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Abstract

Background: A patient’s family history (FH) information significantly influences downstream clinical care. Despite this
importance, there is no standardized method to capture FH information in electronic health records and a substantial portion of
FH information is frequently embedded in clinical notes. This renders FH information difficult to use in downstream data analytics
or clinical decision support applications. To address this issue, a natural language processing system capable of extracting and
normalizing FH information can be used.

Objective: In this study, we aimed to construct an FH lexical resource for information extraction and normalization.

Methods: We exploited a transformer-based method to construct an FH lexical resource leveraging a corpus consisting of
clinical notes generated as part of primary care. The usability of the lexicon was demonstrated through the development of a
rule-based FH system that extracts FH entities and relations as specified in previous FH challenges. We also experimented with
a deep learning–based FH system for FH information extraction. Previous FH challenge data sets were used for evaluation.

Results: The resulting lexicon contains 33,603 lexicon entries normalized to 6408 concept unique identifiers of the Unified
Medical Language System and 15,126 codes of the Systematized Nomenclature of Medicine Clinical Terms, with an average
number of 5.4 variants per concept. The performance evaluation demonstrated that the rule-based FH system achieved reasonable
performance. The combination of the rule-based FH system with a state-of-the-art deep learning–based FH system can improve
the recall of FH information evaluated using the BioCreative/N2C2 FH challenge data set, with the F1 score varied but comparable.

Conclusions: The resulting lexicon and rule-based FH system are freely available through the Open Health Natural Language
Processing GitHub.

(JMIR Med Inform 2023;11:e48072) doi: 10.2196/48072
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Introduction

Family history (FH) has long been regarded as a core element
in caring for patients who have varied health concerns [1], with

the capability to significantly enhance the delivery of precision
medicine [2]. However, FH data are underused for actionable
risk assessment [1]. One barrier to using FH information is
provider preference in recording the collected FH information

JMIR Med Inform 2023 | vol. 11 | e48072 | p. 1https://medinform.jmir.org/2023/1/e48072
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:liu.hongfang@mayo.edu
http://dx.doi.org/10.2196/48072
http://www.w3.org/Style/XSL
http://www.renderx.com/


in an unstructured format (eg, clinical notes) [3] as opposed to
within electronic health record (EHR) structured data [4]. As
clinical text tends to be unstructured, the information contained
within is computationally inaccessible relative to that contained
in structured records. This lack of computational accessibilities
poses a challenge in using FH information for downstream data
analytics or clinical practice (eg, via clinical decision support).
One approach to render information data computationally
accessible is through the use of natural language processing
(NLP), thus motivating our work to develop an NLP system
that can extract and normalize FH information.

Despite the majority of clinical NLP measurement studies
focusing on statistical approaches, rule-based NLP systems
based on semantic lexicons and rule patterns are popular among
observational studies [5] for cancer research and practice [6,7].
With the advantages of ensuring process transparency,
implementability, and scientific rigor, semantic lexicons and
rule patterns are interpretable and easily modifiable, conforming
to the FAIR (Findable, Accessible, Interoperable, and Reusable)
and RITE (Reproducible, Implementable, Transparent, and
Explainable) principles [8,9] for scientific data management.
In addition, semantic lexicons and rule patterns capture
sublanguage characteristics of domains that can be portable and
generalizable to other applications [10]. By sublanguage, we
refer to domain-specific linguistic and lexical patterns that are
more prominent in free text in specialized fields such as
medicine.

One popular lexical resource for clinical NLP is the Unified
Medical Language System (UMLS), a repository of biomedical
vocabularies distributed by the US National Library of Medicine,
integrating over 200 biomedical vocabularies. A source
vocabulary contained within the UMLS is the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED-CT),
which is the recommended coding system for clinical problems.
As not all terms in the UMLS or SNOMED-CT are part of the
FH sublanguage, in this study, we exploited a corpus-driven
method with pretrained language models to build an FH
semantic lexicon with the normalization feature and reasonable
size and coverage.

There have been previous efforts focused on creating semantic
lexicons for clinical NLP. Johnson [11] automatically
constructed a semantic lexicon based on the Specialist Lexicon
of the UMLS, which can assist NLP analysis of a medical
narrative with the semantic preference options of selecting
semantic type. Luo et al [12] created a semantic lexicon using
UMLS knowledge sources by leveraging a corpus from
ClinicalTrials.gov. Liu et al [13] constructed a corpus-driven

semantic lexicon based on the UMLS assisted by variants mined
and usage information gathered from clinical text.

Regarding deep learning–based approaches, pretrained language
models such as bidirectional encoder representations from
transformers (BERT) [14] can learn the structure of language
(ie, the basic semantic and syntax information) through
unsupervised training on a large corpus of unlabeled text [15].
Given a new task, such pretrained models can be fine-tuned
with a small number of annotated samples to perform well [16].

With respect to the FH information extraction task, we
hypothesized that terms in a large-scale corpus having semantic
types similar to the entities labeled in the data set used for fine
tuning can be detected by fine-tuned BERT models in a named
entity recognition task. Additionally, we hypothesized that
corpus-driven methods would enable more term variants to be
discovered from real-world EHR data, from which the lexicon
results could further enhance and empower FH information
extraction systems. Operating under these two hypotheses, we
here present an FH lexicon derived through a combination of
these two approaches. To demonstrate the usability of the FH
lexicon, we further developed a rule-based FH system based on
the lexicon that extracts FH entities and relations specified in
previous FH challenges and evaluated its performance
accordingly. In terms of system development, we consider that
an FH system that prioritizes recall is highly desired for
NLP-assisted curation in EHR-based studies.

Methods

FH Concepts
Before assembling an FH lexicon, we defined FH concepts as
those belonging to the selected UMLS semantic types within
the “DISO” (disorder) semantic group (Table 1), excluding
T050 (experimental model of disease) [17]. Figure 1 shows our
study design. We first fine-tuned Bio_ClinicalBERT,
UmlsBERT, and bert-base-uncased models, and selected the
model with the best performance. We then used the selected
model to extract potential disorder/finding related mentions in
a large clinical corpus. Subsequently, potential FH mentions
were automatically normalized, manually curated, and prepared
into symbolic lexicon format compatible with the Open Health
Natural Language Processing (OHNLP) Toolkit’s NLP engine
MedTagger [18]. A coverage evaluation was conducted for the
lexicon. To demonstrate the usability of the lexicon, a rule-based
FH system was developed to extract FH information. In parallel,
we also experimented with a deep learning–based FH system
for FH information extraction. Previous FH challenge data sets
were used for evaluation [19,20].
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Figure 1. Study design. BERT: bidirectional encoder representations from transformers; ECH: employee and community health; FH: family history;
I2B2: 2012 i2b2 natural language processing challenge data set (training data set); PURE: Princeton University Relation Extraction; SFCP: standardization
framework for clinical problems.

Table 1. Selected semantic types as family history concepts.

Semantic type termSemantic type code

Congenital abnormalityT019

Acquired abnormalityT020

Injury or poisoningT037

Disease or syndromeT047

Mental or behavioral dysfunctionT048

Cell or molecular dysfunctionT049

Anatomical abnormalityT190

Neoplastic processT191

FindingT033

Pathologic functionT046

Sign or symptomT184

Resources

Overview
Here, we introduce the resources used for lexicon construction
and all relevant evaluations. Specifically, the 2018 BioCreative
FH challenge training set and the 2012 I2B2 training set were
used as the supervised data sets to fine-tune the deep learning
models for lexicon preparation. Various data sets were
experimented with based on a hypothesis that more data could
encompass more semantic contexts of potential FH mentions.
The 2018 test set was used to evaluate lexicon coverage. The
2018 and 2019 FH challenge training sets were used for training

of the rule-based FH system and fine-tuning the deep
learning–based FH system, and the 2018 and 2019 FH challenge
test sets were used for evaluating the performance of the FH
systems in extracting FH entities (task 1) and relations (task 2).
A large EHR corpus was used for collecting potential FH
mentions. MedLex was used to further enrich term variants of
FH concepts extracted by the selected model. The UMLS was
used for semantic type selection, while UMLS and
SNOMED-CT were used for a comparison of size with our
corpus-driven dictionary. Table 2 summarizes specific
applications of the resources in the lexicon construction and all
relevant evaluations. Detailed descriptions for each resource
are provided below.
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Table 2. Specific applications of resources in the lexicon construction and evaluations.

SNOMED-CThUMLSgMedLexEHRf corpusA+EEeDdCcBbAaApplication

Lexicon construction

✓✓✓Fine-tuning the BERTi model

✓Dictionary entry collection

✓Dictionary concept enrichment

✓Semantic type selection

FHj system development

✓✓Development of rule-based FH system

✓✓Fine-tuning deep learning–based FH system

Evaluation

✓✓✓Dictionary coverage

✓✓Challenge task 1

✓✓Challenge task 2

aA: Training set (BioCreative).
bB: Training set (N2C2).
cC: Testing set (BioCreative).
dD: Testing set (N2C2).
eE: Training set (I2B2/2010).
fEHR: electronic health record.
gUMLS: Unified Medical Language System.
hSNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms.
iBERT: bidirectional encoder representations from transformers.
jFH: family history.

Synthetic FH Annotation Data Sets (A-D)
As the organizer of the BioCreative/OHNLP 2018 Family
History Extraction Task [19] and 2019 NLP Clinical Challenge
(N2C2)/OHNLP shared task [20], we curated deidentified
annotation data sets based on synthetic clinical narratives. Data
set A corresponds to data set C in the BioCreative Challenge
and data set B corresponds to data set D in the N2C2 Challenge.
FH was annotated as “observation” and defined as any
health-related problem, including diseases, smoking, suicide,
and drinking, while excluding auto accidents, surgeries, and
medications [19]. Family members (FMs), observation, age,
and living status were annotated as entities, and then all entities
related to an FM category were linked into one chain. We further
enhanced the resulting annotations in the data sets by
normalizing observations to SNOMED-CT codes and correcting
errors in previous annotations. The reannotated data sets are
accessible based on the Data Use Agreement. Multimedia
Appendix 1 shows the statistical comparison between original
and enhanced annotations.

I2B2 Data Set (D)
The 2012 I2B2 NLP challenge organizers provided a fully
deidentified data set with annotations for temporal relations as
well as those generated from previous challenges such as the
2010 challenge of clinical concept extraction (problems, tests,
treatments) [21], where problems include symptoms, complaints,
diseases, and diagnoses.

EHR Raw Corpus
The raw corpus used in the study consists of 9,426,352 text
segments extracted from the Family History section of clinical
notes prior to 2013 of a primary care cohort (ie, the employee
and community health cohort), which contains 83,000 patients
at Mayo Clinic.

Dictionary Resources
MedLex is a semantic lexicon built on a large corpus of clinical
documents collected at Mayo Clinic and from the UMLS
(2011AA version) [13]. MedLex contains term variants from
real-world EHRs, serving as a practical dictionary resource for
FH lexicon expansion. We used MedLex to further enrich term
variants of FH concepts extracted by the selected model. The
UMLS (2021AA) and SNOMEDCT_US concepts accessible
through the UMLS were restricted to only English entries. The
MRCONSO table of the UMLS, which includes over 200 source
vocabularies, was used for coverage evaluation, and the MRSTY
table of the UMLS was used for screening semantic types for
each concept unique identifier (CUI) in the MRCONSO table.

Ethical Approval
Use of the EHR raw corpus data was approved by the Mayo
Clinic Institutional Review Board (17-003030) for Human
Subject Research.
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BERT-Based Corpus Analysis for Lexicon
Construction

BERT Models for Extraction of Potential FH Mentions
BERT-base-uncased was pretrained on an unsupervised NLP
data set using a masked language modeling approach [14].
Bio_ClinicalBERT was initialized from BioBERT and trained
on all Medical Information Mart for Intensive Care notes [22].
UmlsBERT is a contextual embedding model that integrates
domain knowledge during the pretraining process via a novel
knowledge augmentation through the UMLS Metathesaurus
[23]. UmlsBERT and Bio_ClinicalBERT are domains related
to this study, while BERT-base-uncased could be used as a
baseline comparison. We used configurations mostly consistent
with the recommendations in the original release of the models.
The maximum sequence length was set to 512, the batch size
was set to 16, the total number of training epochs was set to
100, and the weight decay was set to 0.01. An early stopping
method was used to determine the optimal number of epochs
and to prevent overfitting. The train/test split was 80/20, where
the “train” split was used for training and the “test” split was
used for validation.

We fine-tuned these models on the BioCreative training data
set, I2B2 training data set, as well as the combination of the
BioCreative and I2B2 training data sets. We then selected the
model with the best performance to extract any potential FH
mentions in the raw corpus having coarse-grained semantic
types similar to the entities labeled in the supervised data.

Normalization
The extracted FH mentions were automatically normalized
through a standardization framework for clinical problems
(SFCP) [24]. This framework converts free-text clinical problem
descriptions into standardized forms based on the UMLS CUI
corresponding to SNOMED-CT concepts and the Health Level
7 Fast Healthcare Interoperability Resources (FHIR)-based
structured representations, including the codified problem and
all relevant modifiers and context. The CUIs associated with
the SNOMED-CT concept were used for coding. For example,
for the mention “allergy-induced asthma,” the framework
outputs “C0440102 | Various patch test substance” and
“C0155877 | Allergic asthma.”

Manual Curation and Further Enrichment
We reviewed all normalized FH mentions and retained the main
normalized problem concepts with semantic types corresponding
to those previously selected. For example, for the mention
“allergy-induced asthma,” the codified problem “C0155877 |
Allergic asthma” was kept and “C0440102 | Various patch test
substance” was removed from the final lexicon. In some cases,
one BERT-extracted mention can be normalized to several
individual concepts through the automatic standardization. We
then enriched the FH lexicon by keeping all individual concepts
and obtaining associated variants from MedLex.

In addition, we manually mapped high-frequency mentions that
occurred across at least 20 patients that were not automatically
standardized to corresponding CUIs.

Rule-Based FH System
To demonstrate the capability of the FH lexicon in extracting
FH relations, we further implemented a rule-based FH system
by integrating rules for FM identification with the resulting
lexicon. Multimedia Appendix 2 shows three degrees of
consanguinity we aggregated into FM identification rules. FH
relations were then extracted based on co-occurrence within a
clause of one sentence or across three adjacent sentences if
coreference existed, as indicated by keywords such as “he,”
“she,” “none of them,” “her,” or “his,” while excluding relations
between FMs of spouse and FH. We implemented this as an
OHNLP Toolkit module with code available on GitHub [25].
The implementation provides several output formats, including
FHIR-based output, with FM and FH standardization
conforming to FHIR standardization. The final output of the
rule-based FH system includes entities and relations. The entity
output includes file name (which links to document references
with patients’ ID), sentence ID, chunk ID, entity type, concept,
and certainty. The relation output includes file name, FM, side
of family, text of observation, and certainty. An option is also
available to output this information to CSV, instead of FHIR,
format. To set SNOMED-CT condition codes as the standard,
a separate mapping file is required due to SNOMED-CT
licensing restrictions.

Deep Learning–Based FH System
As information extraction remains a challenging task, it is
preferred to investigate what is the gain from deep
learning–based models. Therefore, we further implemented a
deep learning–based FH system as follows. Note that we
experimented with fined-tuned models for two purposes in this
study. The first was to fine-tune models for identifying and
collecting potential FH mentions from clinical texts to build a
dictionary, as described in the previous section. Here, the second
purpose was to fine-tune models for information extraction to
automatically identify FH entities and relations.

The Princeton University Relation Extraction (PURE) system
is an approach where the entity model builds on span-level
representations and the relation model builds on contextual
representations specific to a given pair of spans. As this
pipelined approach has been demonstrated to be extremely
effective, we implemented PURE using
scibert-scivocab-uncased as the base encoder and fine-tuned it
based on the BioCreative and N2C2 training data [26].

Evaluation

Overview
We conducted two evaluation studies, including (1) a coverage
evaluation of the lexicon and (2) a comparison study of a
lexicon-based module with a deep learning–based module for
FH information extraction.

Lexicon Coverage
To the best of our knowledge, our lexicon is the first to
incorporate a large number of text variants and concepts of FH.
Therefore, we compared the resulting lexicon with the UMLS
and SNOMED-CT in terms of the number of concepts under
each semantic type. We analyzed the lexicon coverage by
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calculating the number of concepts under each semantic type.
In addition, we calculated the number of concepts and variants
covered by the corpus-driven lexicon run against the BioCreative
testing data set relative to annotated gold standards. True
positive (TP) rate based on a partial match, false negative (FN)
rate, and recall (TP/[TP+FN]) at the concept level and variant
level were calculated.

Performance of FH Information Extraction
We evaluated the utility of the lexicon in identifying mentions
of FMs and their associated attributes (side of family) using the
BioCreative testing set and the N2C2 testing sets (ie, task 1 of
the challenges). Precision, recall, and F1-scores were calculated
as the performance metrics of the lexicon-based module, the
deep learning–based module, and both.

We also evaluated the rule-based FH system’s ability to identify
relations between FMs, observations, and living status using
the BioCreative testing set and N2C2 testing sets (ie, task 2 of
the challenges). This task was different between the 2018
BioCreative and 2019 N2C2 challenges in that the latter added
a certainty attribute (negated or nonnegated) into relation
extraction. Three sets of precision, recall, and F1 values were
separately calculated using varying setups: rule-based module
only, deep learning–based module only, and a combination of
both. Our evaluation scheme is the same as that applied in the
2018 BioCreative and 2019 N2C2 FH challenges. We performed
a general error analysis to investigate error sources. In addition,
to further investigate how much the lexicon contributes to
system performance, we performed an ablation study and
specific error analyses.

Results

Multimedia Appendix 3 shows the performance of the
BERT-base-uncased, UmlsBERT, and Bio_clinicalBERT
models fine-tuned on the BioCreative training data set, I2B2
training set, and on the combination of the BioCreative training
set with the I2B2 training set. As the model fine-tuned on the
combination of the two data sets outperformed other models,
we selected the combined model to extract potential FH
mentions from the corpus.

There were 72,518 unique entities identified by the
Bio_clinicalBERT model fine-tuned on the combination data
set, of which 47,250 (65.16%) were automatically normalized
to 10,579 CUIs through the standardization framework for
clinical problems. We manually normalized 148 entities
occurring across more than 20 patients that were not
automatically normalized to CUIs. For example, “typediabetes”

with a frequency of 3693 was normalized to C0011854
(diabetes). Note that spellings such as “typediabetes” found in
the EHRs are most likely typos due to physicians’ writing,
backend EHR note processing, or tokenization challenges.
Therefore, manual normalization is important. After semantic
type screening, manual curation, and MedLex enrichment, the
final FH lexicon contained 33,351 dictionary entities normalized
to 6177 CUIs and 15,126 SNOMED-CT codes, with an average
of 5.4 variants for each concept. Table 3 shows the comparison
of sizes of various lexicons. The corpus-driven lexicon was
more light-weighted, with more variants per concept. This
implies that implementation with the lexicon for NLP tasks
would be easier and more efficient with the corpus-driven
lexicon than with the SNOMED-CT and UMLS lexicons.

Lexicon coverage evaluation on the BioCreative testing data
set showed that there are 137 TP entities corresponding to 128
concepts and there are 16 FN entities, of which 6 entities had
no corresponding concepts in the FH lexicon and 10 entities
had 10 corresponding concepts in the FH lexicon. Concept-level
recall was 95.8% and variant-level recall was 89.5%. For the
N2C2 testing set, there were 507 TP entities corresponding to
214 concepts and 62 FN entities, of which 33 entities had no
corresponding concepts in the FH lexicon and 29 entities had
26 corresponding concepts in the FH lexicon. Concept-level
recall was 87.9% and variant-level recall was 89.1%. Table 4
shows the comparison of numbers of semantic types of CUIs
in various lexicons. It can be observed that the corpus-driven
lexicon contains less concepts under each semantic type
compared with the UMLS and SNOMED-CT lexicons.

Table 5 shows the performance of FH systems for subtasks 1
and 2 of the BioCreative and N2C2 challenge data sets (original
and reannotated) categorized by the rule-based FH system only,
deep learning–based FH system only, and a combination of the
two. For task 1, the highest F1 score was 0.8766 from the deep
learning–based model on the original BioCreative data set and
was 0.8061 on the original N2C2 data set. For task 2, the highest
F1 score was 0.6206 from the deep learning–based module on
the original BioCreative dataset and was 0.5940 from the
combined results on the original N2C2 data set. The rule-based
FH system based on the corpus-driven lexicon produced lower
F1 scores in contrast with the deep learning–based FH system
for both tasks, but higher or comparable recall for task 1 and
higher recall for task 2. The combined results had the highest
recall compared with the rule-based FH system or the deep
learning–based FH system for task 1, ranging from 0.8669 to
0.9475. The combined results also showed the highest recall
(ranging from 0.7109 to 0.8370) and varied F1 scores (ranging
from 0.4288 to 0.6142) for task 2.
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Table 3. Comparison of the size of lexicons.

Average number of variants per CUIVariantsConcepts (CUIa)Lexicon

5.4033,3516177Corpus-driven lexicon

3.281,349,838412,027SNOMED-CTb

2.169,569,5074,440,279UMLSc

aCUI: concept unique identifier.
bSNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms.
cUMLS: Unified Medical Language System.

Table 4. Statistical summary for semantic types of concept unique identifiers (CUIs) in the lexicon.

Number of CUIsSemantic type termSemantic type code

SNOMED-CTbUMLSaCorpus-driven lexicon

703411,23761Congenital abnormalityT019

2105432662Acquired abnormalityT020

29,371113,258236Injury or poisoningT037

45,946113,7802645Disease or syndromeT047

33189152376Mental or behavioral dysfunctionT048

583417524Cell or molecular dysfunctionT049

1703694394Anatomical abnormalityT190

11,05443,532866Neoplastic processT191

44,547309,9711018FindingT033

909827,601403Pathologic functionT046

293114,167389Sign or symptomT184

aUMLS: Unified Medical Language System.
bSNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms.

Table 5. Evaluation results for family history (FH) information extraction.

CombinedRule-based FH systemDeep learning–based FH systemTask and data set

F1RecallPrecisionF1RecallPrecisionF1RecallPrecision

Task 1 Original

0.84690.94750.78570.82110.86190.78770.87660.87290.88192018 testing

0.78350.90070.71040.77400.84080.71910.80610.78350.82712019 testing

Task 1 Reannotation

0.84860.91930.80810.81250.82940.79880.87090.86070.88302018 testing

0.76430.86690.70410.75360.79800.71490.78060.77470.78602019 testing

Task 2 Original

0.61420.72370.55180.56730.60000.54130.62060.54640.71892018 testing

0.59400.83700.46990.47160.55710.40890.58510.51090.68412019 testing

Task 2 Reannotation

0.61420.71090.55730.57690.59800.55960.59620.53070.67772018 testing

0.42880.81500.30600.45480.52920.40030.46290.81680.33092019 testing

A general error analysis showed that errors could be divided
into two major sources. First, varied definitions of FH between
different subtasks represented a confounding factor. FH in the

gold standards was defined as any health-related problem,
including diseases, smoking, suicide, and drinking, excluding
auto accident, surgery, and medications [19], whereas the
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definition in the FH lexicon is based on semantic types (Table
1). For example, mastectomy, a procedure, was annotated as an
observation (FH) in the challenge data sets, which is not in the
scope of our lexicon. Second, the intrinsic difficulty of FH
relation extraction and its textual representations presented
several obstacles, particularly with symbolic systems. The
rule-based FH system used simple heuristic rules, and therefore
it is difficult to handle complex relationships, especially when
the subtask 2 of challenges includes multiple layers of
relationships.

In the ablation study, for task 2 based on the original
BioCreative test set, the precision, recall, and F1 score for
observation only (excluding living status) were 0.5419, 0.6265,
and 0.5783, respectively, representing a slight improvement
compared with the corresponding values of 0.5413, 0.6000, and
0.5673 for both observation and living status. For task 2 based
on the original N2C2 test set, the precision, recall, and F1 score
were 0.3984, 0.7033, and 0.5449, respectively, for observation
only (excluding living status); 0.4275, 0.6658, and 0.5444,
respectively, for both observation and living status; and 0.3730,
0.6675, and 0.5169, respectively, for both observation and
certainty. Although living status and certainty alone had little
impact on the performance, the combination of observation,
living status, and certainty resulted in significantly lower
performance of 0.4089, 0.5571, and 0.4716 for precision, recall,
and F1, respectively.

Discussion

FH has its own sublanguage. However, some terms related to
FH may not actually be used in practice or may be used very
rarely, such as “ancestor,” “descendant,” or “genealogy.” For
this reason, these terms may not appear in the lexicon. As FH
is specifically related to blood relations (consanguinity), it
relates to the patient themselves. Therefore, the FM of spouse
should not be considered, and FH elements relating to a spouse
(rather than the patient) should consequently not be extracted.
The advantage of this operation is the consistency with
definitions of FM, resulting in a list of FH of the relevant FMs.
The disadvantage may be missing the spouse’s relatives and
associated FH information. There are some social, behavioral,
and environment factors shared in the same household, which
also represent critical information. However, these are social
determinants of health and not part of the blood relations.

Collecting lexicon entries can be defined as a named entity
recognition task, which is an important task for identifying
meaningful terms and multiword phrases in free text [27]. In
this study, we fine-tuned several BERT-based models for the
purpose of identifying potential FH mentions from an EHR
corpus, leveraging various data sets for the purpose of providing
more context for fine-tuning BERT-based models. Lexicon
entries were collected from a large clinical EHR corpus,
mitigating the problem of missing entities caused by limited
amounts of data. The dictionary coverage evaluation showed
that it covers a greater range of lexical variants and focuses
primarily on clinical concepts typically reported as part of FH
relative to a direct lexicon generated from the UMLS and
SNOMED-CT. Our corpus-driven lexicon features FH

definitions based on semantic types, concept normalization to
UMLS and SNOMED-CT CUIs, and manual curation, with the
potential to resolve semantic ambiguity and promote
interoperability among various systems. The rule-based FH
system also provides standard Health Level 7 FHIR output to
foster interoperability.

FH relation extraction is more relevant for downstream analysis
compared with entity extraction. In previous challenges, the F1
score was regarded as the most important metric for relation
extraction evaluation. The highest F1 score obtained from
challenges was 0.5708 in the BioCreative challenge [19] and
was 0.681 in the N2C2 challenge [20]. However, it is not our
aim to compete with previous studies in terms of F1 scores. As
relation extraction is still a challenging task, an FH system that
prioritizes recall is highly desired for NLP-assisted curation in
EHR-based studies. Our evaluation results showed that the
rule-based FH system on top of the corpus-driven lexicon
produced higher recall than that obtained with the deep
learning–based FH system. In addition, the combined results
from both the rule-based module and the deep learning–based
FH system resulted in the highest recall for relation extraction,
ranging from 0.7109 to 0.8370, which were higher than the
recall values obtained in any previous challenge results, ranging
from 0.3732 to 0.6810.

Note that we did not observe higher performance when using
the reannotated data as compared to the original data. There
may be two underlying reasons for this. First, reannotated data
have not been used for training the rule-based system. Second,
reannotated data were obtained by a professional annotator with
deep domain knowledge, which makes the information
extraction task harder. In addition, we observed that performance
on 2019 N2C2 FH challenge data was worse than that on the
2018 BioCreative FH challenge data. This is mainly because
the 2019 N2C2 FH challenge added a certainty attribute (negated
or nonnegated) into the relation extraction, which made the
relation extraction task harder.

Our FH synthetic data sets used for training and testing were
from real clinical sentences, for which the observations, FMs,
and ethnicities are shuffled among the whole corpus using a
heuristic deidentification process. The granularity of the
synthetic FH data sets is the same as that of real FH data. In
this study, we have not exhaustedly compared all BERT-related
models. Theoretically, large language models–empowered
knowledge engineering is sufficient for lexicon entry collection
from a clinical corpus. Our focus in this study was to provide
a corpus-driven lexicon resource that leads to a rule-based FH
baseline system for high-throughput analysis, while doing so
in a manner that promotes interpretability and explainability
for downstream applications.

We recommend that a comprehensive FH system include both
a rule-based module and a deep learning–based module to obtain
higher recall, which could facilitate manual curation. Although
only the rule-based FH system can output normalized concepts,
output from a deep learning–based FH system can be a rich
source to enrich the lexicon. In the future, we will repeat the
SFCP normalization for the output from the deep learning–based
FH system to consistently improve the FH lexicon and the
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rule-based FH system. Meanwhile, we will continue to manually
review the BERT-extracted entities without automatic
normalization with frequency under 20, and look into other data
sources such as social media so as to expand more concepts
and/or term variants for the current lexicon. In addition, we will
engage the user community to continuously refine the lexicon.
We also plan to update the lexicon and rule-based FH system
yearly, which will be distributed through the same open-source
repository on GitHub.

There are three limitations to this study. First, although a large
corpus with 83,000 patients was used for collection of potential
FH variants, there is still a possibility that the FH information
is not well represented. In addition, as the lexicon was developed
using a largely monoinstitutional data resource, the lexicon may
not be generalizable in other institutions. Second, during the
entity normalization, we simply adopted an existing
standardization framework, as it was not a priority of this study

to focus on standardization method development. Third, we
arbitrarily set a frequency cutoff of 20 for entities that were not
automatically normalized to include in our manual review.
However, we realize that some entities with low frequency also
have the potential to contribute to the lexicon entries, such as
“rectal ca” with a frequency of 18 and “highcholesterol” with
a frequency of 12.

In summary, we constructed a corpus-driven FH lexicon to serve
as a language resource for FH information extraction.
Standardization of concepts in the FH lexicon and the rule-based
FH system foster interoperability. The resulting lexicon and the
rule-based FH system are freely available as part of the OHNLP
Toolkit ecosystem. In the future, we will continue to expand
more concepts and/or term variants of the current lexicon, and
will explore the incorporation of the system for data curation
efforts needed in various EHR-based studies and applications.
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