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Abstract

Background: This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT
in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical
practice through a review of 5 studies.

Objective: This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information
from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.

Methods: The study design comprised a systematic review of clinical articles executed independently by human researchers
and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen
κ statistics.

Results: The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most
parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant
studies that demonstrated the diverse applications of NLP in clinical settings. These studies’ findings highlight the potential of
NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification
to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.

Conclusions: Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and
other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and
accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of
implementing NLP applications in health care settings.
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Introduction

The following manuscript was augmented by ChatGPT (versions
3.5 and 4.0; OpenAI [1]). ChatGPT-generated text is shown in
Roman (unitalicized) font and has not been altered. Any
modifications to the generated text, including corrections to
sources or information, are explicitly indicated. Any text added

or revised by human authors is shown in italics. All in-text
reference citations have been reformatted to adhere to the
journal’s style preferences.

Natural Language Processing (NLP) has emerged as a powerful
tool in recent years, enabling the processing and analysis of vast
amounts of unstructured textual data in various domains,
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including healthcare and clinical practice [2] (added [3]). The
application of NLP techniques in clinical settings has the
potential to revolutionize the way medical professionals manage
and analyze patient information, leading to improved patient
outcomes, reduced costs, and increased efficiency in medical
decision-making [4] (added [5]). 

In clinical practice, NLP can facilitate various tasks, such as
disease diagnosis, treatment decision support, automation of
clinical tasks, and data mining [6]. For instance, NLP algorithms
have been used to screen and identify patients at risk for specific
conditions [7], aid in the diagnosis of diseases by analyzing
electronic health records (EHRs) [original: Demner-Fushman,
D., & Chapman, W. W. (2017)] (new [8]), provide decision
support in treatment planning [original: Wang, Y et al. (2017)]
(new [9]), and automate routine clinical tasks [original: Devlin,
J. et al. (2019)] (new [10]). Furthermore, NLP has been
employed in the analysis of large-scale medical literature to
identify trends, generate hypotheses, and inform clinical
decision-making [original: Brown, T. B. et al. (2020)] (new
[11]). 

Recent advancements in NLP, particularly the introduction of
transformer-based models like Bidirectional Encoder
Representations from Transformers (BERT) [original: Vaswani,
A et al. (2017)] (new [12]), Generative Pre-trained Transformers
(GPT) [original: Lee et al, 2020] (new [13]), and their variants
(moved [14]), have significantly improved the performance of
NLP tasks, including information extraction,
question-answering, and text summarization. Transformer
networks leverage attention mechanisms, allowing them to learn
contextual relationships between words in a given text, thus
enabling a more nuanced understanding of the input data [15].

Transformer-based models like BERT and GPT work using a
self-attention mechanism, allowing them to focus on relevant
words in a sentence, thus capturing contextual information
efficiently [16]. This approach enables precise understanding
of semantic relationships, making these models adept at tasks
such as named entity recognition and text summarization [12].

However, these models have limitations. The attention
mechanism is resource-intensive, potentially limiting their use
in constrained environments [17]. Furthermore, while able to
generate plausible-sounding outputs, they may occasionally
produce nonsensical or incorrect results (called “artificial
hallucination”), which emphasizes the need for careful
interpretation [original: McCoy et al. 2019] (new [18]).

These models have been successfully applied to various
healthcare-related tasks, including biomedical literature mining
[19], clinical concept extraction [20] (added [21]), and
predicting patient outcomes [original: Nye et al. 2018] (new
[22]). 

Large language models (LLM) represent the cutting-edge of
NLP, demonstrating exceptional performance in various tasks
by leveraging their extensive pre-training on vast textual data
[original: Smith et al., 2022] (new [23]).

Yet, despite the notable advancements in NLP and LLMs,
traditional systematic reviews continue to pose significant
limitations [24] (added [25]). Traditional approaches to

systematic reviews are often labor-intensive and
time-consuming, involving manual screening of literature and
information extraction [26]. Such processes are not only
susceptible to human error [27] but also struggle to cope with
the exponential increase in available medical literature [28].
The extensive and complex nature of medical data, combined
with the ever-evolving landscape of clinical research, presents
a substantial challenge to traditional systematic review methods
[29] (added [30]). Thus, there is a pressing need for more
sophisticated and automated solutions, such as those provided
by NLP, to handle the growing volume and complexity of
medical literature [31].

In light of these developments, we aim to conduct a systematic
review aided by NLP, specifically leveraging the capabilities
of transformer-based models like GPT, to synthesize the existing
literature on the application of NLP in clinical practice. Our
review will focus on studies published between January 2020
and the present, evaluating the performance, implementation,
and impact of NLP techniques in clinical settings. By integrating
NLP into the systematic review process, we aim to increase the
efficiency and accuracy of the review, enabling the identification
of relevant studies, extraction of key information, and synthesis
of findings in a more streamlined manner [32]. 

LLMs have been gaining traction in both social media and the
scientific community. We compared the results of human
researchers (with a research experience of >7 years) versus
ChatGPT (Versions 3.5 and 4.0) in an artificial intelligence
augmented systematic review. The goal was to explore the
usefulness and limitations of LLMs in clinical practice, medical
research and writing publications.

The main aim was to evaluate how effectively and reliably
ChatGPT could support the process of conducting a medical
systematic review, while also identifying potential issues and
offering insights into the rapidly evolving field of artificial
intelligence.

Methods

Overview
The task of conducting a systematic review was augmented
using ChatGPT. ChatGPT was used for general considerations
in conducting a systematic review; determining MeSH (Medical
Subject Headings) terms; title, abstract, and full-text screening;
limited data extraction; and text generation.

This manuscript was generated in several sections; therefore,
modifications for better readability—for example, the order of
text sections, numbering of references, and the use of
abbreviations—are not shown. Relevant conversations with
ChatGPT are provided in Figure 1 and Multimedia Appendices
1-16.

Our systematic review followed the guidelines provided by the
Cochrane Handbook for Systematic Reviews of Interventions
[33] (added [34]) and the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) statement [25].
The PRISMA flowchart is shown in Figure 2 and the PRISMA
checklist in Multimedia Appendix 17.
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Figure 1. An exemplary prompt and response from ChatGPT as a multistep answer for prompt generation for the abstract text module.
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Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart. *In consensus, multiple reasons possible. MeSH:
Medial Subject Headings; NLP: natural language processing.

Search Strategy 
We utilized ChatGPT 3.5 legacy (Version Jan 30, OpenAI[1])
to generate a MESH search strategy and define the inclusion
and exclusion criteria for our review. We repeated the prompts
for MeSH term generation multiple times and refined the MeSH
terms by narrowing overly broad terms, incorporating essential
terms that were initially omitted by ChatGPT and excluding

terms that were not relevant to our review. Two human
researchers, NS and DB, used the MESH terms generated for
the PubMed search and retrieved a total of 155 articles. They
prepared the articles for presentation to ChatGPT, presenting
only the title for title screening, only the abstract for abstract
screening, and only the text of the Introduction, Methods,
Results, and Discussion for full-text screening, without any
reference to authors or publishing journal, etc. NS and DB also
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created all the prompts for ChatGPT and saved all interactions
with the Transformer network. These interactions will be made
available as supplementary materials. 

Screening Process 
Title and abstract screening were conducted independently by
ChatGPT 3.5 legacy and the two human researchers, NS and
DB. Abstracts were only included for full-text analysis when a
consensus was reached between ChatGPT and the human
researchers (n=41). NS and DB then generated a table for
structured data extraction at the full-text screening level, which
will be included in the paper.

Two separate instances of ChatGPT 3.5 legacy were used to
independently screen all full texts prepared by NS and DB. NS
and DB also evaluated all full-text articles (n=41) for inclusion
or exclusion.

Data Extraction and Synthesis 
The review of the five included articles was conducted by
ChatGPT 4.0 (Version March 15). First, ChatGPT summarized
each paper. Next, it was asked to generate a results section and
discussion section. All authors extracted data from the included
papers and reviewed the text generated by ChatGPT 4.0, making
any necessary adjustments and adaptations. Additionally, tables
and charts were generated by human researchers, owing to the
constraints of ChatGPT at the time of conducting this study.
We extracted the following items in the extraction table (Table
S1 in Multimedia Appendix 18): English language (yes/no),
targeted disease, study design (randomized controlled trial;
cohort study; cross-sectional study; case report or series;
meta-analysis, systematic review, or review; opinion; others,
experimental, or not applicable), NLP model (yes/no), sample
size, performance parameters available (yes/no), clinical task
(screening or risk, disease diagnosis, treatment decision,
decision support, automation of clinical tasks, data mining or
automated document evaluation, others, or not applicable), and
clinical implementation (yes/no). The reference directory was
compiled by human researchers.

Statistical Analysis of GPT and Human Performance
In this study, we used several standard performance metrics to
evaluate the effectiveness of the search strategy generated by
ChatGPT. Below, we describe the calculation of each of these
metrics.

Sensitivity (also known as True Positive Rate): Sensitivity is
calculated as the number of true positives (TP) divided by the
sum of the true positives and the false negatives (FN).

Sensitivity=TP(TP+FN)

Specificity: Specificity is calculated as the number of true
negatives (TN) divided by the sum of the true negatives and the
false positives (FP).

Specificity=TN(TN+FP)

Precision (also known as Positive Predictive Value): Precision
is calculated as the number of true positives (TP) divided by
the sum of the true positives and the false positives (FP).

Precision=TP(TP+FP)

Accuracy: Accuracy is calculated as the sum of the true positives
(TP) and true negatives (TN) divided by the sum of the true
positives, true negatives, false positives, and false negatives.

Accuracy=(TP+TN)(TP+TN+FP+FN)

Chance Hit Rate: The Chance Hit Rate is calculated as the sum
of the product of sensitivity and prevalence, and the product of
specificity and (1-prevalence).

Chance Hit Rate=(Sensitivity⋅Prevalence)+(Specificity⋅(1−Prevalence))

Statistical analysis was carried out by the human researchers
due to limitations of ChatGPT at that time. The inter- and
intrarater reliability, sensitivity, specificity, and other statistics
were calculated using the inclusion/exclusion table created by
all authors. The extracted data were compared using Fleiss and
Cohen κ, correlating results from both human researchers and
2 iterations of ChatGPT 3.5 [35,36]. Consensus among human
researchers was considered the gold standard to compare the
performance of the human researchers with that of ChatGPT
3.5 iterations. When a specific measure was not considered as
an item, we used a binary categorization of “correct” or
“incorrect” as the items (ie, sample size) for assessing inter-
and intrarater reliability, decided by consensus with
consultation of a third human researcher.

Results

MESH Search and Screening Process
Our MESH search on PubMed yielded 155 papers. Upon
screening the titles, the two human researchers included 75
papers, while ChatGPT 3.5 included 115, achieving a sensitivity
of [original: 97.33%] 100% and specificity of [original: 37.5%]
50%(precision=65.2%, accuracy=74.2%, and chance hit
rate=49.2%). Following the abstract screening of all 155
abstracts, the two human researchers included 41 articles, while
ChatGPT 3.5 included 108, resulting in a sensitivity of [original:
95.12] 100% and specificity of [original: 34.38] 41.2%
(precision=39.6%, accuracy=56.8%, and chance hit
rate=40.7%). A total of [original: 38] 41 articles were selected
for full-text analysis, with 3 articles being excluded due to
unavailability. Ultimately, 5 articles were incorporated into our
systematic review [37–41].

Natural Language Processing Applications in Various
Clinical Settings

Clinical Decision Support System (CDSS) for
Concept-Based Searching
Berge et al. developed a machine learning-driven CDSS
employing NLP for concept-based searching in a Norwegian
hospital [37]. The study introduced an Information System for
Clinical Concept-based Search (ICCS) CDSS, devised to detect
patient allergies in EHRs using unsupervised machine learning
algorithms for clinical narrative analysis. The system combines
unsupervised and supervised algorithms with deterministic rules
to enhance precision. In a previous study, the ICCS achieved a
recall of 92.6%, precision of 88.8%, and F-measure of 90.7%.
The ICCS aims to improve allergy detection and classification,
thereby enhancing patient safety in anesthesia and ICU settings.
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Digital Pathology Applications
Marchesin et al. investigated the use of NLP to strengthen digital
pathology applications [38]. The authors introduced explainable
knowledge extraction tools capable of extracting pertinent
information from pathology reports. They presented the
Semantic Knowledge Extractor Tool (SKET), a hybrid
knowledge extraction system for digital pathology applications.
SKET combines expert knowledge, pre-trained machine learning
models, and rule-based techniques such as ScispaCy. The tool
exhibits high performance in entity linking and text classification
tasks across various cancer use-cases, surpassing unsupervised
approaches. The web-based system, SKET X, enables domain
experts to understand SKET's outcomes, rules, and parameters
for explainable AI. Applications include automatic report
annotation, pathological knowledge visualization, and Whole
Slide Image classification.

Identification of Nonvalvular Atrial Fibrillation (NVAF)
Elkin et al. employed artificial intelligence with NLP to integrate
electronic health record (EHR) structured and free-text data to
identify NVAF, aiming to reduce strokes and death [39]. The
study utilized high-definition NLP (HD-NLP) to process free
text in EHRs, identifying patients with Nonvalvular Atrial
Fibrillation (NVAF) and estimating their stroke and bleeding
risks. NLP-assisted analysis of structured and unstructured EHR
data improved detection rates and accuracy compared to
structured data alone. This approach could potentially prevent
176,537 strokes, 10,575 deaths, and save over $18 billion in the
first year if implemented nationally, with a net financial benefit
of approximately $14.4 billion.

Cardiovascular Disease Comorbidity Assessment
Berman et al. applied NLP to assess cardiovascular disease
comorbidities in the Cardio-Canary Comorbidity Project [40].
The authors demonstrated the potential of NLP in facilitating
the identification of comorbidities, leading to improved patient
care and outcomes in cardiovascular disease management. The
modules exhibited robust performance, particularly for
hypertension, dyslipidemia, and stroke, with over 95% positive
predictive value (PPV) for note-level performance. The NLP
modules provide an accurate, open-source system for various
applications, such as population management, clinical research,
and clinical trial recruitment.

Post-traumatic stress disorder (PTSD) Quality Metrics
Improvement
Shiner et al. explored the use of NLP to enhance PTSD quality
metrics in psychotherapy treatments for veterans [41]. The study
combined structured EMR data with NLP-derived data to
evaluate PTSD care quality in the Veteran Affairs system. The
validated NLP algorithm displayed a high degree of agreement
with template data (weighted kappa: 0.81), capturing nearly
90% of evidence based psychotherapy for PTSD visit days. The
study revealed that 20% of PTSD checklist values were
documented exclusively in free-text clinical notes. The findings
suggest that NLP can bridge documentation gaps, provide a
more comprehensive view of care quality, and improve
measurement practices for PTSD patients within the Veterans
Affairs healthcare system.

Comparison Between ChatGPT and Human
Researchers
Except for clinical tasks (κ=0.56), both human researchers
showed very good agreement (κ>0.90) for the parameters
extracted from the included articles (Table 1). ChatGPT and
the human researchers showed very good agreement for the
article’s language (κ=1), targeted disease (κ=1), NLP model
(κ=0.95), sample size (κ=0.83), and performance parameters
(κ=0.85); good agreement for study design (κ=0.79); moderate
agreement for clinical task (κ=0.58); and only fair agreement
for clinical implementation (κ=0.34). All numbers were
extracted correctly from the articles by ChatGPT.

In the process of composition, ChatGPT was prompted to
provide source citations (refer to Table S2 in Multimedia
Appendix 19). Among the 28 references supplied, 3 were found
to be fictitious: Smith, Brown & Lee (2022), Demner-Fushman
& Chapman (2017), and McCoy, Hughes, Jao & Perlis (2019);
this rendered the attribution of Smith, Lee and Joa uncertain.
Although the other authors have multiple publications within
the NLP domain, a reliable attribution remains elusive. Five of
the references were thematically pertinent, yet they did not
accurately substantiate the statements made. Additionally, 2
sources required corrections to their publication years.
Consequently, a total of 15 references were amended, appended,
or substituted.
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Table 1. Inter- and intrarater reliability for extraction items using Fleiss and Cohen κ.

Human researcher 1 vs 2 (Cohen κ)GPTa 3.5 1 vs 2 (Cohen κ)All (Fleiss κ)

111Language

111Targeted disease

0.947368420.789390340.7333676Study design

10.9473319470.1441441NLPb model

0.914861840.829723674–0.041096Sample size

0.94255480.8537336410.6847407Performance

0.564220180.583724570.5615047Clinical Task

0.921325050.341278440.3531915Implementation

aGPT: Generative Pre-Trained Transformer.
bNLP: natural language processing.

Discussion

This systematic review aimed to investigate the current natural
language processing (NLP) models being used in daily clinical
practice. We identified five studies that showcased various
applications of NLP in clinical settings, including clinical
decision support systems, digital pathology applications,
identification of nonvalvular atrial fibrillation, cardiovascular
disease comorbidity assessment, and PTSD quality metrics
improvement. These studies highlight the potential of NLP to
revolutionize healthcare by improving efficiency, accuracy, and
patient care.

Berge et al. [37] presented a clinical decision support system
(CDSS) that uses NLP for concept-based searching in a
Norwegian hospital. Their study demonstrated the potential of
machine learning-driven CDSS to improve allergy detection
and classification, leading to enhanced patient safety in
anesthesia and ICU settings. Marchesin et al. [38] focused on
the application of NLP in digital pathology applications,
showcasing how NLP can support pathologists and improve the
overall quality of pathology diagnosis and patient care. Elkin
et al. [39] showed the effectiveness of NLP in identifying NVAF
patients, which has the potential to lead to better management
of NVAF and prevent strokes and death. Berman et al. [40]
utilized NLP for cardiovascular disease comorbidity assessment,
illustrating the potential of NLP to facilitate the identification
of comorbidities, leading to improved patient care and outcomes.
Lastly, Shiner et al. [41] examined the use of NLP to improve
PTSD quality metrics in psychotherapy treatments for veterans,
demonstrating NLP's value in capturing important data in large
healthcare systems and improving measurement practices.

The studies included in this review showcased various NLP
techniques, such as machine learning algorithms, rule-based
techniques, and the use of pre-trained models like ScispaCy.
These approaches demonstrate the versatility of NLP in handling
different clinical tasks and highlight the potential for continued
development in this field. Moreover, the use of
transformer-based models like GPT-3 in conducting this
systematic review serves as an example of how NLP can
improve the efficiency and accuracy of literature synthesis in a
streamlined manner [32].

Despite the promising results, the studies included in this review
also have some limitations. First, the studies are limited in terms
of the variety of clinical applications and settings, as only five
studies were included in the review. This could potentially limit
the generalizability of the findings. Furthermore, the studies
may have inherent biases and limitations that could impact the
interpretation of the results. It is essential to be cautious when
extrapolating these findings to other contexts and clinical
settings.

Future research should focus on expanding the range of clinical
applications and settings where NLP can be utilized, as well as
investigating the scalability and generalizability of the identified
approaches. Additionally, more studies should be conducted to
explore the potential of transformer-based models like GPT-3
and BERT in clinical practice. These models have shown great
promise in various NLP tasks and may offer further
advancements in the field of healthcare.

In conclusion, our systematic review highlights the potential of
NLP in revolutionizing clinical practice by improving efficiency,
accuracy, and patient care. The studies included in this review
showcase various NLP applications in clinical settings,
demonstrating the versatility and potential for growth in this
field. Further research is needed to expand the range of clinical
applications and settings, as well as to explore the potential of
transformer-based models in healthcare. As NLP continues to
advance, it is expected that its impact on clinical practice will
only increase, leading to improved patient outcomes and more
efficient healthcare systems. 

Concluding Remarks by the Human
Authors

Concerning the systematic review, we only searched PubMed
and no other database or registry. Furthermore, the MeSH
search generated only 155 hits, and we must admit that this
study does not allow us to determine whether NLPs are of
practical use in clinical practice today. Since the MeSH term
itself was produced by ChatGPT and the main goal of this study
was to explore the usefulness of ChatGPT in performing or
assisting in systematic reviews, we adhered to the generated
methods; however, this compromises the quality of the
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systematic review. Therefore, we do not believe that an adequate
commentary on the state and usefulness of NLP in clinical
practice is within the scope of this study. During the research,
ChatGPT underwent several updates. We attempted to split
workflows for both GPT 3.5 and GPT 4.0. Since developments
on LLMs change at a fast pace, their applicability might change
fast as well, which means that results from interactions and the
idea of augmented or automated systematic reviews can change
drastically, for example, with developments in LLMs’ ability to
access of databases such as PubMed or Cochrane.

We hypothesize that automated systematic reviews could become
a reality in the near future. However, the current state of
ChatGPT versions 3.5 and 4.0, with their multiple limitations,
renders augmented systematic reviews inefficient for
experienced researchers. Yet, for language correction,
particularly for nonnative English speakers, and rectification
of grammatical errors, or for text condensation and modification
in form and wording, it proves to be of significant value. As we
confined our study to ChatGPT, without the use of any plugins

or application programming interface implementations, we
anticipate that the forthcoming months or years will witness an
increased application of LLMs in scientific research, showcasing
intriguing architectures such as “Lang Chain” and “Agent
GPT” as pioneering examples of more complex programs
powered by LLMs.

Ethical and legal concerns about the implementation of LLMs
in a scientific field as sensible as medicine have led to an
ongoing discussion and should be considered before broadening
the spectrum of clinical applications for NLP-driven
automations. The black box issue associated with LLMs such
as ChatGPT, even when using the most deterministic options,
is an undeniable fact. Automatic analyses of all available
literature within minutes or seconds, however, would change
the way we conduct research or are able to access information
in clinical practice. Further research is imperative,
accompanied by a debate on the ethical implications of such
potent tools and strategies to oversee and regulate the use of
these models in scientific writing.
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SKET: Semantic Knowledge Extractor Tool
TN: true negative
TP: true positive
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