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Abstract

Background: Observational biomedical studies facilitate a new strategy for large-scale electronic health record (EHR) utilization
to support precision medicine. However, data label inaccessibility is an increasingly important issue in clinical prediction, despite
the use of synthetic and semisupervised learning from data. Little research has aimed to uncover the underlying graphical structure
of EHRs.

Objective: A network-based generative adversarial semisupervised method is proposed. The objective is to train clinical
prediction models on label-deficient EHRs to achieve comparable learning performance to supervised methods.

Methods: Three public data sets and one colorectal cancer data set gathered from the Second Affiliated Hospital of Zhejiang
University were selected as benchmarks. The proposed models were trained on 5% to 25% labeled data and evaluated on
classification metrics against conventional semisupervised and supervised methods. The data quality, model security, and memory
scalability were also evaluated.

Results: The proposed method for semisupervised classification outperforms related semisupervised methods under the same
setup, with the average area under the receiver operating characteristics curve (AUC) reaching 0.945, 0.673, 0.611, and 0.588
for the four data sets, respectively, followed by graph-based semisupervised learning (0.450, 0.454, 0.425, and 0.5676, respectively)
and label propagation (0.475,0.344, 0.440, and 0.477, respectively). The average classification AUCs with 10% labeled data were
0.929, 0.719, 0.652, and 0.650, respectively, comparable to that of the supervised learning methods logistic regression (0.601,
0.670, 0.731, and 0.710, respectively), support vector machines (0.733, 0.720, 0.720, and 0.721, respectively), and random forests
(0.982, 0.750, 0.758, and 0.740, respectively). The concerns regarding the secondary use of data and data security are alleviated
by realistic data synthesis and robust privacy preservation.

Conclusions: Training clinical prediction models on label-deficient EHRs is indispensable in data-driven research. The proposed
method has great potential to exploit the intrinsic structure of EHRs and achieve comparable learning performance to supervised
methods.

(JMIR Med Inform 2023;11:e47862) doi: 10.2196/47862
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Introduction

The recent rise of observational biomedical research, driven by
greatly expanding electronic health records (EHRs) and the
prevalence of machine learning methods, has drawn great
attention [1-4]. Conventional strategies tend to screen out
subgroups of interest based on expert supervision or established
risk factors. An alternative data-driven paradigm extracts
underlying subtypes by comprehensively profiling the
longitudinal irregularity, interdimensional heterogeneity, and
intrinsic homogeneity of the database, thus progressively
facilitating the practice of precision medicine. For instance, the
Electronic Medical Records and Genomics (eMERGE) network
[5] leverages expertise from multiple institutions and
communities to integrate biorepositories and EHRs to support
genomic research. Observational research approaches exhibit
both potential and challenges for more sophisticated data
analysis.

However, the acquisition of realistic data, especially data labels,
is still restricted when confronting concerns about system
security, patient privacy, and intellectual property protection
[6,7]. Excluding data and labels may be ubiquitous during the
data collection phase. Long-term studies often lack sufficient
time to gather data and have no control over the switching
behaviors of patients [8,9], resulting in the loss of accurate
outcome measurements.

Restrictions on transferring intellectual property among different
institutions hinder the sharing of data, which is expected to be
complete. Additionally, some expertise-requiring annotations
are tedious and have no guarantee of correctness [10]. Generally,
label deficiencies occur frequently when analyzing observational
EHR data.

There have been some attempts to address insufficient labeling
by realistic synthesized EHR (RS-EHR) generation. One
approach to RS-EHRs is knowledge-based [11,12]. Such
approaches combine publicly available statistics, clinical practice
guidelines, and medical coding dictionaries to improve the
fidelity of generated EHRs. However, the models are still
restricted to development, testing, and public demonstrations.

Another strategy is data-driven. Generative adversarial networks
(GANs) are a new class of methods for obtaining realistic
synthesized data [13,14]. The philosophy of GANs is to train
two networks, one generating fake samples and the other
discriminating fake and real samples, in a min-max game until
equilibrium is achieved, indicating that the generated fake
samples cannot be distinguished from the real samples. There
has been some work on applying state-of-the-art GANs to
generate synthesized EHR data sets [15,16]. However, these
studies have not fully applied the generated data to augment
EHR computational phenotyping and classification. GANs for
few-labeled data are still unlikely to recover the whole
distribution of labels from the raw data set due to imbalanced
labeling. Additionally, there are some arguments that

GAN-generated samples are likely to copy real samples exactly,
which is a potential violation of privacy [17,18].

Semisupervised learning (SSL) is a set of techniques that are
usually adopted to leverage unlabeled data and an underlying
data set structure. With a relatively small set of labeled data
compared to that needed in supervised learning (SL), SSL can
still display decent learning performance. Some previous studies
used SSL to phenotype EHR databases [19,20]. These studies
achieved excellent performance in EHR-based risk prediction,
but the feature dimensions were restricted to discrete medical
codes. GANs were adopted to boost the SSL [21], but as
mentioned above, the generator was trained to eventually
remember exact copies of the samples for the limited span of
an EHR data set in a discrete and high-dimensional space, which
therefore raised privacy concerns. SSL is a powerful tool for
label-deficient circumstances but needs specifications for
observational research.

Network analysis is a solution to both obstacles. Encoding the
similarities among patients into their connections protects their
identities. The input of the analysis is only the network structure
and embedded vectors. Network analysis is the basis for
manifold learning, which has an advantage in approximating
the data structure in a high-dimensional space. Many
manifold-based methods have prevailed in intuitively visualizing
and phenotyping coordinated data sets [22-24]. Additionally,
there have been quite a few attempts to extend deep learning to
irregular data structures, such as graphs. Several studies have
shown great performance in representative learning with SSL
[25-28], and endeavors have been made to apply GANs to
graphs [29-31].

However, few studies have considered exploiting the inherent
network structure of an EHR database in SSL tasks. GANs on
networks have not been fully investigated in terms of privacy
preservation. Additionally, under various label-deficient
situations, the performance remains to be evaluated. It is very
promising to scale SSL and GANs to the graph structure
extracted from an EHR database and to thereby acquire a new
perspective on EHR data sets.

For this paper, the main contributions are as follows: (1) This
study tries to address limitations due to existing label deficiency
in observational EHR analytical research by extending the
network analysis pipeline to EHRs. A boosting learning model
is proposed by applying GAN-boosted SSL to network data
extracted from label-deficient coordinated EHRs. (2)
Experiments are conducted on 3 public data sets as well as one
from the First Affiliated Hospital of Zhejiang University, and
they are evaluated by prediction metrics that are compared to
conventional learning methods. The proposed method shows
superior performance over conventional semisupervised methods
and indicates comparable performance with supervised learning
methods when data are fully labeled. (3) To ensure the utility
of the proposed model, further evaluations of data quality,
nondisclosure, and memory space consumption are performed.
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The proposed method shows higher data fidelity, lower precision
metrics against compromised attack, and less graphics
processing unit (GPU) memory consumption over conventional
semisupervised methods.

Methods

Data Set Structure Conversion to a Graph
Graph structure definition and semisupervised learning on graph
formularization are shown in Multimedia Appendix 1A [31-37].
According to the well-accepted assumption that a manifold is
locally Euclidean in topological space, it is plausible to represent
a data set X with a graph G. However, this conversion rule
should be scrutinized. First, it depends on the number of edges
|E| that comprise the edge set. |E| should be restricted to a range
that avoids disconnected components and short circuits that
obscure structural information. Second, the neighborhood
searching strategy should be scalable to feature value scales and
effective in practice. Third, the local density variance should
be preserved during conversion, which means that the weights
of edges should not be binary.

To circumvent this problem, the k-nearest neighbors (k-NN)
method was selected to convert the original data set into a graph
measure space. As its name indicates, the k nearest points in
the Euclidean space of point x are identified as its neighbors,
Nk (x). Each edge weight wij is refined with the Jaccard
coefficient:

The Jaccard coefficient addresses the unified weight problem
brought by k-NN searching and restricts the weights to [0,1],
which scales the local densities as node degrees: deg(vi ) =
∑j∈N_k(v_i )wij. Additionally, when the lower bound is reached,
the edge is removed from the graph, and eventually, nodes with
degree zero will be considered noise and therefore removed.
The final graph serves as one of the inputs of the GAN.

GANs for Graphs and Their Modified Losses
In this study, we focus on generating vectorized fake samples
by the use of both the graph structure and coordinated features.
The coordinated features of the graph structure are acquired by
feeding the Jaccard graph into large-scale information network
embedding [38], explicitly setting the output dimension as half
of d.

The fundamentals of GAN [32,33] are presented in Multimedia
Appendix 1C [31-37]. Nevertheless, it is important to take into
account the unconventional loss of semisupervised adversarial
learning, as insufficient labels do not effectively minimize the

current adversarial learning loss. The generator is trained to
produce samples that bridge the density gap between samples
from distinct classes. In the case of binary classification tasks,
the 2 classes are “true” and “false.” By expanding the density
gap between labeled true samples, labeled false samples, and
generated density gap samples, the adjusted discriminator loss
can enhance semisupervised learning performance. The refined
discriminator loss LD for SSL purposes comprises
semisupervised loss, entropy loss, and class distance. (1)
Semisupervised loss: there are two terms; the first is the
supervised loss calculated by cross-entropy between the labels
and prediction. The second emphasizes the loss due to incorrect
classification by SSL. λ0 is a hyperparameter that balances these
2 terms.

losssemi = losssup + λ0lossun

= –E_(xi∈XL) log P(yi | xi,yi < M)

– λ0 (Exi∈XU log(1 – P(M | xi)) + Exi~G(z) log P(M | xi))
(2)

(2) Entropy regularization [39,40]: this term calculates the
entropy of a distribution over all labels M to enhance the
certainty of the prediction.

(3) Cluster distance loss [31]: this term tends to enlarge the
density gap so that samples from different classes are separate.

hn(x) is the last-layer output of the discriminator.

The final loss term for the discriminator generator is

lossD = lossDwgp + losssemi + lossent + losspt (5)

The loss of generator LG is also modified by adding the term
(4). The final loss term for the training generator is

lossG = lossGwgp + losspt (6)

The network structure is illustrated in Figure 1. During the
training phase, real embeddings and fake inputs of the same
size are fed into the network separately in batches, with the goal
of optimizing the aforementioned losses of the discriminator
and generator. During 1 training epoch, batches of real labeled
data, real unlabeled data, and fake data are fed into the network
to calculate different loss terms for optimization. Batch
normalization is conducted. After training, the discriminator
loss is expected to be stable and could be exploited as a classifier
for testing samples and predictions. The generator is suitable
for measuring data quality and preserving privacy.
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Figure 1. An overview of the proposed model. Real samples are extracted from the k-NN graph by the embedding layer, and the fake samples generated
by the generator have the same dimension. Both real and fake samples are fed into and backpropagated from the discriminator in minibatches. The
output layer of the discriminator is softmax. The embedding layer is a pretrained large-scale information network embedding [32]. BN: batch normalization;
k-NN: k-nearest neighbors.

Data Sets and Experimental Setup
EHR data sets were obtained from public resources, including
University of California Irvine Machine Learning Repository
Type 2 Diabetes 30-Day Readmission (UCI-T2D) [41];
Surveillance, Epidemiology, and End Results Ovarian Cancer
(SEER-OVC) [42]; and Surveillance, Epidemiology, and End
Results Colorectal Cancer (SEER-CRC) [42]. The dimensional
information is summarized in Table 1. Another colorectal cancer
data set from the Second Affiliated Hospital Zhejiang University
School of Medicine (SAHZU-CRC) was selected to investigate
feasibility in practical situations. These data sets were selected
because they are long-term follow-ups, the labels of which take

much time and effort to obtain and are likely to be missing due
to regulations on data collection. The selected features included
basic demographics, medication, clinical codes, stage codes,
laboratory variables, and dispositions. A basic description of
the data sets and preprocessing is provided in Multimedia
Appendix 1B.

We trained the proposed models for a maximum of 200 epochs
using Adam optimization with a learning rate of 0.003 and a
momentum of 0.5. The batch size was 128. For each class, the
rate of labeled points (the label rate is the percentage of labeled
points among all points) increased progressively from 5% to
25% with a step of 5%. The number of test sets was set as 20%
of the data set.

Table 1. Dimensional description of the selected data sets.

Labeling standardPreprocessed
dimensions

Numerical
variables

Categorical
variables

RecordsData sets

Readmission in 30 days5784461,675University of California Irvine Machine Learning Repository
Type 2 Diabetes 30-Day Readmission

Survival over 5 years3431810,038Surveillance, Epidemiology, and End Results Ovarian Cancer

Survival over 5 years142740,014Surveillance, Epidemiology, and End Results Colorectal Cancer

Survival over 5 years14281244Second Affiliated Hospital of Zhejiang University

We compared the model with the following baselines: (1)
supervised learning methods, including logistic regression (LR),
a support vector machine (SVM), and a random forest (RF) and
(2) SSL methods, including graph-based semisupervised learning
(GSSL) and label propagation (LP). All these methods are run
using the scikit-learn Python package. The graph convolutional
network (GCN) [25,27], a state-of-the-art graph-based
semisupervised deep learning method, is also considered a
competing method. To measure the classification performance,
the accuracy and recall—for the important purpose of excluding
false negative cases to conserve medical resources—and the
area under the receiver operating characteristics curve (AUC)
were selected as metrics. Each metric represented the average
of 30 repetitions of 10-fold cross-validation training.

Ethical Considerations
This study did not involve any human or animal experiments.
The UCI-T2D, SEER-OVC, and SEER-CRC data sets are
public, and we complied with their ethical requirements. We
also used a colorectal cancer–specific disease cohort of the
Second Affiliated Hospital Zhejiang University School of
Medicine; this was approved by the Human Research Ethics
Committee of Zhejiang University in August 2017 (2017-067).

Results

SSL-based Classification of EHR Data
In the aforementioned experiments, the proposed method for
semisupervised classification outperformed related
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semisupervised methods by a decent margin. Basic graph
semisupervised methods (ie, GSSL) are limited in classification
performance, mostly due to their assumption that edges encode
only the similarity of nodes. The spectral methods (LP and
GCNs) do not perform well, perhaps because their low-order
approximation may smooth the frontiers in the graph. Neither
of these 2 methods consider the local properties of the input
graph, and under some circumstances, they classify the majority
of nodes into 1 class. Additionally, at a 10% to 15% label rate,
the proposed method achieves the best performance on
SEER-OVC, SEER-CRC, and SAHZU-CRC (Table 2). The
AUCs declined as label rates continued to rise. GCNs, as the
state-of-the-art semisupervised deep learning method, had
somewhat better results for a data set with a size that can be
handled by a GPU, but still exhibited worse performance than
the proposed method, presumably due to oversmoothing the
graphs and having less refined loss.

In regard to supervised learning, as shown by the bars in Figure
2A, even with a label rate of 10%, SSL on a graph with a GAN
performed comparably to the supervised learning methods. As
the portion of labeled data increased, the learning performance
progressively increased, which is a consequence of the abundant
information of the label distribution over the constructed graph.
However, as the label rate continued to rise, the performance
decreased because of mode collapse and overfitting. As the error
bars show, with 10% labeled data, the standard deviations of
the proposed model are slightly larger, as shown in Figures 2A
and 2C, indicating a limitation of our proposed method; it only
applies to certain low label-rate circumstances. When the labels
are sufficient, more robust SL methods are better. However,
some poorly trained and undertuned SL methods show far worse
metrics in testing. Additionally, as the vector dimensions, shown
in Table 1, decreased somewhat, the learning performance
showed a significant decrease. This is perhaps a consequence
of the lack of dimension diversity for similarity encoding and
the local graph structure.

Table 2. Summary of the results of the classification AUCs for semisupervised learning methods under progressively increasing label rates. The learning
performance of the graph convolutional network on the large data sets—that is, data sets other than Second Affiliated Hospital of Zhejiang University
Colorectal Cancer—is unavailable due to memory limits.

25%, AUC20%, AUC15%, AUC10%, AUC5%, AUCaLabel Rate

University of California Irvine Machine Learning Repository Type 2 Diabetes 30-Day Readmission

0.6020.5420.5230.4720.450GSSLb

0.5660.5850.5640.4750.475LPc

0.9240.9300.9640.9790.929Proposed

Surveillance, Epidemiology, and End Results Ovarian Cancer

0.5910.5910.5370.5120.454GSSL

0.4910.4780.4620.3640.344LP

0.6500.6780.6770.7190.640Proposed

Surveillance, Epidemiology, and End Results Colorectal Cancer

0.5780.5850.4470.5270.525GSSL

0.5130.5400.5120.5320.540LP

0.5900.5810.6400.6520.595Proposed

Second Affiliated Hospital of Zhejiang University Colorectal Cancer

0.5800.5530.5640.5730.547GSSL

0.5070.4600.5120.4480.454LP

0.6060.5850.5620.5750.505GCNd

0.5080.5680.6340.6500.587Proposed

aAUC: area under the receiver operating characteristics curve.
bGSSL: graph-base semisupervised learning.
cLP: label propagation.
dGCN: graph convolutional network.
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Figure 2. Summary of the results of the classification of the proposed method versus those of the conventional supervised learning methods. (A) AUC;
(B) accuracy; (C) recall. The proposed method was evaluated under progressively increasing label rates. The supervised learning models were trained
on fully labeled data. The error bars indicate the SD for each metric. AUC: area under the receiver operating characteristics curve; LR: logistic regression;
RF: random forest; SAHZU-CRC: Second Affiliated Hospital of Zhejiang University Colorectal Cancer; SEER-CRC: Surveillance, Epidemiology, and
End Results Colorectal Cancer; SEER-OVC: Surveillance, Epidemiology, and End Results Ovarian Cancer; SVM: support vector machine; UCI-T2D:
University of California Irvine Machine Learning Repository Type 2 Diabetes 30-Day Readmission.

Boosting Semisupervised Learning by Generating a
Density Gap
In this section, we visualize the final layer of discriminator D
in the proposed method by feeding it real samples from
UCI-T2D and their generated counterparts. By embedding the
output layer at different iteration steps with t-distributed
stochastic neighbor embedding [22], the progression of the
density gap from the generated samples, described in equation
4, is verified.

In Figure 3, we can see that at the starting epochs, the generated
samples are mixed with the real samples, and the different

classes are not divided. During training, D gradually learns a
nonlinear map to project the fake samples and real samples into
distinct clusters, while G learns to generate samples to take over
the central area and isolate the clusters of different classes. This
process has 2 advantages. First, the fake samples from the
generator are unlikely to be copies of the original data, avoiding
the direct disclosure of private information. Second, the samples
on the borders of different classes are more correctly divided,
which not only improves the accuracy of classification but also
reveals the underlying training strategy of splitting one large
class into several smaller classes to obtain a better classification.
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Figure 3. The progressive generation of density gaps in high-dimensional space and its visualization. (A) 0 epochs; (B) 40 epochs; (C) 80 epochs; (D)
120 epochs. The generated samples ultimately span the gap between a real and a false sample. The line chart (E) indicates the function of the pull-away
term and how its optimization affects the generator and discriminator.

Fidelity Evaluation of the Generated Data
Frontier nodes are nodes at the borders of different clusters in
a graph. The definition is given in Multimedia Appendix 1D.
It is possible that a trained model is exploited directly for
secondary purposes, such as fundamental profiling or
developmental usage during the primary phase of data sharing
[12]. We calculated the dimensionwise probability (DWPro)
and dimensionwise prediction (DWPre) proposed by Choi et al
[15] to evaluate the fidelity of the generator in our proposed
model. DWPro is a basic statistical confirmation of the
distributions of real data that are appropriately learned by the
generator in the model. A training set R and synthetic sample
set S of the same sample size are compared using the Bernoulli
success probability pk of each dimension k. DWPre measures
the extent to which the internal relations of every feature are
captured. One dimension k is selected, and the rest of the

features are used as training data. R and S are used to train the
LR classifiers. Then, the dimension k is regarded as the label
column for testing. It is a rational assumption that a smaller
margin between the predictions of 2 models implies a better
synthetic quality. The F1-score is selected as the metric for
comparison.

Figure 4 shows that all 4 data sets were depicted well from a
featurewise perspective, and over half of the dots are near the
diagonal line. In Figure 4C, the consistency of each feature
indicates high synthetic quality. Figure 5 shows a mildly
diminished learning quality considering interdimensional
fidelity. However, half of the features are still likely to be
inferred from the remaining columns and the same proportion
of features. Considering that the generated frontier is still
different from the directly generated datapoints [15,16], the
fidelity is acceptable for some secondary uses.
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Figure 4. Dimensionwise probability of 4 selected data sets: (A) University of California Irvine Machine Learning Repository Type 2 Diabetes 30-Day
Readmission; (B) Surveillance, Epidemiology, and End Results Ovarian Cancer; (C) Surveillance, Epidemiology, and End Results Colorectal Cancer;
(D) Second Affiliated Hospital of Zhejiang University Colorectal Cancer. The x-axis is the Bernoulli success probability for the features of the real data
sets, while the y-axis is the corresponding value from the synthetic data. Each blue dot represents a feature of the data set. The red diagonal line indicates
an identical Bernoulli success probability of both the real and generated data sets, and ideal fidelity is learned featurewise by the generator.

Figure 5. Dimensionwise prediction of 4 selected data sets: (A) University of California Irvine Machine Learning Repository Type 2 Diabetes 30-Day
Readmission; (B) Surveillance, Epidemiology, and End Results Ovarian Cancer; (C) Surveillance, Epidemiology, and End Results Colorectal Cancer;
(D) Second Affiliated Hospital of Zhejiang University Colorectal Cancer. The x-axis is the F1-score of models trained on the real data sets, while the
y-axis is the corresponding values from the synthetic data. Each blue dot represents a feature of the data set. The red diagonal line indicates that the
F1-score was identical for the models trained and tested on the real and generated data sets, and ideal interdimensional fidelity was learned by the
generator.
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Evaluation of the Disclosure Risk of the Generated
Data
The generator in our proposed model may be exploited to
generate data points similar to the original data sets, posing
threats to patient privacy. We need to ensure that the frontier
nodes generated by the proposed model can be protected from
attackers with compromised data. Therefore, a quantitative
evaluation of presence and attribute disclosure was conducted
on the SAHZU-CRC data set. Of the real samples N, 1% were
randomly sampled, and among the 11 dimensions (the numerical
dimensions are left out and the nominal columns are collapsed
into 2 for simplification), a progressively increasing number of
features, denoted as r, were assumed to be known by the
attacker. Then, the attacker could exploit the knowledge of the
data (1% × N × r) to conduct k-NN searches of the synthetic
data, and the other unknown feature values were estimated
according to those of the k-NN. Finally, the unknown features

were compared to the real features to gain precision and
accuracy. The calculation was repeated 100 times with 1% of
the real records chosen at random.

Under these circumstances, the sensitivity indicates when the
attacker has 1% × N × r of the disclosed data and all the
synthetic data and how many records of all the positive features
the attacker can correctly estimate with a 1-NN attack. The
precision indicates how many features among all the features
estimated positive by the attack were on average accurate. For
instance, in Figure 6A, if an attacker with 1% of the records (12
of 1244 records for SAHZU-CRC) and 5 features from the real
data conducts 1-NN on the synthetic SAHZU-CRC data
generated by the proposed method, the positive estimation of
the remaining unknown features of the real data will be 12.5%
correct on average (0.125 precision), and of all the positive
predictions, 15.8% will be correct (0.158 sensitivity).

Figure 6. Privacy preservation evaluation. When increasing the number of known features, the attack achieves (A) precision and (B) sensitivity with
1% compromised records from the Second Affiliated Hospital of Zhejiang University data set.

In summary, the precision and sensitivity of attacks on synthetic
data is relatively low, 0.158 at best when r is 11. The most
effective attack setting is 1-NN. It is difficult to estimate more
information from our frontier nodes due to the modification of
the network losses. Substitution of both the generator and
discriminator learning strategies boosts the model performance
on classification with label deficiency and provides synthetic
samples capable of preventing disclosure.

Scalability of the Memory Consumption of
Batch-Based Training
Because GPUs have been used in deep learning–based
computation, we further examined whether the proposed method
could achieve practical memory consumption. The
aforementioned semisupervised methods are compared with

our proposed method on memory consumption for 4 data sets.
For the algorithms that do not need GPUs, their central
processing unit consumption is measured.

For small data sets (eg, SAHZU-CRC), our proposed method
takes up more space because of its complex network structure
(Table 3). However, as the size expands, our proposed method
shows the least and most stable space consumption, because
minibatch training is independent of the number of samples (for
SEER-CRC and SEER-OVC). Conventional network-based
SSL methods tend to train on full batches. When the data set is
large enough, there is a huge obstacle to storing the data in
memory. Stable memory consumption implies a scalable model
for training and prediction on diverse data sizes. The GCN, as
a transductive SSL method, is unable to be directly scaled to
larger data sets despite its excellent representative ability.
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Table 3. Graphics processing unit memory consumption of the proposed method against that of typical semisupervised learning algorithms on 4 data
sets. The graph convolutional network is not suitable for data sets other than Second Affiliated Hospital of Zhejiang University; therefore, only one
result is shown.

SAHZU-CRCd, MBSEER-CRCc, MBSEER-OVCb, MBUCI-T2Da, MB

29712607701374Graph-based semisupervised learning (CPUe)

25712637021200Label propagation (CPU)

732Out of memoryOut of memoryOut of memoryGraph convolutional network

332330345336Proposed

aUCI-T2D: University of California Irvine Machine Learning Repository Type 2 Diabetes 30-Day Readmission.
bSEER-OVC: Surveillance, Epidemiology, and End Results–Ovarian Cancer.
cSEER-CRC: Surveillance, Epidemiology, and End Results–Colorectal Cancer.
dSAHZU-CRC: Second Affiliated Hospital of Zhejiang University.
eCPU: central processing unit.

Discussion

Principal Results
The proposed model fully utilizes the inner graphical structure
of EHRs and provides cost-effective prediction metrics. The
density gap derived from the modified network loss enables
different class labels to be better distinguished. Under
label-deficient circumstances, the proposed model achieves a
comparable performance to that of conventional supervised
learning methods where all of the training data are labeled.
Specifically, with only 10% labeled data, the performance of
popular supervised machine learning methods is approached,
which implies there is a broad set of situations in which this
model could be considered for prediction tasks. Following the
same setting of label rates for the purpose of comparison, the
conventional SSL methods show poor data representation ability.
The learning performance, compared to that of our proposed
method, shows worse stability and scalability. With the
increasing label rate, the conventional SSL models display either
poor performance on classification due to label deficiency or
extreme cases where the classifier puts every sample into 1 class
as a consequence of overfitting. Additionally, the memory cost
is worth noting. Most semisupervised methods have a tendency
to copy the whole graph structure into memory [19,27,43],
which brings a very large burden of computational resources
considering that the EHRs absorb increasingly more data.

Extracting the frontier of generated samples that shows high
performance in DWPro and DWPre has potential in applying
some special frontier nodes as sample data for secondary usage,
in the same way as related work applies GANs to RS-EHR
generation. According to related studies [15,16], generating
data with adequate quality is crucial in cross-organization data
sharing. The quality of the data determines the model
performance on realistic data sets. Additionally, for diverse
developmental needs, the more realistic the generated data are
compared to the real samples, the more persuasiveness and
fidelity the researching systems will acquire. The generator in
our model fulfills this demand by generating similar samples
to the original data after the training phase.

To reveal the hidden clinical and physiological characteristics
of certain groups, EHRs are among the most reliable information

sources. Nonetheless, administrative regulations and the
protection of patient privacy have decreased the accessibility
of EHRs for a variety of reasons and made downstream analysis
inconvenient. Our method first addresses privacy considerations
by transforming the data set into a k-NN graph where the
similarities between different patients are re-encoded while the
identifying information is hidden. Second, the vector from the
embedded graph is fed into our model for further analysis. Under
practical scenarios, authorization to share and use the original
data will not be a necessity. Additionally, even when
conventional attacks attempt to reidentify personal information
from the publicly generated samples, the k-precision and
k-sensitivity metrics indicate that it is quite safe if the attacker
holds only a small fraction of the knowledge of the real data
and conducts the most powerful 1-NN attack. Furthermore, the
density gaps avoid the usual case where GANs would otherwise
be trained to copy the real input, thereby shielding the patient
information from another possible method of disclosure.

Limitations
The limitations of this study are still worth noting. The
evaluation of how the proposed model can improve data quality
and predict performance on the actual label collection phase
has yet to be considered. Additionally, we excluded all patient
duplicates to conduct a prediction method without considering
any temporal information. Further investigation of the temporal
trajectories of the same patients may reveal more of the inner
mechanisms of disease progression, and localization methods
of temporal and spatial structure in many other fields may
address the same problem [44,45]. Additionally, the proposed
model only applies to some label-rate setups, and performance
diminishes as more labels become available. The thresholds for
switching between the different algorithms (SSL and SL) remain
to be studied. Finally, to be more protective of patient privacy
and intellectual property, our future explorations include graph
generation and attention mechanisms [28,29,34,46]. A whole
generated graph can be taken into consideration. With the power
of GANs, the underlying structure of large-scale EHRs could
be preserved while achieving full anonymity.

Conclusions
EHR-based systems and observational studies with conventional
learning strategies are facing diverse challenges as data and
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label inaccessibility increase. Training on few labeled data is a
pivotal task and needs substantial resources. Uncovering the
underlying graphical structure of EHRs brings a motivating
perspective and informative prerequisites to analyzing patient
data. As a downstream analysis method, GAN-boosted SSL
uses a graphical structure and greatly improves learning quality
in label-deficient situations. GANs with refined loss also meet
the demands of deidentification and decent data fidelity under

multiple-source data-sharing circumstances. This combination
achieves impressive performance on prediction metrics, data
quality, and protection from compromising attackers over
various data sets, while popular machine learning methods
encounter obstacles to sufficient training. This study indicates
the potential of discovering the structural features that underlie
the data instead of merely feeding models coordinated data sets
and using unlabeled data when label deficiency occurs.
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