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Abstract
Background: Machine learning–enabled clinical information systems (ML-CISs) have the potential to drive health care
delivery and research. The Fast Healthcare Interoperability Resources (FHIR) data standard has been increasingly applied in
developing these systems. However, methods for applying FHIR to ML-CISs are variable.
Objective: This study evaluates and compares the functionalities, strengths, and weaknesses of existing systems and proposes
guidelines for optimizing future work with ML-CISs.
Methods: Embase, PubMed, and Web of Science were searched for articles describing machine learning systems that were
used for clinical data analytics or decision support in compliance with FHIR standards. Information regarding each system’s
functionality, data sources, formats, security, performance, resource requirements, scalability, strengths, and limitations was
compared across systems.
Results: A total of 39 articles describing FHIR-based ML-CISs were divided into the following three categories according
to their primary focus: clinical decision support systems (n=18), data management and analytic platforms (n=10), or auxiliary
modules and application programming interfaces (n=11). Model strengths included novel use of cloud systems, Bayesian
networks, visualization strategies, and techniques for translating unstructured or free-text data to FHIR frameworks. Many
intelligent systems lacked electronic health record interoperability and externally validated evidence of clinical efficacy.
Conclusions: Shortcomings in current ML-CISs can be addressed by incorporating modular and interoperable data manage-
ment, analytic platforms, secure interinstitutional data exchange, and application programming interfaces with adequate
scalability to support both real-time and prospective clinical applications that use electronic health record platforms with
diverse implementations.
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Introduction
Data analytic tools provide essential contributions to scientific
investigation and clinical decision-making [1]. These tools are in
turn fueled by the volumes of data that have been generated since
the passage of the Health Information Technology for Economic
and Clinical Health Act in 2009, which incentivized the adoption
of electronic health record (EHR) systems [2-4].

EHR data, however, remain nonstandardized across institu-
tions and, within an institution, may not be readily available for
real-time analysis, thus impairing multi-institutional research
efforts and care for individual patients across institutions
[5-8]. The standards herein refer to the structure, organization,
representation, and transmission of data. Health information
exchange systems can mitigate these issues by using the
Fast Healthcare Interoperability Resources (FHIR; pronounced
“fire”) data standard [9]. The Health Level 7 (HL7) International
standard developing organization sought to reduce the complex-
ity of the HL7 version 3 Reference Information Model while
maintaining semantic interoperability and thus adopted the
FHIR standard in 2011 [10]. It supports multiple development
platforms and has been embraced by major industry and govern-
ment organizations. Since 2016, developers have engaged with
Substitutable Medical Applications and Reusable Technologies
(SMART) on FHIR to build EHR and commercial applications
[11,12]. Despite the growth of technologies using FHIR
standards, there is limited literature summarizing differences
among machine learning–enabled clinical information systems
(ML-CISs), and the best methods for applying FHIR remain
unclear.

This review describes the functionalities, strengths, and
weaknesses of clinical applications that use the FHIR
standard and have been described in the medical literature,
and we propose guidelines for improved multi-institutional
research initiatives and clinical applicability.

Methods
Given the rapidly evolving nature of this field, we performed
a scoping review to provide a critical appraisal of the
current literature, with the goal of informing future studies.
We followed the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) guidelines; the PRISMA-ScR checklist is
available in Multimedia Appendix 1.
Research Protocol
We sought articles describing clinical decision support (CDS)
systems (CDSSs) or risk prediction systems using FHIR
standards. FHIR standards define resource types (ie, patients,
medications, and clinical observations), data elements (ie,
medication name and dosage), data formats (ie, JSON and XML
files), and the use of standard ontologies (ie, Systematized
Nomenclature of Medicine-Clinical Terms [SNOMED CT] and
Logical Observation Identifiers Names and Codes [LOINC]),
among others. Our initial search was performed on April 23,
2020, and given the progress of the field, it was updated again

on October 11, 2022. Inclusion criteria involved all full-text
articles published in English. We excluded abstracts, poster
presentations, and meeting summaries. Embase, PubMed, and
Web of Science were searched for cohort studies, case-control
studies, and reviews. Our search terms for each database are
found in Multimedia Appendix 2. Despite their increasing
use by commercial entities, we did not search for commercial
applications of FHIR, as their lack of peer review and limited
reportability prevented a formal evaluation of their methods.
Following the removal of duplicates, 153 articles were identified.
Titles and abstracts were reviewed by 2 authors independently,
with disagreements resolved by a third. Full-text articles
that did not adequately describe system functionality, data
sources, formats, security, performance, resource requirements,
scalability, strengths, and limitations were excluded. We also
excluded articles that described a model architecture using FHIR
but did not incorporate it into a CDSS. A total of 39 full-text articles
were included for full analysis.
Article Evaluation
Strengths and limitations of the applications were evaluated in
terms of functionality, data sources, formats, security, perform-
ance, resource requirements, and scalability. Functionality
was defined as the intended purpose of the algorithm and its
capabilities, ranging from the integration of genomic data into the
EHR [13,14] to CDSSs [15-17] and predictive models [18,19].
Data sources included information within electronic health care
records and external sources, such as wearable devices [20].
Formats were evaluated based on system architecture and the
technologies underlying the algorithms (eg, use of Bayesian
networks [16], transformers [21], or rule-based methods [22]).
Security was evaluated based on how the application handled
sensitive health information, including encryption [23], use-and-
access control mechanisms [24], or authorization platforms
[25,26]. Performance and resource requirements refer to the
processing time, memory, and computing needs of the applica-
tions. Finally, scalability refers to the likelihood of adoption by
other health care systems or platforms (eg, use of open-source
components [27] or cloud-based repositories [28]). Knowledge
from the included articles was used to propose avenues of future
development for optimizing machine learning–enabled systems.

Results
A total of 39 clinical tools that used FHIR standards were divided
into the following three categories according to their primary
focus: CDSSs (n=18), interoperable data management and
analytic platforms (n=10), or auxiliary modules and application
programming interfaces (APIs; n=11) that enhance ML-CISs.
The CDSSs
CDSSs are algorithms that use health information to provide
assistance for clinical decision-making tasks. Table 1 shows
articles that focused on these support systems. Although
many CDSSs lacked interoperability and external validity,
several characteristics of CDSSs harbored potential for
improving both efficacy and efficiency.
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Table 1. Summary of intelligent clinical decision support systems.
Source, year Functionalities Strengths Limitations
Curran et al [15],
2020

Summarizes chronic obstructive
pulmonary disease information,
provides decision support, and
suggests orders

Dynamic embedding within EHRa and
compatible with SMARTb-on-FHIRc
submodules

Limited generalizability due to single
center and single disease

Dolin et al [13], 2018 Uses drug-gene interaction data for
clinical decision support triggered by
EHR medication orders

Accesses a rules engine containing
level A recommendations from a
pharmacogenetics consortium

Difficult to query the rules engine
for level A recommendations when
triggered by EHR medication orders

El-Sappagh et al
[28], 2019

Uses mobile health technologies to
monitor and manage type 1 diabetes

Most system processes are executed in the
cloud; once configured, it runs on any
EHR system

The diabetes treatment ontology did not
address emergency conditions and was
not embedded within an EHR system

Gaebel et al [16],
2016

Generates digital patient models
for clinical decision support for
laryngeal cancer

Bayesian networks are well-suited for
representing complex diseases

System architecture was described,
but the system was not implemented
clinically

Gruender et al [14],
2019

Combines next-generation
sequencing genomics data with FHIR
clinical data

Open-source system that combines data
formats and is portable

Manual data extraction and web-based
filtering tool

Gordon et al [29],
2017

Displays patients’ thrombocytopenia
trends along with computer-
generated calculated panel reactive
antibody levels

Provides real-time services and effective
visual cues

Data sources are limited

Henry et al [18],
2018

Predicts sepsis among intensive care
unit patients in real time

Cloud-based system that provides alerts to
clinicians

Public cloud-based solutions present
safety issues

Hong et al [27], 2019 Phenotypes diabetes based on
free-text notes and other structured
data

Converts unstructured, semistructured,
and structured data to appropriate FHIR
components

Performance is not stable across
different data sets

Kawamoto et al [30],
2021

Takes data from multiple EHRs and
incorporates them into existing risk
calculators

Performance measured with end user
satisfaction studies and used existing
application programming interface

Tested at a single institution and had
data security concerns

Park et al [31], 2022 Personal health record application for
employees, with links to health care
resources

FHIR-based cloud application that is
applicable to multiple EHRs and provides
secure access through Azure

Limited integration of hospital data

Schleyer et al [32],
2021

Integrates selected data from
statewide data systems into local
EHR

Translates data from diverse sources into a
common database

Experience limited to a single EHR

Semenov and
Kopanitsa [20], 2018

Recommends clinical decisions and
actions based on EHR data

Free-text output for both physicians and
patients

No standard performance evaluation

Semenov et al [33],
2018

Recommends clinical decisions and
actions based on EHR data

Free-text output for both physicians and
patients and improved analytic workflow
relative to prior versions

No standard performance evaluation

Séroussi et al [34],
2018

Produces clinical practice guideline
services for patients with breast
cancer

Uses both data models and knowledge
models and provides effective data
analytic visualizations

Implemented on a small scale, proposed
guidelines were not validated, and
interguideline conflicts need to be
resolved manually

Tarumi et al [35],
2021

Modeling of treatment outcomes for
type 2 diabetes

Effective use of SMART on FHIR for
integration in local EHR, and design
incorporated clinician feedback

No external validation, limited access to
cost data, and not yet compatible with
all EHRs

Thayer et al [36],
2021

Automated graphical display of
asthma history

Smoothly integrated into EHR Not based on SMART, limiting
interoperability

Wang et al [37],
2019

Comparison of machine learning
algorithms for prediction of
end-stage renal disease in type 2
diabetes

Extraction of EHR data using FHIR Single institution, no imputation of
missing data, and no external validation

Whitaker et al [38],
2022

Machine learning algorithm to
identify blood transfusion adverse
events

Synthesized structured and unstructured
data from EHR to achieve reasonable
accuracy compared to clinicians

Retrospective study more aligned
toward research than clinical care

aEHR: electronic health record.
bSMART: Substitutable Medical Applications and Reusable Technologies.
cFHIR: Fast Healthcare Interoperability Resources.
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CDSS ontologies are a central tenant of CDSS interoperabil-
ity. Generally, ontologies are a hierarchy of concepts that are
defined by both a set of attributes and their relationships to
other concepts, and they must meet several internal consis-
tency and version control objectives [10]. Common ontolo-
gies include the SNOMED CT, LOINC, and National Cancer
Institute Thesaurus (NCIT). Separate ontologies may conflict,
such as in cases where models use different organizing
principles, have varying degrees of granularity, or even
exhibit contextual differences between clinical applications
and biomedical research. Séroussi et al [34] faced this
problem when creating a guideline for the optimal manage-
ment of breast cancer by integrating a collection of pre-
existing ontologies (NCIT and LOINC). They were able
to resolve this conflict by using data visualization techni-
ques and rules-based inference engines, though often their
methods required the manual resolution of conflicts. Common
ontologies can also omit essential elements. Dolin et al [13]
were able to transform a library of drug-gene interactions
into an FHIR standard to alert physicians when prescriptions
are likely to cause adverse drug reactions. Specific disease
classes may lack an interoperable ontology. For cancer,
there are active efforts in the CodeX HL7 FHIR Accelerator
community to capture oncologic data from the EHR by using
the mCODE (minimal Common Oncology Data Elements)
ontology [39,40].

Advanced CDSSs have been integrated with machine
learning algorithms to process data, especially unstructured
data, such as clinician notes. Gaebel et al [16] created a
physician-facing CDSS that used Bayesian networks and
medical language modules to identify the optimal manage-
ment strategy for laryngeal cancer. Bayesian networks and
other modeling approaches can estimate and infer unobserved
but relevant variables, which is advantageous in representing
complex diseases. Natural language processing is becoming
an increasingly common tool. Hong et al [27], Semenov et al
[20,33], and Whitaker et al [38] used semantic tags, rules-
based extraction, and the scispaCy-based natural language
processing pipeline to extract their concepts, though these
methods require arduous labeling—the process of manually
highlighting terms and classifying them—and lack validation
on external data sets. Vocabulary and expressions often differ
outside of the training context, requiring developers to further
refine their language models after release by using test data
and real-life examples.

Cloud-based solutions have made it possible to process
large-scale and heterogeneous data and push the boundaries
of CDSSs to encompass broader scenarios. El-Sappagh et
al [28] developed a mobile app that integrates data from

wearable monitors (eg, vital signs, physical activity, and
blood glucose levels) with the EHR to provide recommen-
dations for managing type 1 diabetes mellitus. The system
delivers spoken education and lifestyle recommendations
to patients’ mobile devices, using an ontology generated
from clinical practice guidelines, expert opinions, and other
published sources. Meanwhile, in countries with nationally
integrated health systems, citizens may be able to assemble
their data across different institutions by using a secure
server, such as Azure [31]. Henry et al [18] created a
real-time prediction system for critically ill patients that alerts
staff to elevated sepsis risk and tracks trends in vitals by using
cloud-based technology. In the outpatient setting, Kawamoto
et al [30] incorporated data from several EHRs into an
existing risk prediction model.

A total of 3 studies described visualization tools. Gordon
et al [29] generated visual aids to show patients’ thrombo-
cytopenia trends, along with computer-generated calculated
panel reactive antibody levels, to facilitate the judicious use
of platelet transfusions by physicians and blood banks, and
Thayer et al [36] used translated FHIR concepts to graphi-
cally display a patient’s asthma history within a chart. Xiao
et al [41] were able to use knowledge graph ontologies to
map FHIR and Observational Medical Outcomes Partnership
(OMOP) data standards.

Despite the considerable benefits of cloud-based systems,
they can present additional security challenges. These range
from traditional cybersecurity problems (including problems
related to data security, access control, and the transmission
of data over a network) to more CDSS-specific concerns
(such as privacy leakage, whereby models can be queried by
outside parties). HL7 FHIR has put forward specific security
protocols in response to safety concerns, including the use
of secure http communication channels, open authorization,
and provenance (documentation of the origin, possession, and
history of a piece of data) techniques, among others [42].
Data Management and Analytic
Platforms
The rise in computing power and distributed system
technologies facilitates general-purpose platforms that
provide data standardization, data analysis, and model
integration. Of the 39 included articles, 10 described FHIR-
compliant data management and analytic platforms, as listed
in Table 2. Although CDSSs require interoperability and
multicenter clinical implementation, many clinical platforms
did not support the real-time data integration that is necessary
for clinical adoption.

Table 2. Summary of interoperable data management and analytic platforms.
Source, year Functionalities Strengths Limitations
Gruendner et al [14],
2019

Data analysis and model deployment
in clinical environments

Applied Docker virtualization that
facilitates deployment across different
environments

Poor performance on Extract, Transform,
Load processing; relatively inefficient
(bottleneck) FHIRa transformation; and
does not support real-time data processing
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Source, year Functionalities Strengths Limitations
Haarbrandt et al
[24], 2018

Integrating and transforming health
data for oncology, cardiology, and
infection control

Open-source platform that allows for
patient-level data sharing

Does not support real-time data
processing

Helm et al [43], 2022 Builds interoperability between
FHIR and BPMNb

Supports BPMN clinical process models
and improves explainability

Lacks some functionalities of the systems
when used independently

Khalilia et al [25],
2015

Clinical predictive modeling using
web services via HL7c FHIR
standards

Maintains good performance across many
different algorithms

Does not support real-time data
processing

Kopanitsa [44], 2019 Connects multiple health data
systems

Has clear, effective workflows Does not support real-time data
processing

Marteau et al [45],
2022

Increases availability of clinical
pediatric data using OMOPd on
FHIR

Implementation across multiple local
environments

Not yet tested on real-word applications

Metke-Jimenez et al
[46], 2018

Data searching, upgrading, and
analyzing within multiple concept
and category maps.

Syndication models automatically update
the data

Does not support real-time data
processing

Semenov et al [47],
2019

Clinical predictive analytics with
text outputs to physicians and
patients

Produces free-text outputs and graph
visualizations pertaining to model
recommendations

Limited support for real-time data
processing.

Thiess et al [17],
2022

Application for support of shared
decision-making in context of
drug-drug interactions

Embedded interoperability functions
within modular CDSSe architectures

Performance testing limited to electronic
health record training module

Xiao et al [41], 2022 Enables FHIR and OMOP
interoperability with generated
clinical knowledge graphs

Semantic foundation for development of
explainable tools

Future iterations will require expansion of
mapping systems

aFHIR: Fast Healthcare Interoperability Resources.
bBPMN: Business Process Model and Notation 2.0.
cHL7: Health Level 7.
dOMOP: Observational Medical Outcomes Partnership.
eCDSS: clinical decision support system.

Several papers addressed the challenge of integrating data
from heterogeneous sources. Haarbrandt et al [24] proposed a
platform that addresses this problem by developing techni-
ques for converting disparate sources to FHIR standards
prior to integration. The system is protected via fine-grained
use-and-access control mechanisms that ensure secure data
transmission among participating data sources. Metke-Jime-
nez et al [46] proposed an alternative approach to integrat-
ing several ontologies into a single web ontology language,
allowing for updates to the ontology without changing
the underlying data. For example, one could update the
definition of sepsis and readily find all patients meeting
the new definition. Distributed processing systems can be
further enhanced via compartmentalization. Kopanitsa [44]
and Semenov et al [47] developed a microservice platform
that connects multiple systems via FHIR APIs. This platform
was used to successfully deploy 400 CDSS models and
128 Bayesian diagnostic models in real time. Important to
precision medicine, genomics data can now be linked to FHIR
clinical data; 2 groups have created interoperability between
the Variant Call Format for next-generation sequencing and
FHIR [13,14].

Clinical information systems can aid in medical research,
if properly designed. Although a prototype system proposed
by Khalilia et al [25] ran 9 different machine learning models
to generate data-driven, patient-level predictions, it lacked
a researcher interface for the development and training of
new models. In contrast, the KETOS platform proposed by
Gruendner et al [14] allows researchers to request data sets,
define cohorts, develop models, and deploy them as a web
service. Both systems use Extract, Transform, Load pipelines
to convert EHR data from their native format to the OMOP
common data model format before storage. The KETOS
platform’s comprehensive approach to data management and
model deployment can aid researchers with limited back-
grounds in data science.
Auxiliary Modules and APIs
Artificial intelligence clinical information systems depend on
robust and secure APIs to interact with the clinical environ-
ment. APIs define quality and security standards for each type
of interaction with external systems (eg, EHR systems, web
browsers, and medical devices). Article summaries are shown
in Table 3.
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Table 3. Summary of auxiliary modules and application programming interfaces (APIs).
Source, year Functionalities Strengths Limitations
Altamimi [23], 2016 Provide security for FHIRa functions

to ensure patients’ privacy
Policies can be adjusted for circumstan-
ces (eg, emergency medical conditions can
override privacy constructs)

There is no description of a user-side
module, which would be necessary for
clinical application

Alterovitz et al [48],
2015

Link clinical and genomic data with
an FHIR-compliant API for clinical
decision support

Ensures consistent semantics in clinical
data and handles multiple types of genomic
data

Effects of clinical decision support apps
on decision-making and outcomes were
not reported.

Dolin et al [49], 2021 Variant Call Format–to–FHIR
genomic standard converter

Readily deployable to CDSSb Limited independent data analysis
and does not support real-time data
processing

Kasparick et al [50],
2019

Model an FHIR-compliant protocol
for artificial intelligence–based
systems

Supports multiple devices and multiple
domains of data

No clinical testing

Kopanitsa and Ivanov
[51], 2018

FHIR-compliant APIs for data
modeling

High data exchanging efficiency No clinical testing

Gabetta et al [52],
2021

FHIR-on-OMOPc platform to
support data storage and retrieval

Use of standard OMOP vocabularies No clinical testing

Guinez-Molinos et al
[53], 2021

Reports COVID-19 test results to
central authority

Interoperable and portable; functionally
verified with a pilot study

Developed using a predecessor system

Mandel et al [26],
2016

Updating an API platform with
FHIR standards

Improves API interoperability Establishes feasibility, but effects on
clinical decision-making and outcomes
are unknown.

Rafee et al [54], 2022 LOINCd-mapped core data set for
eligibility screening

Rapid EHRe screening for patient
recruitment

Relied on expert labeling, which limits
scalability

Wood et al [55], 2021 Allows sharing of patient data
among care provision sites for
hematologic disorders

Compatible across EHRs Framework alone; awaiting evidence of
implementation

Yoo et al [56], 2022 Method for integrating CDSS
applications with EHR

Transformation of EHR data into FHIR
format for input into a reasoning engine

No validation of performance indices
and usability of tested models

aFHIR: Fast Healthcare Interoperability Resources.
bCDSS: clinical decision support system.
cOMOP: Observational Medical Outcomes Partnership.
dLOINC: Logical Observation Identifiers Names and Codes.
eEHR: electronic health record.

Of the included articles, 5 described auxiliary modules and
APIs. Mandel et al [26] applied FHIR standards to the
SMART platform, improving its interoperability by provid-
ing standard authentication, authorization, and profiling. The
prototype genomics standard developed by Alterovitz et
al [48], meanwhile, is currently in trial use to facilitate
the consistent integration of clinical and genomic informa-
tion through SMART-on-FHIR application. The application
developers found the FHIR v4.0.1 specification easy to
leverage, even without prior experience with FHIR.

Although FHIR has predefined resources and mechanisms
for transmitting orders and values, methods for creating
and validating orders are not predefined. To address this
issue, Kopanitsa and Ivanov [51] proposed an FHIR-based
mechanism for integrating laboratory and hospital informa-
tion systems. The system generated laboratory orders, using
the available tests in the laboratory information system,
and prompted the user for relevant information (such as
how many laboratory samples should be collected and
when they should be collected). It is challenging to make
clinical information systems both highly interoperable and
secure without compromising data workflows. SecFHIR is
an XML-based security approach to FHIR resources. Using

schema permissions built into XML documents, Altamimi
[23] generated robust security profiles that were context-
aware (eg, privacy constraints can be overridden in emer-
gency care situations).

Timely data availability is another barrier to implement-
ing CDSSs in high-acuity environments. Kasparick et al
[50] proposed a reference model to address the timeliness
challenge by connecting medical devices to FHIR servers.
This approach allows the APIs to function as data sources for
predictive analytic and decision support systems. By using
these methods, clinical information systems can maintain
high interoperability and security without compromising data
workflow. This has allowed for the development of disease-
specific data hubs, which facilitate research on rare conditions
or for reporting the results of COVID-19 polymerase chain
reaction tests from disparate testing sites to a central authority
[53,55]. CDS hooks are another technology that permit the
integration of EHR data into external health care applica-
tions [57]. Used in collaboration with SMART on FHIR,
CDS hooks are triggered by a specific action within the
EHR (ie, ordering a medication). The CDS hooks then link
the corresponding EHR data to an environment of decision
support applications [58]. These CDS applications can then
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push recommendations in the form of “CDS cards” to the
clinician. These technologies are currently being tested in
real-word settings [59,60].

Discussion
Key Findings
Although significant progress has been made in the field of
FHIR data standards, this scoping review demonstrates that

most CDSSs lack interoperability and actionable content.
Several modules and APIs demonstrate the potential to
enhance these systems, but they were not comprehensively
integrated into the existing clinical workflows or were not
validated on external patient populations. These limita-
tions collectively reveal several opportunities to improve
on existing methods to produce ideal clinical information
systems, as illustrated in Figure 1.

Figure 1. Sample model of a proposed machine learning–enabled clinical information system using FHIR data standards. AI: artificial intelligence;
API: application programming interface; FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level 7; IoT: Internet of Things; OMOP:
Observational Medical Outcomes Partnership.

Foundational Infrastructures Tailored to
Individual Needs
Ideally, clinical information systems would function as
innovation hubs for patient care and health care research. Due
to the proprietary nature of hardware and software systems
in institutions, infrastructure components (eg, data transfor-
mation, model development, authentication, and monitoring)
are often painstakingly created de novo. Platforms, such as
KETOS, however, can enable the sharing of core infrastruc-
ture, greatly accelerating the development and deployment
of applications that are tailored to the needs of individual
researchers, groups, and projects [14]. This “health care
application development hub” would be shared for different
applications to reuse models and for data processing and
analyzing services.

Facilitating Interoperability Among Data
Systems
Interoperability represents the goal of successful, cross-insti-
tutional sharing of data without additional, special effort. This

remains in contrast to the current environment of fragmen-
ted data systems. Several elements of the current system
impede progress toward integration and should be addressed.
Sources of patient health information are numerous. At the
point of data collection, clinicians may opt to store informa-
tion in separate departments, erroneously duplicate patient
descriptors, preferentially format or describe data, or use
older data standards (HL7 v2 and v3). Further complexity
may arise from the use of siloed systems, as exemplified
by legacy systems built with local, stand-alone data conven-
tions and incompatible ontologies [61]. The road to full
interoperability is therefore paved with standards built to
define, represent, transfer, and protect data as they travel
between actors. Common communications standards, such
as FHIR, have provided a useful framework for standardiz-
ing data transmission while maintaining semantic integrity
at the patient level [15,56]. Importantly, these standards are
built to mobilize data from legacy systems, making closely
held data more publicly available [17]. By using OMOP-on-
FHIR algorithms, pediatric data from Shriners Hospitals for
Children can now be shared more widely by researchers [45].
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More recently, 2 studies have examined the use of deep
learning and transformer techniques to convert data elements
in the EHR to interoperable FHIR standards, with subse-
quent application in prediction models [21,62]. Automation
in data capture has the potential to reduce the costs and time
associated with manual extraction.
Overcoming Organizational Resistance to
Interoperability Standards
Despite the benefits of an interoperable health data eco-
system, stakeholders are rarely incentivized to implement
data standards. Organizational resistance to interoperabil-
ity may stem from cultural differences, unfamiliarity with
new technologies, or the fear that a newly adopted infor-
mation-sharing standard may quickly become obsolete
[63,64]. Among organizations, concerns regarding the loss of
autonomy, a lack of trust, and the failure to realize financial
gains impede interoperability and lead to so-called “infor-
mation blocking.” The policies contained within the 21st
Century Cures Act aim to improve information flow among
actors in the system [65,66]. Apple, Google, and Samsung
now have patient-facing health records that were developed
along with FHIR standards to comply with these policies.
In addition, while implementation models exist to help
streamline the adoption of CDSSs, they contain important
methodical flaws [67].
Hiring Specialists to Manage Standards
Adoption
Unfamiliarity with interoperability standards may represent a
substantial hurdle to adoption and subsequent interoperability.
This challenge creates demand for subject matter experts who
are familiar with the architecture, function, and implementa-
tion of data standards. Such experts must be able to antici-
pate the specific challenges of adapting their particular legacy
systems to the interoperable standard but also recognize the
benefit of successful adoption to guide organizational buy-in
[68].
Timely Data Acquisition
The need for timeliness in data sharing is driven both by
data availability and by opportunities for real-time treat-
ment support. An obvious example of this can be seen
with continuous glucose monitoring units for patients with
diabetes, which provide a regular source of data that can be
implemented immediately to adjust insulin therapy [69,70].

System scalability is also essential to this task. Many of
the systems evaluated in this review cannot scale in real
time, as data volume or velocity increases dynamically (eg,
processing 1000 patients in real time vs processing 100
patients in a static, retrospective training cohort). When
scalability is impaired, predictions may not be delivered in
time to augment clinical decision-making. Health Insur-
ance Portability and Accountability Act (HIPAA)–compliant
cloud platforms can scale allocated resources on demand.
Therefore, optimal clinical information systems must offer

scalability that is commensurate with the expected volume
and velocity of data.
Minimizing Discoverable Patient Data
Each institution has policies that comply with municipal and
federal security and privacy laws, making it challenging to
share and aggregate data across multiple institutions. These
challenges have been met with creative methods for aggre-
gating multicenter data while maintaining patient privacy.
One such method is to request only the minimum neces-
sary information. This approach is emphasized heavily in
the HIPAA and exemplified by El-Sappagh et al [28], who
described a system that requests only the required EHR
data elements for a specific patient. Other such mechanisms
include authorization programs (enables specialized control
over access to patient data), https, and WebSockets (Internet
Engineering Task Force; provides secure communication over
networks).

Alternatively, models can benefit from the knowledge
derived from other data sets—usually in the form of model
gradients or coefficients—without sharing the underlying
data. This is known as federated learning—a system that
trains on many local models with the same architecture and
then aggregates the knowledge derived from each center into
a global model (Figure 1). Although such an approach greatly
reduces security and privacy risks by keeping the source
records under the control of each local institution, even the
gradients themselves pose a minor risk due to privacy leakage
[28,71-75]. This risk, however, can be further reduced via the
automated obfuscation of high-risk records or by adding noise
to the gradients and coefficients before transmitting them to
the central model. Given these advantages, federated learning
is poised to supplant other methods for ensuring the data
security and privacy of clinical information systems.

Finally, the recent explosion of large language models has
raised further concerns regarding data privacy, as they are
trained on clinical notes. This is an active field of study with
multiple avenues for further research [76,77].
Conclusions
Machine learning–enabled clinical analytic and decision
support systems have the potential to improve health care
by automating standardized workflows and augmenting
clinical decision-making. Nevertheless, most CDSSs lack
interoperability and evidence of clinical utility. Common
data models and interoperable data management platforms
can address these limitations, but most intelligent clinical
platforms are also compromised by the inadequate scala-
bility for supporting real-time data processing. Existing
clinical information systems could be improved by using
foundational code infrastructures, common data models, and
secure data processing and analytics on real-time platforms.
Further progress in implementing these elements can generate
information systems that improve care by helping patients,
caregivers, and clinicians make effective, well-informed
clinical decisions.
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