F1-score, it was used as the entity extrac-
tion module for our system and was used for the remaining
experiments.

Table 1. Comparison of entity extraction models using mean F1-scores.
Model Without DAa, mean F1-score (%) With DA, mean F1-score (%)
BiLSTMb 95.2 96.1c

BERTd 94.8 95.2
BERT-CRFe 95.1 95.4

aDA: domain adaptation.
bBiLSTM: bidirectional long short-term memory.
cThe best performance is italicized.
dBERT: Bidirectional Encoder Representations from Transformers.
eCRF: conditional random field.

The detailed performance of BiLSTM-CRF model with DA
is shown in Table 2. In the test set using chest and abdo-
men reports, the F1-scores of observation, clinical finding,

anatomical location modifier, certainty modifier, and size
modifier entities were over 95%, whereas the change modifier
and characteristics modifier entities had lower F1-scores than
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the other entities. Table 2 also shows that the test set of
abdomen reports had a 0.5% higher F1-score than the chest
reports. On the test set of abdomen reports, the clinical
finding and change modifier entities achieved better F1-scores
than the chest reports, with an increase of 2.9% and 2.5%,

respectively. Conversely, the observation and characteristics
modifier entities using the test set of chest reports obtained
better F1-scores than the abdominal reports, with an increase
of 1.0% and 2.6%, respectively.

Table 2. Comparison of the results of the entity extraction model for the test set of chest and abdomen reports.

Entity type Chest reports, F1-score (%) Abdomen reports, F1-score (%)
Chest and abdomen
reports, F1-score (%)

Observation 96.1 95.1 95.6
Clinical finding 94.2 97.1 96.1
Anatomical location modifier 96.3 96.3 96.3
Certainty modifier 98.6 99.1 98.9
Change modifier 90.5 93.0 91.5
Characteristics modifier 89.5 86.9 88.5
Size modifier 98.7 98.7 98.7
Microaverage 95.8 96.3 96.1

Relation Extraction
The performances of the relation extraction models were
compared. In this experiment, to focus on evaluating the
relation extraction module, human-annotated entities were
used for the input of each model. Table 3 shows the compar-
isons of the performance of the relation extraction models.
A microaveraged F1-score of 95.6% was achieved for the
BiLSTM attention model with DA and 97.6% for the BERT

model with DA, which indicated that both classification
models could achieve a satisfactory performance for relation
extraction. Pretraining with domain corpora improved the
performance of both relation models. In contrast to the
experimental results of the entity extraction models, the
BERT model outperformed the BiLSTM attention model by
2.0% in the F1-score.

Table 3. F1-score of the relation extraction models.
Model Without DAa, microaveraged F1-score (%) With DA, microaveraging F1-score (%)
BiLSTMb 95.5 95.6c
BERTd 97.2 97.6

aDA: domain adaptation.
bBiLSTM: bidirectional long short-term memory.
cThe best performance is italicized.
dBERT: Bidirectional Encoder Representations from Transformers.

The performance difference between the chest and abdomen
reports was also compared (Table 4). The F1-scores of the
modifier relation were almost the same for the chest reports

and abdomen reports, whereas the evidence relation was 6.3%
lower in the abdomen reports than the chest reports.

Table 4. Comparison of the results of the relation extraction model for the test set of chest and abdomen reports.
Relation type and entity type Chest reports, F1-score (%) Abdomen reports, F1-score (%) Chest and abdomen reports, F1-score (%)
Modifier relation

Anatomical location 97.9 97.6 97.6
Certainty 99.4 99.5 99.4
Change 95.4 95.0 95.1
Characteristics 95.1 96.5 95.7
Size 99.1 98.0 98.8

Evidence relation
Clinical finding 96.7 90.4 94.9

Microaverage 97.7 97.4 97.6

Our 2-Stage System
To evaluate the performance of the entire pipeline of
our system, the performance of the relation extraction
module using the output of the entity extraction module

was examined. According to the experimental results, the
BiLSTM-CRF and BERT models were used for the entity
extraction model and relation extraction model, respectively.
Table 5 shows that the performance of the 2-stage system
obtained an overall F1-score of 91.9%. The overall F1-score
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was 5.7% lower than the results using the human-annotated
entities, as shown in Table 3. This decrease is reasonable

since the misclassification of entity extraction is fed into the
relation extraction model in this experiment.

Table 5. The F1-score of our 2-stage system.
Relation type and entity type 2-Stage system, F1-score (%)
Modifier relation

Anatomical location 92.8
Certainty 96.3
Change 81.4
Characteristics 84.7
Size 94.6

Evidence relation
Clinical findings 87.1

Microaverage 91.9

Coverage of Clinical Entities
The test set of reports contained an average of 11.9 senten-
ces. An average of 1.0 (8.4%) out of 11.9 sentences about
the technique of the imaging test, the surgical procedures of
the patients, and recommendations were excluded from the
calculation. Table 6 shows the coverage of clinical entities

with our information model. The coverage of the clinical
entities across entire sequence was 70.2% (7050/10,036). We
observed that 96.2% (6595/6853) of tokens were annotated
when punctuations and stop words were excluded from the
sequences.

Table 6. Coverage of the clinical entities with our information model.
Token scope Annotated tokens , n/N (%)
Entire sequence 7050/10,036 (70.2)
Without punctuations and stop words 6595/6853 (96.2)

Error Analysis
A quantitative error analysis was further performed to
understand our 2-stage system. For the entity extraction
module, we found that the entity mentions that rarely
occurred in our corpus were likely missed. To evaluate this
empirically, 2 additional test sets were used.

1. Major test set: entity mentions that occurred multiple
times in the training set

2. Minor test set: entity mentions that only occured once
or did not occur in the training set

Table 7 shows the comparison of the result of the major
and minor test sets with the original test set (Table 3). In
the major test set, the F1-score of the overall entities was
improved by 2.1% (from 96.1% to 98.2%). This increase
was also observed in the individual entities except for the

size modifier entity. However, the F1-score of the overall
entities was markedly decreased by 9% in the minor test
set. This was expected as the deep learning model strug-
gled to predict the samples that were rare or unseen in
the training set. Another reason for this difference may be
the difficulty in determining the appropriate entities for the
minor mentions. We observed that annotation disagreements
during the adjudication process occurred more frequently for
the minor mentions than the major mentions. Interestingly,
we found that the size modifier was robust to the minor
entity mentions. The simplicity of these entity mentions, such
as “5 cm” and “30×14 mm,” may have contributed to the
result. Our analysis shows that the entity extraction module
could extract frequent entity mentions in the training set
accurately; however, there remains much room for improve-
ment regarding rare or unseen terms in the training set.

Table 7. Error analysis.

Entity type
Original test set, F1-score
(%) Major test set Minor test set

F1-score (%)
Difference from the
original test set F1-score (%)

Difference from
the original test
set

Observation 95.6 97.9 +2.3 82.0 –13.6
Clinical finding 96.1 97.9 +1.9 87.8 –8.2
Anatomical location modifier 96.3 98.7 +2.4 89.6 –6.7
Certainty modifier 98.9 99.3 +0.4 80.5 –18.4
Change modifier 91.5 93.5 +2.0 89.0 –2.5
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Entity type
Original test set, F1-score
(%) Major test set Minor test set

F1-score (%)
Difference from the
original test set F1-score (%)

Difference from
the original test
set

Characteristics modifier 88.5 95.5 +7.1 61.5 –26.9
Size modifier 98.7 98. –0.3 98.2 –0.6
Microaverage 96.1 98.2 +2.1 87.1 –9.0

To decrease the ratio of rare or unseen terms in the test set,
more samples would be required in the training set. How-
ever, it is inefficient to sample reports randomly to improve
the overall performance. For an efficient sampling strategy,
active learning [47,48] may be a promising approach that
allows for the selective sampling of reports in the current
module.

The performance of the entity extraction and relation
extraction modules were compared using the test set of chest
and abdomen reports, respectively. For the entity extraction,
the F1-score of the clinical finding entities in the test set for
the abdomen reports was 2.9% better than that of the chest
reports. In the abdomen reports, it was often written using
terms such as “肝臓 : n.p. (Liver: n.p.)” when there were no
particular findings for a specific organ. This simple expres-
sion, “n.p.,” constituted 66.2% of the clinical finding entities
in the test set of the abdomen reports, which substantially
impacted the performance.

The overall performance of the relation extraction module
demonstrated excellent performance on the test set for both
the chest and abdomen reports. However, the F1-score for
the evidence relation between the observation and clinical

finding entities was 6.3% lower on the test set of the abdomen
reports than that of the chest reports. We found a few
examples where the observations and clinical findings were
clinically related; however, we could not determine if the
observation was the diagnostic basis for the finding. The first
example shown in Figure 6 indicates that the “whirlpool sign”
was the observation for the diagnostic basis of an “intesti-
nal obstruction (イレウス),” whereas no observation was
found for the diagnostic basis of an “intestinal obstruction
(イレウス).” Even though a “whirlpool sign” was clinically
related to an “intestinal obstruction (イレウス),” the evidence
relation cannot be derived from this example. However,
our model misclassified this as a positive example of the
evidence relation. In the second example, annotators did not
assign the evidence relation between “air” and “biloma,”
since they considered that the “air” has already disappeared.
However, we discussed that the clinical finding of “biloma”
was actually derived from the evidence of an unchanged “low
density area (低吸収域)” and disappeared “air.” Thus, the
model prediction was more preferable than the gold standard.
To derive the diagnostic basis, it is preferable to consider
information about the observation and its modifying entities.

Figure 6. Misclassification examples of the relation extraction model (blue highlighted relations are examples of false positives).

Discussion
Principal Findings
Table 3 shows the performance of the entity extraction model,
which yielded a microaveraged F1-score of 96.1%. The
F1-scores of the observation entity and the clinical finding

entity were 95.6% and 96.1%, respectively. These superior
performances are desirable for our system since the observa-
tion and clinical finding entities are principal components of
our information model. Moreover, Table 5 shows that the
modifier relation with the certainty entity also had superior
performance. These results suggest that our system will be
applicable for practical secondary uses, such as a query-based
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case retrieval system [49]. However, to reuse radiology
reports for various clinical applications, improvements in
extracting the change modifier and characteristics modifier
would also be required.

BiLSTM Versus BERT
Table 3 shows that the BiLSTM-based model achieved
better performance than the BERT-based model in the entity
extraction task, whereas Table 5 shows that the BERT-
based model outperformed the BiLSTM-based model in the
relation extraction task. We considered that the differences
between entity and relation extractions might be due to
their task characteristics. Local neighborhood information
and the representation of the token itself are considered
important in the entity extraction task, whereas more global
context information is required in the relation extraction task,
especially for long-distance relations. Due to their attention
mechanism, BERT and other transformer-based models are
capable of learning long-range dependencies [50], which
probably contributed to the superiority of the BERT model
in the relation extraction task.
DA Performance
Tables 1 and 3 show the comparison results of the model
performances with and without DA for each task. These
results indicate that DA is beneficial for performance
improvement, regardless of the architecture of the model.
Since our system focuses on extracting information from
radiology reports, we consider that the problem of forgetting
general domain knowledge to be outside the scope of this
study.
Coverage of Clinical Entities
The coverage of the clinical entities with our information
model was calculated. Sentences about the technique of the
imaging test, the surgical procedures of the patients, and
recommendations were excluded from the calculation, as

such information was outside of the scope of our informa-
tion model. Punctations and stop words were also excluded
from the calculation. A total of 96.2% (6595/6853) of tokens
were annotated, which indicates that our information model
covered most of the clinical information in the reports.
Limitations
This study has a limitation in terms of generalizability, since
we only used 1 institutional data set for evaluation. More
data sets outside our institution would be needed to ensure
generalizability. Although we validated the capability of our
system using only chest and abdomen CT reports, fine-tuning
of the deep learning models with reports for other body parts
and modalities would be required for various secondary uses.

Furthermore, we are aware that there is still a gap to bridge
to reuse radiology reports for various applications. As reports
usually contain misspellings, abbreviations, and nonstandard
terminologies, we believe that term normalization techniques
[51,52] would be needed for clinical applications.
Conclusions
This study developed a 2-stage system to extract struc-
tured clinical information from radiology reports. First, we
developed an information model and annotated in-house
chest and abdomen CT reports. Second, we trained and
evaluated the performance of 2 deep learning modules.
The microaveraged F1-scores of our best model for entity
extraction and relation extraction were 96.1% and 97.4%,
respectively. The entire pipeline of our system achieved a
microaveraged F1-score of 91.9%. Finally, we measured the
ratio of annotated entities in the reports. The coverage of the
clinical information in the reports was 96.2% (6595/6853). To
reuse radiology reports, future studies should focus on term
normalization. We also plan to develop a platform that allows
us to evaluate the generalizability of our system using reports
from outside of our institution.
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