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Abstract

Background: Recent advances in natural language processing (NLP) have heightened the interest of the medical community
in its application to health care in general, in particular to stroke, a medical emergency of great impact. In this rapidly evolving
context, it is necessary to learn and understand the experience already accumulated by the medical and scientific community.

Objective: The aim of this scoping review was to explore the studies conducted in the last 10 years using NLP to assist the
management of stroke emergencies so as to gain insight on the state of the art, its main contexts of application, and the software
tools that are used.

Methods: Data were extracted from Scopus and Medline through PubMed, using the keywords “natural language processing”
and “stroke.” Primary research questions were related to the phases, contexts, and types of textual data used in the studies.
Secondary research questions were related to the numerical and statistical methods and the software used to process the data. The
extracted data were structured in tables and their relative frequencies were calculated. The relationships between categories were
analyzed through multiple correspondence analysis.

Results: Twenty-nine papers were included in the review, with the majority being cohort studies of ischemic stroke published
in the last 2 years. The majority of papers focused on the use of NLP to assist in the diagnostic phase, followed by the outcome
prognosis, using text data from diagnostic reports and in many cases annotations on medical images. The most frequent approach
was based on general machine learning techniques applied to the results of relatively simple NLP methods with the support of
ontologies and standard vocabularies. Although smaller in number, there has been an increasing body of studies using deep
learning techniques on numerical and vectorized representations of the texts obtained with more sophisticated NLP tools.

Conclusions: Studies focused on NLP applied to stroke show specific trends that can be compared to the more general application
of artificial intelligence to stroke. The purpose of using NLP is often to improve processes in a clinical context rather than to
assist in the rehabilitation process. The state of the art in NLP is represented by deep learning architectures, among which
Bidirectional Encoder Representations from Transformers has been found to be especially widely used in the medical field in
general, and for stroke in particular, with an increasing focus on the processing of annotations on medical images.
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Introduction

Stroke, also called “brain attack,” is a medical emergency that
occurs when blood flow to a part of the brain is disrupted caused
by a clot blocking an artery or by a cerebral hemorrhage due to
a ruptured artery. Stroke can result in a range of symptoms and
complications depending on the area of the brain that is affected,
having impacts on perception, motor control (typically weakness
or paralysis on one side of the body, dizziness or difficulty with
balance), or behavior (difficulty in speaking or understanding
speech), which is a life-threatening emergency that requires
immediate medical attention. Although mortality from stroke
is decreasing in developed, high-income countries, it remains
one of the leading causes of mortality and disability along with
ischemic heart disease, and the prevalence of people living with
the effects of stroke is increasing due to the growing and aging
population [1].

Therefore, the economic and social costs related to the
hospitalization, treatment, and recovery of stroke patients are
increasing, and there is a growing demand for advanced
technologies that can assist in clinical diagnosis, treatment,
predictions of clinical events, intervention recommendations,
rehabilitation programs, and related factors [2]. For instance, a
quick diagnosis and treatment of stroke is crucial as it leads to
improved outcomes and prognosis among patients treated within
the so-called “golden hour” [3].

In this context, novel approaches that complement and go
beyond evidence-based medicine are required. Tools based on
artificial intelligence (AI), with their ability to process large
amounts of data, have been widely discussed in recent years as
one of the proposed approaches to improve the care of stroke,
assisting in diagnosis, prognosis, treatment, and prevention
[3,4].

AI is an interdisciplinary science with multiple approaches,
which in recent years has experienced a significant growth in
the fields of machine learning (ML) and deep learning (DL).
ML and DL algorithms can learn from data and improve their
performance over time without being explicitly programmed,
and these methods can deal with very large and complex data
sets. DL is considered a recent specialization of ML, which uses
artificial neural networks to extract complex representations
and features from data. Throughout the manuscript, a distinction
is made between DL, used for algorithms based on multilayered
neural networks, and traditional ML based on other techniques.

The application of AI to the management of stroke is a topic
that has gained a lot of traction in the general field of health
informatics [5], partly owing to the remarkable impact of stroke
in public health and the subsequent high demand for effective
and efficient tools to diagnose and treat stroke. Moreover, the
complexity and variety of stroke casuistry make it a good target
for AI solutions, which are especially suited to process large
amounts of data from a wide range of sources, identify patterns
and trends in large data sets, and learn and adapt to new data.

A domain where those advances have produced particularly
good results is natural language processing (NLP), which is a
promising tool for medicine to unlock the full potential of

electronic health records (EHRs), since it might be used to
automatically transform clinical text into structured clinical data
that can guide clinical decisions [6,7]. The potential of NLP in
the analysis of EHR data is particularly appealing given the
great quantity of data contained in these records.
Notwithstanding their importance, such data are intractable with
conventional mathematical methods, since they are recorded in
clinical reports, prescriptions, annotations on medical images,
and generally unstructured texts [8].

NLP can assist in the identification of patterns and trends in
large data sets, which can improve the understanding of factors
that contribute to the development of diseases and can in turn
help to define more effective prevention and treatment strategies.
NLP can also be used in the analysis of particular cases to guide
decisions and potentially delay or prevent the onset of the
disease. NLP can also be used to develop intelligent systems to
find relevant information in the medical literature [9].

Nevertheless, NLP poses particular challenges, including the
protection of privacy in the extraction of data, since personal
information is often mixed with other data; the variety of the
quality and format of EHR data, which depend on the source
and software used to collect them; and the difficulty of
annotating data samples for training [10]. Therefore, to unlock
the potential of NLP in the exploitation of EHRs, researchers
and developers need to combine different advanced ML
techniques, apply careful data management, and gain a deep
understanding of the clinical domain. There is, however, a
paucity of guidance on selecting appropriate methods tailored
to the health care industry [11].

This scoping review aimed to gather the knowledge that might
help in that guidance by investigating how NLP is used to
deliver a smarter health care in different phases of stroke
disorders (prevention, diagnosis, treatment, and prognosis). The
primary questions that served as a guide for the review are: (1)
In which phases or contexts of stroke management is NLP used
(prevention, diagnosis, treatment, and/or prognosis)? (2) Which
are the main benefits of applying NLP to stroke management,
related to clinical, social, and economic factors? and (3) What
types of clinical data are collected and used by NLP in stroke
management (ie, demographic data, medical notes, physical and
functional examination, reports of laboratory or medical
devices)?

This review also focused on the following secondary questions:
(1) What NLP methods, AI algorithms, and tools are used in
stroke studies? (2) Which AI techniques or frameworks are used
to process and analyze the data? (3) Are there algorithms and
NLP software specifically tuned for stroke? and (4) Which tools
have the best performance and how do they compare to others?

Methods

Design
The unregistered protocol for this review was created following
the PRISMA-ScR (Preferred Reporting Items for Systematic
reviews and Meta-Analyses extension for Scoping Reviews)
guidelines [12] and the JBI Manual for Scoping Reviews [13].
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Inclusion Criteria
The target patient population of this scoping review included
adults that had suffered stroke and people at risk of stroke due
to a history of predisposing vascular background or other
conditions that increase the risk of developing stroke, including
mental illness or heart diseases such as a reduced ejection
fraction.

The main concept of interest was the use of NLP in stroke
management in public or private health care systems, including
use cases and the data and technologies involved in those
applications. We considered both the application of NLP for
monitoring and decision-making of individual patients as well
as for the planification of care resources in the management of
stroke cases.

We were interested in any context where prevention, treatment,
or rehabilitation of stroke might take place, ranging from early
detection outside or inside clinical settings, diagnosis and
evaluation of cases, clinical decision-making, administration
and monitoring of rehabilitation, and postrehabilitation
management.

The types of evidence sources taken into account included
articles from peer-reviewed journals, books, and conference
papers, considering both primary research studies and systematic
or scoping reviews, as well as reports from scientific, medical,
or government institutions.

Search Strategy
The search was performed in the electronic databases of Scopus
and Medline through PubMed, using the keywords “natural
language processing” and “stroke,” restricted to articles
published in the last 10 years, between 2013 and 2022.

Selection Process
The results of the search were imported into the Zotero
Reference Manager software (Corporation for Digital
Scholarship, Virginia), which was used to filter out duplicate
records. Titles and abstracts of the filtered list were screened
independently by two reviewers to ascertain their eligibility
according to the inclusion criteria. Disagreements were resolved
in a discussion session between the reviewers to obtain a
consensus.

The full text of the papers was read by two independent
reviewers to extract the relevant data as described below. An
internal cross-validation by three other experts on the topic was
also considered. Works whose content did not meet the
eligibility criteria or did not contain sufficient information to

answer the primary questions were excluded and those that
reported the same results from the same study were treated as
duplicates. The record of rejected works was shared by the
reviewers to confirm the decisions of either part.

Data Extraction and Presentation of Results
The reviewers filled out a table with the following data from
each work included in the final selection: type of study, primary
diagnosis, related diseases that were used either as inclusion
criteria or as predictors in the data analysis, sample size (if
suitable), and qualitative responses to the primary and secondary
questions.

Works were classified depending on whether or not they
reported experimental studies, and those that did were further
subclassified as clinical trials or different types of observational
studies: cross-sectional, retrospective or prospective, and cohort
or case-control studies.

A dictionary of terms was defined for the tabulated records of
the primary and secondary questions and their relative
frequencies were calculated. In addition, the relationships
between answers were analyzed in two different multiple
correspondence analyses (MCAs), which can be employed to
detect and represent underlying structures in categorical data
sets (ie, frequent co-occurrence of specific categories in two or
more variables) [14]. One of the MCAs focused on the primary
questions, seeking relationships between the context of
application (eg, classification of diagnostics, prognosis of
outcomes) and the types of data that were processed. The other
MCA focused on the secondary questions, seeking relationships
between NLP methods and software tools. In both analyses, the
type of AI models (general ML, DL, or rule-based algorithms)
was also included as a variable. The analysis was performed in
R [15], using the packages factoMineR [16] and factoextra [17]
for MCA and its graphical representation.

Results

General Description of the Studies
A total of 115 unique papers were identified out of 223 records
obtained in the search; 29 studies were eventually included for
data extraction and analysis after screening by title and abstract
and reading of the full text (see the flow diagram in Figure 1).

The general characteristics of the 29 reviewed studies (year,
type of study, target diseases, and sample size), together with
the items extracted from the primary and secondary questions
are respectively presented in Tables 1, 2, and 3.
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Figure 1. Flow diagram of the review process. NLP: natural language processing.
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Table 1. Summary of the included studies: study type, sample size, type of stroke, and other diseases or conditions taken into account.

Other conditionsType of strokeSample sizeaType of studyYearReference

AFbTransient ischemic attack, hemor-
rhagic stroke

4914Cohort study2021Zhao et al [18]

AF, CADc, DMd, dyslipidemia,

hypertension, smoking, othere

Ischemic stroke188Retrospective cross-sectional
cohort study

2021Zanotto et al [19]

AF, CHFf, DM, cancer, hyperlipi-
demia, hypertension

Acute ischemic stroke3847Retrospective cohort study2022Sung et al [20]

AF, CHF, DM, cancer, hyperlipi-
demia, hypertension

Acute ischemic stroke3847Retrospective cohort study2021Sung et al [21]

OtherIschemic stroke918Retrospective cohort study2022Miller et al [22]

OtherAcute ischemic stroke, hemor-
rhagic stroke

965Cohort study2021Mayampurath et
al [23]

AF, CAD, CHF, DM, cancer,
hyperlipidemia, hypertension,
other

Ischemic stroke, hemorrhagic
stroke

2855Retrospective cohort study2021Lineback et al
[24]

NoneIschemic stroke, hemorrhagic
stroke, transient ischemic attack

7149Retrospective cohort study2020Kogan et al [25]

DM, dyslipidemia, hyper-
glycemia, hypertension, smok-
ing, other

Acute ischemic stroke1810Retrospective cohort study2020Heo et al [26]

DM, hypertensionHemorrhagic stroke1000 (simulated)Feasibility study2022Deng et al [27]

NoneTransient ischemic attack2201Cohort study2019Bacchi et al [28]

NoneIschemic stroke, hemorrhagic
stroke

1320Cohort study2021Yu et al [29]

NoneIschemic stroke, hemorrhagic
stroke

2160Cohort study2019Wheater et al
[30]

NoneAcute ischemic stroke4640Cohort study2020Sung et al [31]

Hyperglycemia, otherAcute ischemic stroke90Feasibility study2018Sung et al [32]

AF, CHF, DM, hypertensionStroke comorbidities2327Cohort study2021Shek et al [33]

NoneIntracerebral hemorrhage, sub-
arachnoid hemorrhage, and is-
chemic stroke

207Cohort study2021Rannikmäe et al
[34]

NoneAcute ischemic stroke721Cohort study2020Ong et al [35]

CAD, CHF, DM, hypertensionIschemic stroke498Cohort study2016Mowery et al
[36]

NoneAcute or subacute ischemic
stroke

3971Cohort study2021Li et al [37]

OtherNot applicable182Cohort study2021Leung et al [38]

NoneAcute ischemic stroke3204Cohort study2019Kim et al [39]

AF, CAD, CHF, DM, hyperlipi-
demia, hypertension, other

Ischemic stroke261,960Retrospective cohort study2021Kent et al [40]

OtherAcute ischemic stroke1700Retrospective cohort study2021Lin et al [41]

CHF, otherIschemic stroke1598Cohort study2021Guan et al [42]

AF, CAD, DM, hyperlipidemia,
hypertension

Ischemic stroke1091Cohort study2019Garg et al [43]

AFNot applicable16,916Retrospective cohort study2022Farran et al [44]

AFNot applicable96,681Cohort study2021Elkin et al [45]

NoneIschemic stroke, hemorrhagic
stroke

438Cohort study2022Bacchi et al [46]
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aNumber of patients involved.
bAF: atrial fibrillation.
cCAD: coronary artery disease.
dDM: diabetes mellitus.
eOther refers to conditions that are not already listed in the table.
fCHF: coronary heart failure.

The vast majority were cohort studies that analyzed clinical
aspects, along with societal or economic aspects of the disease
in some cases, at the moment of data gathering. Approximately
one third of the papers (n=10) also included a retrospective
analysis and 2 of them were limited to feasibility studies.
Although the search included a time span of 10 years, only one
of the studies included in the review was older than 5 years [36]
and most studies (n=19) had been published in the last 2 years
(2021 or 2022).

Most studies (n=24) focused on ischemic stroke (either acute,
subacute, or transient); the second most frequent type of stroke
was hemorrhagic stroke (n=9), which in the majority of cases
was in addition to and not excluding ischemic stroke (only 2
papers dealt exclusively with hemorrhagic stroke). Many studies
considered other clinical conditions that were used to select the
patients or were included as information taken into account by

the models. The most common conditions were atrial fibrillation,
diabetes mellitus, and hypertension; each of them was
considered in one third of the reviewed papers (n=10). Other
diseases that were considered with smaller frequency were
hyper- or dyslipidemia, hyperglycemia, hypercholesterolemia,
coronary heart failure, smoking, or cancer.

The sample size of the cohort studies was highly varied, ranging
between 182 patients [38] and more than 260,000 patients [40],
with a median sample size of 2160 patients. The two feasibility
studies were conducted either with simulated cases [27] or with
a smaller sample of 90 patients [32].

Table 4 shows the frequency of each category used to classify
the answers to the primary and secondary questions, except for
the question about the specificity of algorithms and NLP tools
for stroke, since there was little variability in those answers.
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Table 2. Summary of the answers to the primary questions.

Types of clinical databExpected benefitsContext for NLPa useReference

Demographic data, laboratory test re-
sults, medical history, medication

CLINICAL: improved triagePrevention and diagnosis (clas-
sification)

Zhao et al [18]

Diagnostic reportsCLINICAL: care information management, charac-
terize patients, prediction of outcomes, risk assess-

Prognosis (outcomes)Zanotto et al [19]

ment; SOCIETAL: supporting research studies;
ECONOMIC: public health management

Annotated medical images, clinical
scales, demographic data, diagnostic re-
ports, medical history, patient treatments

CLINICAL: prediction of outcomesPrognosis (outcomes)Sung et al [20]

Annotated medical images, clinical
scales, demographic data, diagnostic re-
ports, functional outcomes data

CLINICAL: prediction of outcomes, risk assess-
ment

Prognosis (outcomes)Sung et al [21]

Annotated medical images, diagnostic
reports

CLINICAL: prediction of outcomes, risk assess-
ment

Prognosis (outcomes)Miller et al [22]

Diagnostic reportsCLINICAL: improved triageDiagnosis (classification)Mayampurath et al
[23]

Demographic data, diagnostic reports,
medical history, medication, patient
treatments

CLINICAL: care information managementPrognosis (recurrence)Lineback et al [24]

Demographic data, clinical scales, medi-
cal history, patient treatments, medica-
tion

CLINICAL: administration of treatments, care in-
formation management, improved triage, prediction
of outcomes

Prognosis (outcomes)Kogan et al [25]

Annotated medical images, diagnostic
reports

CLINICAL: prediction of outcomesPrognosis (outcomes)Heo et al [26]

Annotated medical images, clinical
scales, diagnostic reports, medical histo-
ry

CLINICAL: administration of treatmentsDiagnosis (details); treatmentDeng et al [27]

Annotated medical images, diagnostic
reports, medical history, medication

CLINICAL: stroke cause predictionDiagnosis (classification)Bacchi et al [28]

Annotated medical images, diagnostic
reports

CLINICAL: improved triage; ECONOMIC: public
health management

Diagnosis (details)Yu et al [29]

Annotated medical images, diagnostic
reports

CLINICAL: disease surveillance, improved triage;
ECONOMIC: public health management

Diagnosis (classification)Wheater et al [30]

Diagnostic reportsCLINICAL: administration of treatments, care in-
formation management, disease surveillance;
ECONOMIC: public health management

Prevention and diagnosis (clas-
sification)

Sung et al [31]

Diagnostic reports, laboratory test re-
sults, medical history

CLINICAL: administration of treatmentsDiagnosis (details); treatmentSung et al [32]

Demographic data, medical historyCLINICAL: care information managementDiagnosis (comorbidities)Shek et al [33]

Annotated medical images, diagnostic
reports

CLINICAL: improved triageDiagnosis (classification)Rannikmäe et al [34]

Annotated medical images, diagnostic
reports

CLINICAL: administration of treatments, prediction
of outcomes; SOCIETAL: supporting research
studies

Diagnosis (details)Ong et al [35]

Diagnostic reportsCLINICAL: risk assessmentPreventionMowery et al [36]

Annotated medical images, diagnostic
reports

CLINICAL: improved triageDiagnosis (classification)Li et al [37]

Annotated medical images, diagnostic
reports

CLINICAL: care information management, charac-
terize patients

Diagnosis (details)Leung et al [38]

Annotated medical images, laboratory
results, demographic data, diagnostic
reports, functional outcomes data

CLINICAL: care information management, charac-
terize patients

Diagnosis (classification)Kim et al [39]
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Types of clinical databExpected benefitsContext for NLPa useReference

Annotated medical images, diagnostic
reports

CLINICAL: care information management, charac-
terize patients, stroke cause prediction

Prognosis (outcomes)Kent et al [40]

Diagnostic reportsSOCIETAL: supporting research studiesDiagnosis (details); prognosis
(recurrence)

Lin et al [41]

Clinical scales, diagnostic reportsCLINICAL: improved triageDiagnosis (classification)Guan et al [42]

Annotated medical images, diagnostic
reports, medical history

CLINICAL: improved triage, risk assessmentDiagnosis (classification)Garg et al [43]

Clinical scales, demographic data, medi-
cal history, patient treatments

CLINICAL: stroke cause prediction, disease
surveillance; ECONOMIC: public health manage-
ment

Diagnosis (classification);
prognosis (outcomes)

Farran et al [44]

Clinical scales, demographic dataNot applicableDiagnosis (classification)Elkin et al [45]

diagnostic reports, patient treatmentNot applicableDiagnosis (classification)Bacchi et al [46]

aNLP: natural language processing.
bSee Multimedia Appendix 1 for the definitions of clinical data types, following Jiang et al [6].
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Table 3. Summary of the answers to the secondary questions.

Best performing
methods

Performance metricscSoftware packagesc,dOther statistical methodscNLPb methodscAIa tech-
nique

Reference

RFPPVh, NPVi, F1, sen-
sitivity

MedTagger, WekaLRf, RFgRegular expressionsMLeZhao et al
[18]

SVM ontologi-
cal rules

PPV, F1, sensitivityspaCyCNNn, K-NNo, RF,

SVMp, naïve Bayes

Ontologies (OWLj), BERTk,

BOWl, TF-IDFm

MLZanotto et al
[19]

Not applicableAUCs, IDIt, NRIuJazzy spell checker,

MetaMap, XGBoostr
Gradient boostingNegation extraction ontolo-

gies (UMLSq)

MLSung et al
[20]

Not applicableAUC, IDI, NRIJazzy spell checkerNot applicableBOW, BERT (Clinical-
BERT)

DLSung et al
[21]

BioClinical-
BERT (except

AUC, PPV, sensitivi-
ty, specificity

scikit-learnLASSOv, K-NN, RF,

MLPw

BOW, negation extraction,
TF-IDF, BERT (BioClinical-
BERT)

DL rule-
based

Miller et al
[22]

for rare and
continuous out-
comes)

Not applicableAUC, PPV, NPV,
sensitivity, specificity

Not applicableSVMN-grams (1- or 2-)MLMayampu-
rath et al
[23]

ML methods in
general

AUCXGBoostLASSO, LR, PCAx, RF,
SVM, gradient boosting,
naïve Bayes

N-grams (1- or 2-), TF-IDF,
Word-embedding
(Word2Vec)

MLLineback et
al [24]

Not applicableCorrelations, RMSEyNot applicableRF, gradient boosting,
MLP

Not applicableML rule-
based

Kogan et al
[25]

Document-level
methods, CNN

AUCQuanteda, NLTKaa,
Tensorflow, Keras

Decision trees, CNN,

LASSO, LSTMz, MLP,
RF, SVM

BOW, Word-embedding
(sent2vec, BioWordVec)

DLHeo et al
[26]

Not applicableAUC, PPV, NPV,
sensitivity, specificity

Not applicableNot applicableBERTDL rule-
based

Deng et al
[27]

CNNAUC, PPV, NPV,
sensitivity, specificity

Not applicableDecision trees, CNN,
LSTM, RF

BOW, negation extractionDLBacchi et al
[28]

Not applicablePPV, NPV, accuracy,
sensitivity, specificity

CHARTextractNot applicableRegular expressionsRule-
based

Yu et al [29]

Not applicablePPV, sensitivity,
specificity

BRAT rapid annota-
tion tool

Not applicableRegular expressions, gram-
matical analysis, ontologies
(custom), negation extrac-
tion

Rule-
based

Wheater et
al [30]

Mixed resultsAccuracy, κGoogle spell checker,
MetaMap, Weka

Decision trees (CARTbb),
K-NN, LR, RF, SVM

Grammatical analysis (part-
of-speech), negation extrac-
tion, ontologies (UMLS)

ML rule-
based

Sung et al
[31]

Document-level
methods

NPV, F1, sensitivity,
specificity

Google spell checker,
MetaMap, Stata

Not applicableGrammatical analysis (part-
of-speech), negation extrac-
tion, ontologies (UMLS)

Not appli-
cable

Sung et al
[32]

Not applicableNPV, F1, sensitivity,
specificity

MedCATNot applicableGrammatical analysis,
Negation extraction, Ontolo-

gies (SNOMEDcc)

DLShek et al
[33]

Mixed resultsPPV, sensitivitySemEHRNot applicableOntologies (UMLS)ML rule-
based

Rannikmäe
et al [34]

GloVE + LSTMAUC, F1, accuracy,
sensitivity, specificity

scikit-learn, Tensor-
flow

Decision trees (CART),
K-NN, LR, LSTM, RF

BOW, TF-IDF, Word-em-

bedding (GloVEdd)

DLOng et al
[35]

Not applicablePPV, NPV, sensitivi-
ty, specificity

pyConTexTNot applicableRegular expressionsRule-
based

Mowery et
al [36]

Not applicableF1, accuracyscikit-learn, NLTKRFBOW, N-gram (2- and 3-),
negation extraction

MLLi et al [37]
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Best performing
methods

Performance metricscSoftware packagesc,dOther statistical methodscNLPb methodscAIa tech-
nique

Reference

Not applicablePPV, NPV, accuracy,
sensitivity, specificity

MedTaggerNot applicableNot applicableDL rule-
based

Leung et al
[38]

Single decision
trees

AUC, F1QuantedaDecision trees, LR, naïve
Bayes, RF, SVM

N-gram (1- and 2-), TF-IDFMLKim et al
[39]

Not applicablePPV, NPV, accuracy,
sensitivity, specificity

MedTaggerNot applicableOntologies (named entity
recognition)

DL rule-
based

Kent et al
[40]

StrokeBERTAUC, F1spaCyNot applicableBERT (ClinicalBERT,
StrokeBERT)

DLLin et al [41]

RFAUC, PPV, NPV, F1,
accuracy, specificity

QuantedaDecision trees (CART),
K-NN, LR, RF, SVM

Regular expressions, nega-
tion extraction

MLGuan et al
[42]

Stacking, LR,
gradient boost

AUC, sensitivity, κcTAKES, spaCy, XG-
Boost

Decision trees, K-NN,
stacking LR, PCA, RF,
SVM, gradient boosting

BOW, N-grams (1- to 3-)MLGarg et al
[43]

Not applicableAccuracyMedCATNot applicableOntologies (SNOMED),
negation extraction

MLFarran et al
[44]

Not applicablePPV, NPV, sensitivi-
ty, specificity

HD-NLPeeNot applicableOntologies (SNOMED)MLElkin et al
[45]

RFAUC, PPN, NPP, sen-
sitivity, specificity

scikit-learn, NLTKDecision trees, LR, RFBOW, N-grams (1- to 3-),
negation extraction

MLBacchi et al
[46]

aAI: artificial intelligence.
bNLP: natural language processing.
cSee brief descriptions of the NLP tools, statistical methods, software packages, and performance metrics in Multimedia Appendix 2 [47-51].
dExcluding general programming frameworks like Python or R.
eML: machine learning.
fLR: logistic regression.
gRF: random forest.
hPPV: positive predictive value.
iNPV: negative predictive value.
jOWL: Web Ontology Language.
kBERT: Bidirectional Encoder Representations from Transformers.
lBOW: bag-of-words.
mTF-IDF: term frequency-inverse document frequency.
nCNN: convolutional neural network.
oK-NN: K-nearest neighbor.
pSVM: support vector machine.
qUMLS: Unified Medical Language System.
rXGBoost: extreme gradient boosting.
sAUC: area under the curve.
tIDI: integrated discrimination index.
uNRI: Net Reclassification Index.
vLASSO: least absolute shrinkage and selection operator.
wMLP: multilayer perceptron.
xPCA: principal component analysis.
yRMSE: root mean squared error.
zLSTM: long short-term memory.
aaNLTK: Natural Language Processing toolkit for Python.
bbCART: classification and regression tree.
ccSNOMED: Systematized Nomenclature of Medicine.
ddGLoVE: Global Vectors for Word Representation.
eeHD-NLP: high-definition natural language processing.
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Table 4. Frequencies of distinctive items found in primary and secondary questions among the included studies (N=29).a

Studies, n (%)Variable and categoryb

Context

13 (45)Diagnostic (classification)

6 (21)Diagnostic (details)

8 (28)Prognostic (outcomes)

2 (7)Prognostic (recurrence)

3 (10)Prevention

2 (7)Treatment

Clinical benefits

9 (31)Improved triage

8 (28)Care information management

7 (24)Prediction of outcomes

5 (17)Administration of treatments

5 (17)Risk assessment

4 (14)Patient characterization

3 (10)Disease surveillance

3 (10)Stroke causes

Data sources

24 (83)Diagnostic reports

15 (52)Annotated images

10 (34)Medical history

9 (31)Demographic data

7 (24)Clinical scales

5 (17)Treatments

4 (14)Medication

3 (10)Laboratory results

2 (7)Functional outcomes data

Artificial intelligence technique

15 (52)MLc

10 (34)DLd

10 (34)Rule-based

Natural language processing tools

11 (38)Negation extraction (NEGEX)

10 (34)Ontologies

Bag-of-words (BOW)

6 (21)n-grams

5 (17)Bidirectional Encoder Representations from Transformers (BERT)

5 (17)Regular expressions (REG-EXPR)

5 (17)TF-IDFe

4 (14)Grammatical analysis

3 (10)Word-embedding

Other statistical tools
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Studies, n (%)Variable and categoryb

14 (48)Random forest (RF)

8 (28)Decision trees

7 (24)Support vector machine (SVM)

7 (24)Logistic regression (LR)

6 (21)K-nearest neighbor (K-NN)

4 (14)Gradient boosting

3 (10)Naïve Bayes

3 (10)Multilayer perceptron (MLP)

3 (10)Long short-term memory (LSTM)

2 (7)Principal component analysis (PCA)

Software packages

4 (14)scikit-learn

3 (10)NLTKf

3 (10)spaCy

3 (10)Quanteda

3 (10)MedTagger

3 (10)MetaMap

3 (10)XGBoostg

2 (7)MedCAT

2 (7)Weka

2 (7)Tensorflow

Performance metrics

23 (79)Based on ratios (PPVh, NPVi, F1, accuracy, sensitivity, or specificity)

14 (48)Based on ROCj curves (AUCk, C-statistic)

2 (7)Differential measures (NRIl, IDIm)

aOnly the items that occurred more than once are reported in this table; however, since different items often overlapped in each study, the frequencies
of each variable normally sum to more than 100%.
bSee brief descriptions of the NLP tools, statistical methods, software packages, and performance metrics in Multimedia Appendix 2 [47-51].
cML: machine learning.
dDL: deep learning.
eTF-IDF: term frequency-inverse document frequency.
fNLTK: Natural Language Processing toolkit for Python.
gXGBoost: extreme gradient boosting.
hPPV: positive predictive value.
iNPV: negative predictive value.
jROC: receiver operating characteristic.
kAUC: area under the curve.
lNRI: Net Reclassification Index.
mIDI: integrated discrimination index.

The most frequent context of stroke in which the studies were
applied was the diagnostic phase, followed by the prognosis of
outcomes. The potential benefit of the results on clinical
processes (eg, improving the triage of patients depending on
the type or severity of stroke, more efficient management of
care information) was the main focus of all studies but one [41],
which chiefly focused on the societal aspect of supporting

research studies, similar to two other studies that also evaluated
that aspect along with clinical applications. Five of the 29 studies
(17%) also considered the potential economic benefit of NLP,
in terms of reducing the costs of stroke for the public health
sector.
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The most frequent source of data for NLP models was diagnostic
reports (n=24), followed in many cases by annotations on
medical images such as radiographs and scans (n=15). General
ML models were used more frequently than DL or rule-based
algorithms to process the data (n=15 for ML vs n=10 papers for
either DL or rule-based techniques). NLP tools, other statistical
methods, and the software packages that were used to implement
them highly varied across papers, although there were some
associations with the AI technique and other variables (see the
next subsection).

In nearly all studies, the AI architectures and algorithms had
been adapted to deal with stroke-related data, except for one
study that used an ML model for patients with severe mental
illness at risk of stroke [44]. One of the studies actually used a
software tool that was specifically designed for stroke [41],
StrokeBERT, which is a language representation model based
on Google’s Bidirectional Encoder Representations from
Transformers (BERT) [47]. Other studies used models that were
adapted to broader medical terminology, including
ClinicalBERT [52], BioClinicalBERT [53], and BioWordVec
[54], or models tuned with standard medical vocabularies such
as Systematized Nomenclature of Medicine (SNOMED) [55]
or Unified Medical Language System (UMLS) [56].

The methods used to compare the performance of the models
were also highly varied, although in the greatest majority of
cases (n=23) they were metrics based on the ratios of
true/false-positive or -negative values (positive predictive value,
negative predictive value, sensitivity, specificity, F1 score, or
accuracy), and many were based on the receiver operating
characteristic curve (n=14); a few studies (n=2) also used
measures of classification improvements such as the net
reclassification index and the integrated discrimination index

[48], and only one study used other statistics such as correlation
coefficients or the root mean squared error [25].

Owing to the variety of methods and tools used in the studies,
there were few coincidences in the selection of the best ones.
The only methods that were chosen as the best performing in
more than one study were random forest (n=3), convolutional
neural network (n=2), and BERT (n=2).

Multiple Correspondence Analysis
Figures 2 and 3 show the proximity of the categories that
exhibited the closest relationships in the two first dimensions
obtained in the MCA.

The common variable used in the analysis (AI technique) was
clearly distinguished in the first two dimensions of the MCA
plot, which on the one hand separated rule-based techniques
from ML and DL and on the other hand separated general ML
from DL.

In the first MCA (Figure 2), it could be observed that the studies
focusing on the classification of diagnostics (often used for the
triage of patients) and prospects of recurrent stroke were often
those that also used ML techniques with demographic data and
information on treatments. Although the other categories were
less tightly related, the text associated with clinical tests and
the annotations on images were related more closely to
prognostics of outcomes than to other contexts of application,
with annotated images also being used to ascertain details of
the stroke episode. Both types of studies were frequently
approached by DL and sometimes by rule-based techniques.

In the other MCA (Figure 3), AI techniques were separated
between ML, DL, and rule-based methods in the two main
dimensions of the projected space, although only general ML
and DL were closely related to other items.

Figure 2. Projection of the scores of the categories in the first two dimensions of the multiple correspondence analysis plot involving context of
application, data sources, and artificial intelligence technique. DL: deep learning; ML: machine learning.
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Figure 3. Projection of the scores of the categories in the first two dimensions of the multiple correspondence analysis plot involving natural language
processing methods, software, and artificial intelligence techniques. See brief descriptions of the methods and software in Multimedia Appendix 2.
BERT: Bidirectional Encoder Representations from Transformers; BOW: Bag-of-words; BRAT: Browser-based Rapid Annotation Tool; DL: deep
learning; ML: machine learning; NEGEX: Negation extraction; NLTK: Natural Language Processing toolkit for Python; REG-EXPR; regular expressions;
TF-IDF; term frequency-inverse document frequency; XGBoost: extreme gradient boosting.

ML was related to NLP methods that are used in the first steps
of the processing pipeline, such as the extraction of text tokens
in the form of n-grams, detection of negated terms, and use of
standard vocabularies. This was mostly performed with software
tools such as MetaMap, MedCAT, Quanteda, and extreme
gradient boosting.

Conversely, DL was more associated with the usage of BERT,
a language representation model based on transformers [47],
and NLP methods applied to numerical and vectorized
representations of the language tokens, such as the
“bag-of-words,” term frequency-inverse document frequency
word embeddings, and other word embeddings. This was chiefly
performed with software packages such as Tensorflow through
Keras and scikit-learn. Other software packages that are often
used for NLP, such as Natural Language Processing toolkit for
Python, were observed in the middle of the primary axis of the
MCA plot, halfway between the general ML and DL
architectures.

Discussion

The research on AI for stroke management has gained greater
interest and impact in the last few years [5], and the growing
rate of publications found in this scoping review reveals that
the same trend is occurring in research on NLP, which is a
particular field of AI, applied to the same clinical condition.
However, in other aspects, the studies focused on NLP show
their own specific trends.

Although the search for this scoping review was very broad,
and did not limit the type and phase of stroke to be studied, the
vast majority of studies were focused on ischemic stroke in its
acute, subacute, or transient stage, and the purpose of using
NLP was to improve processes in a clinical context. This focus
on clinical contexts is related to the relevance that is attributed
to the unstructured information contained in EHRs, (ie, in notes,
reports, and annotated images) as predictors of outcomes and
complications, which are crucial for proper decision-making,
together with the difficulty of processing that information
automatically with traditional tools. The deployment of NLP
models integrated in the pipelines of an EHR, programmed to
automatically ingest and process incoming records [57], or even
the patients’ commentaries in emergency through voice-to-text
[58], may be used to identify patients at high risk and requiring
prompt access to specific treatments; find signs to anticipate
impending stroke; or evaluate its severity, type, and risks of
complications.

Efficient triage of patients in emergency and early consultations,
more accurate diagnostics, or prognostics of outcomes and
recurrence were the main intended applications of NLP models
in the reviewed studies. Accordingly, the main sources of
information exploited by NLP algorithms were clinical data of
the patients obtained from their history, especially the diagnostic
reports of the current stroke episode. Administration and
monitoring of rehabilitation, or postrehabilitation management,
were not dealt with in the final selection of studies that were
the object of the review.
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NLP is itself a broad concept, which involves many types of
computational techniques. In its more general sense, NLP
comprises all methods and tools that can be used to analyze
texts in order to represent human languages, based either on
theory of language constructs, semantic mappings, or emulation
of linguistic processes occurring in the human brain [59]. The
relationships between these tools, types of statistical and ML
models, data sources, and applications found by the MCA help
to understand how each subset of techniques can be used to
solve different problems, and can also help to interpret some
trends in the evolution of this technology applied to the clinical
management of stroke.

Some of these methods rely on text-processing algorithms that
use predefined rules and vocabularies, such as the tokenization
of long texts into smaller items, categorization of those items
in parts of speech, and construction of syntactic structures, and
they have been widely used since long before the recent
revolution of big data and DL fields. What this revolution has
provided to the field of NLP is the maturity of more complex
representations of language data, such as the word embeddings
into large-dimensional numeric vectors and their effective
processing through deep neural networks, as well as the
exploitation of huge databases of texts, such as the Common
Crawl data set that includes petabytes of text data, crawled
monthly from dozens of billions of web pages [60].

In this context, the state of the art in NLP is represented by DL
architectures such as GPT, XLNet, or BERT [61]. Among these,
BERT has been found to be particularly widely used in the
medical field in general, and for stroke in particular, along with
specialized versions fitted to these applications that improve
their performance [22,41]. More basic ML algorithms and hybrid
approaches with rule-based techniques are still more present
than advanced DL networks in the recent research on NLP for
stroke, and in some cases, tailored rule-based systems
outperformed BERT and its derivatives [19,22]. Support vector
machine methods were also found to perform better than BERT
in one study [19], although random forest was reported to have

the best performance more frequently than any other ML method
in the set of reviewed studies [18,42,46]. Some of these results
may seem unexpected, given the remarkable performance of
DL in general, and particularly large language models (LLMs),
in other areas. However, the computational complexity and
large data sets needed to train LLMs can limit their current
scalability, not outperforming other ML methods that work
better on limited training data such as the data sets of the
mentioned studies.

The prevalence of studies based on traditional ML methods
over those that use DL neural networks may be partly due to
the recency of the more complex DL architectures, as well as
to the need of larger sets of data to train those models, which
raises the bar to conduct studies with that approach. However,
it is also interesting to observe that the choice of the AI
technique also relates to the type of data that are processed and
the context of application of NLP, such that DL is more closely
related to studies that involve medical imaging with annotations
to prognosticate the outcomes of stroke.

Taking into account these pieces of evidence, and considering
the future of NLP in stroke, further development of LLMs in
the biomedical field may be expected. LLMs emerged in 2018
as a class of language models that use neural networks with
billions of parameters trained on huge amounts of unlabeled
text data through self-supervised learning. LLMs are often based
on transformers, a self-attention mechanism to compute
contextual relationships between the input tokens [62]. However,
innovation in the NLP field will come from the development
of these models for medical specialties such as stroke. These
biomedical LLMs can be trained not only with data sources
from EHRs but also from scientific and clinical publications
and social network posts from specialized fields. The
particularity is that these models need to be trained on much
larger databases than those used by classical ML algorithms to
achieve adequate performance metrics. This involves combining
computational resources and very large data sources, an option
that is not always available for the existing resources in research.
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Abbreviations
AI: artificial intelligence
BERT: Bidirectional Encoder Representations from Transformers
DL: deep learning
EHR: electronic health record
LLM: large language model
MCA: multiple correspondence analysis
ML: machine learning
NLP: natural language processing
PRISMA-ScR: Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping
Reviews
SNOMED: Systematized Nomenclature of Medicine
UMLS: Unified Medical Language System
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