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Abstract

Background: Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly
manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is
vitally important.

Objective: In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of
ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia)
events by calculating pooled estimates of sensitivity and specificity.

Methods: PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were
systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models,
from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG
levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models
were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies.
Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and
pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events.

Results: In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means
of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56),
21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative
performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio
of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95%
CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia.

Conclusions: Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity.
For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance
among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability
to detect adverse BG events needs to be enhanced.

Trial Registration: PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250

(JMIR Med Inform 2023;11:e47833) doi: 10.2196/47833
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Introduction

Diabetes mellitus (DM) has become one of the most serious
health problems worldwide [1], with more than 463 million
(9.3%) patients in 2019; this number is predicted to reach 700
million (10.9%) in 2045 [2], which has resulted in growing
concerns about the negative impacts on patients’ lives and the
increasing burden on the health care system [3]. Furthermore,
previous studies have shown that without appropriate medical
care, DM can lead to multiple long-term complications in blood
vessels, eyes, kidneys, feet (ulcers), and nerves [4-7]. Adverse
blood glucose (BG) events are one of the most common
short-term complications, including hypoglycemia with BG<70
mg/dL and hyperglycemia with BG>180 mg/dL. Hyperglycemia
in patients with DM may lead to lower limb occlusions and
extremity nerve damage, further leading to decay, necrosis, and
local or whole-foot gangrene, even requiring amputation [8,9].
Hypoglycemia can cause serious symptoms, including anxiety,
palpitation, and confusion in a mild scenario and seizures, coma,
and even death in a severe scenario [10,11]. Thus, there is an
imminent need for preventing adverse BG events.

Machine learning (ML) models use statistical techniques to
provide computers with the ability to complete assignments by
training themselves without being explicitly programmed [12].
However, ML models for managing BG requires huge amounts
of BG data, which cannot be satisfied by the multiple data points
generated by the traditional finger-stick glucose meter [13].
With the introduction of the continuous glucose monitoring
(CGM) device, which typically produces a BG reading every 5
minutes all day long, the size of the data set of BG readings is
sufficient to be used in ML models [14].

Recently, there has been an immense surge in using ML
technologies for predicting DM complications. Regarding BG
management, previous studies have developed different types
of ML models, including random forest (RF) models, support
vector machines (SVMs), neural network models (NNMs), and
autoregression models (ARMs), using CGM data, electronic
health records (EHRs), electrocardiograph (ECG),
electroencephalograph (EEG), and other information (ie,
biochemical indicators, insulin intake, exercise, and meals)
[10,15-20]. However, the performance of different models in
these studies was not quite consistent. For instance, in terms of
BG level prediction, Prendin et al [21] showed that the SVM
achieved a lower root mean square error (RMSE) than the ARM,
while Zhu et al [22] showed a different result.

Therefore, this meta-analysis aimed to comprehensively assess
the performance of ML models in BG management in patients
with DM.

Methods

Search Strategy and Study Selection
The study protocol has been registered in the international
prospective register of systematic reviews (PROSPERO;

registration ID: CRD42022375250). Studies on BG levels or
adverse BG event prediction or detection using ML models
were eligible, with no restrictions on language, investigation
design, or publication status. PubMed, Embase, Web of Science,
and Institute of Electrical and Electronics Engineers (IEEE)
Explore databases were systematically searched from inception
to November 2022. Keywords used for study repository searches
were (“machine learning” OR “artificial intelligence” OR
“logistic model” OR “support vector machine” OR “decision
tree” OR “cluster analysis” OR “deep learning” OR “random
forest”) AND (“hypoglycemia” OR “hyperglycemia” OR
“adverse glycemic events”) AND (“prediction” OR “detection”).
Details regarding the search strategies are summarized in
Multimedia Appendix 1. Manual searches were added to review
reference lists in relevant studies.

Selection Criteria
Inclusion criteria were as follows: (1) participants in the studies
were diagnosed with DM; (2) study endpoints were
hypoglycemia, hyperglycemia, or BG levels; (3) the studies
established at least 2 or more types of ML models for prediction
of BG levels and 1 or more types of ML models for prediction
or detection of adverse BG events; (4) the studies reported the
performance of ML models with statistical or clinical metrics;
(5) the studies contained the development and validation of ML
models; and (6) study outcomes were means (SDs) of
performance metrics of test data for prediction of BG levels and
sensitivity and specificity of test data for prediction or detection
of adverse BG events.

Exclusion criteria were as follows: (1) studies did not report on
the derivation of ML models, (2) studies were based only on
physiological or control-oriented ML models, (3) studies could
not reproduce true positives, true positives, false negatives, and
false positives for prediction or detection of adverse BG events,
(4) studies were reviews, systematic reviews, animal studies,
or irretrievable and repetitive papers, and (5) studies had
unavailable full text or outcome metrics.

Authors KL and LYL screened and selected studies
independently based on the criteria mentioned before. Authors
KL and YM extracted and recorded the data from the selected
studies. Conflicts were resolved by reaching a consensus. The
study strictly followed the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analysis) statement
(Multimedia Appendix 2) [23-25].

Data Extraction and Management
Two reviewers independently carried out data extraction and
quality assessment. If a single study included more than 1
extractable test results for the same ML model, the best result
was extracted. If a single study included 2 or more models, the
performance metrics of each model were extracted. For studies
predicting BG levels, RMSEs based on different prediction
horizons (PHs) were extracted. For studies predicting or
detecting adverse BG events, the sensitivity, specificity, and
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precision of reproducing the 2×2 contingency table were
extracted.

Specifically, the following information was extracted:

• General characteristics: first author, publication year,
country, data source, and study purpose (ie, predicting or
detecting hypoglycemia)

• Experimental information: participants (type of DM, type
1 or 2), sample size (patients, data points, and
hypoglycemia), demographic information, models, study
place and time, model parameters (ie, input and PHs), model
performance metrics, threshold of BG levels for
hypoglycemia, and reference (ie, finger-stick)

Methodological Quality Assessment of Included
Reviews
The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) tool was applied to assess the quality of included
studies based on patient selection (5 items), index test (3 items),
reference standard (4 items), and flow and timing (4 items). All
4 domains were used for assessing the risk of bias, and the first
3 domains were used to assess the consensus of applicability.
Each domain has 1 query in relation to the risk of bias or
applicability consisting of 7 questions [26].

Data Synthesis and Statistical Analysis
The performance metrics of ML models used to predict BG
levels, predict adverse BG events, and detect adverse BG events
were assessed independently. The performance metrics were
the RMSE of ML models in predicting BG levels and the
sensitivity and specificity of ML models in predicting or
detecting adverse BG events. A network meta-analysis was
conducted for BG level–based studies to assess the global and
local inconsistency between studies and plotted the surface
under the cumulative ranking (SUCRA) curve of every model
to calculate relative ranks. For event-based studies, pooled
sensitivity, specificity, the positive likelihood ratio (PLR), and

the negative likelihood ratio (NLR) with 95% CIs were
calculated. Study heterogeneity was assessed by calculating I²
values based on multivariate random-effects meta-regression
that considered within- and between-study correlation and
classifying them into quartiles (0% to <25% for low, 25% to
<50% for low-to-moderate, 50% to <75% for moderate-to-high,
and >75% for high heterogeneity) [27,28]. Furthermore,
meta-regression was used to evaluate the source of heterogeneity
for both BG level–based and adverse event–based studies. The
summary receiver operating characteristic (SROC) curve of
every model was also used to evaluate the overall sensitivity
and specificity. Publication bias was assessed using the Deek
funnel plot asymmetry test.

Furthermore, BG level–based studies were divided into 4
subgroups based on different PHs (15, 30, 45, 60 minutes), and
adverse event–based studies were analyzed using different types
of models (ie, NNM, RF, and SVM). A 2-sided P value of <.05
was considered statistically significant. All statistical analyses
were performed using Stata 17 (Stata Corp) and Review
Manager (RevMan; Cochrane) version 5.3.

Results

Search Results
A total of 20,837 studies were identified through systematically
searching the predefined electronic databases; these also
included 21 studies found using reference tracking [10,29-48].
Of the 20,837 studies, 9807 (47.06%) were retained after
removing duplicates. After screening titles and abstracts, 9400
(95.85%) studies were excluded owing to reporting irrelevant
topics or no predefined outcomes. The remaining 407 (4.15%)
studies were retrieved for full-text evaluation. Of these, 361
(88.7%) studies were excluded for various reasons, and therefore
46 (11.3%) studies were included in the final meta-analysis
(Figure 1).
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Figure 1. Flow diagram of identifying and including studies. IEEE: Institute of Electrical and Electronics Engineers.

Description of Included Studies
As studies on hyperglycemia were insufficient for analysis, we
selected studies on hypoglycemia to assess the ability of ML
models to predict adverse BG events. In total, the 46 studies
included 28,775 participants: n=428（1.49%）for predicting

BG levels, n=28,138 (97.79%) for predicting adverse BG events,
and n=209 (0.72%) for detecting adverse BG events. Of the 46
studies, 10 (21.7%) [20-22,49-55] predicted BG levels (Table
1), 19 (41.3%) [15,29-39,47,48,56-60] predicted adverse BG
events (Table 2), and the remaining 17 (37%)
[10,16,40-46,61-68] detected adverse BG events (Table 3).
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Table 1. Baseline characteristics of BGa level-based studies (N=10).

Performance metricsModel; PHb (minutes); inputObject;
setting

Demographic
information

Sample sizeData
source

First author
(year), country

Data points, nPatients, n

RMSEh, delayModels: NNMf, ARMg PH: 15, 30
Input: CGM data

T1DMe;
out

—d72815CGMc de-
vice

Pérez-Gandía
(2010), Spain
[20]

RMSE, coefficient
of determination

ARM, autoregressive moving average
(ARMA), autoregressive integrated

T1DM;
out

Age350,000Real
(n=141)

CGM de-
vice

Prendin (2021)
United States
[21] (COD) sensibility,

delay, precision F1

score, time gain

moving average (ARIMA), SVMi,

RFj feed-forward neural network
(fNN), long short-term memory
(LSTM) PH: 30 Input: CGM data

RMSE, mean abso-
lute relative differ-

DRNNk, NNM, SVM, ARM PH:30
Input: BG level, meals, exercise, meal
times

T1DM;
out

—1,036,800Real (n=6),
simulated
(n=10)

Ohio
T1DM,
UVA/Pado-
va T1D

Zhu (2020)
England [22]

ence (MARD) time
gain

RMSEARJNNl, RF, SVM, autoregression
(AR), one symbolic model (SAX),

T1DM;
out

Age, sex ratio—6Ohio
T1DM

D'Antoni
(2020), Italy
[49] recurrent neural network (RNN), one

neural network model (NARX), jump
neural network (JNN), delayed feed-
forward neural network model
(DFFNN) PH: 15, 30 Input: CGM
data

RMSE, Clarke error
grid (CEG)

ARM, gradually connected neural
network (GCN), fully connected (FC
[neural network]), light gradient

T1DM;
in

Age, sex ratio,
weight, BMI,
duration of
DM

1,592,506141CGM de-
vice, in-
sulin pump

Amar (2020),
Israel [50]

boosting machine (LCBM), RF PH:
30, 60 Input: CGM data

RMSE, MARD,
time lag

GluNet, NNM, SVM, latent variable
with exogenous input (LVX), ARM
PH: 30, 60 Input: BG level, meals,
exercise

T1DM;
out

—51,840Simulated
(n=10)

UVA/Pado-
va T1D

Li (2020), Eng-
land [51]

RMSE, energy of
second-order differ-

Neural network–linear prediction al-
gorithm (NN-LPA), NN, ARM PH:
30 Input: meals, insulin

T1DM;
out

——Simulated
(n=20), re-
al (n=15)

UVA/Pado-
va T1D,
CGM de-
vice

Zecchin (2012),
Italy [52]

ences (ESOD), time
gain, J index

RMSE, MAELSTM, ARIMA PH: 15, 30, 45, 60,
90

T1DM;
in

——Real (n=50Corner-
stones4Care
platform

Mohebbi
(2020), Den-
mark [53]

RMSE, MAE, CEG,
time gain

Convolutional recurrent neural net-
work (CRNN), SVM PH: 30, 45, 60,
90, 120 Input: BG level, insulin,
meals, exercise

T1DM;
out

Sex ratio—Real
(n=12)

CGM de-
vice

Daniels (2022),
England [54]

RMSE, glucose-spe-
cific root mean

SVM, k-nearest neighbor k-nearest

neighbor (kNN), DTm, RF, AdaBoost,

——26,723Real
(n=12)

CGM de-
vice

Alfian (2020),
Korea [55]

square error
XGBoostn, NNM PH: 15, 30 Input:
CGM data

(gRMSE), R2 score,
mean absolute per-
centage error
(MAPE)

aBG: blood glucose.
bPH: prediction horizon.
cCGM: continuous glucose monitoring.
dNot applicable.
eT1DM: type 1 diabetes mellitus.
fNNM: neural network model.
gARM: autoregression model.
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hRMSE: root mean square error.
iSVM: support vector machine.
jRF: random forest.
kDRNN: dilated recurrent neural network.
lARJNN: ARTiDe jump neural network.
mDT: decision tree.
nXGBoost: Extreme Gradient Boosting.
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Table 2. Baseline characteristics of studies predicting adverse BGa events (N=19).

Thresh-
old

Age (years),
mean (SD)/range

TimeModelObject;
setting

Sample sizeData
source

First author
(year), country

Hypoglycemia, nData points, nPatients, n

3.9—eAllSVMdT1DMc;
out

15225182CGMb

device

Pils (2014),
United States
[39]

3.952PostprandialRFg, SVM, k-
nearest neigh-

DMf;
out

4127052104CGM
device

Seo (2019),
Korea [15]

bor (kNN), lo-
gistic regres-
sion (LR)

3.931.8 (SD 16.8)NocturnalSVMT1DM;
out

226710CGM
device

Parcerisas
(2022), Spain
[29]

4—AllMultivariable
logistic regres-
sion (MLR)

DM; in1327—9584EHRshStuart (2017),
Greece [30]

3.931.8 (SD 16.8)NocturnalSVMT1DM;
out

3912410CGM
device

Bertachi
(2020), Spain
[31]

—35-63AllXGBoostiT2DM;
out

172391813—Elhadd
(2020), Qatar
[32]

3.933.7 (SD 5.8)NocturnalSVMT1DM;
out

1711710CGM
device

Mosquera-
Lopez (2020),
United States
[33]

3.9—NocturnalSVMT1DM;
out

258270620CGM
device

Mosquera-
Lopez (2020),
United States
[33]

466 (SD 18)AllXGBoost, LR,
stochastic gra-

T1DM;
in

703327617,658EHRsRuan (2020),
England [34]

dient descent
(SGD), kNN,

DTj, SVM,
quadratic dis-
criminant
analysis
(QDA), RF,
extra tree
(ET), linear
discriminant
analysis
(LDA), Ad-
aBoost, bag-
ging

3.940-60NocturnalSVMT1DM;
out

6556CGM
device

Güemes
(2020), United
States [35]

343 (SD 15)NocturnalLDAT1DM;
out

79921463CGM
device

Jensen (2020),
Denmark [36]

3.941 (SD 10)PostprandialSVMT1DM;
out

420144710CGM
device

Oviedo
(2019), Spain
[37]

3.946AllIndividual
model-based

T1DM;
out

36709620CGM
device

Toffanin
(2019), Italy
[38]
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Thresh-
old

Age (years),
mean (SD)/range

TimeModelObject;
setting

Sample sizeData
source

First author
(year), country

Hypoglycemia, nData points, nPatients, n

3.940-60NocturnalNNMkT1DM;
out

6516CGM
device

Bertachi
(2018), United
States [47]

3.325AllBaggingT1DM;
out

10066710CGM
device

Eljil (2014),
United Arab
Emirates [48]

3.912.67 (SD 4.84)AllRFT1DM;
out

12,572546,640112CGM
device

Dave (2021),
United States
[56]

3.918-39AllKernel ridge
regression
(KRR)

T1DM;
out

526443,53311CGM
device

Marcus
(2020), Israel
[57]

3.933 (SD 6)—RFT1DM;
out

299055—Reddy (2019),
United States
[58]

——NocturanlRanking aggre-
gation (RA)

T1DM;
out

4015034—Sampath
(2016), Aus-
tralia [59]

3.9—AllRFT2DM;
out

428839——Sudharsan
(2015), United
States [60]

aBG: blood glucose.
bCGM: continuous glucose monitoring.
cT1DM: type 1 diabetes mellitus.
dSVM: support vector machine.
eNot applicable.
fDM: diabetes mellitus.
gRF: random forest.
hEHR: electronic health record.
iXGBoost: Extreme Gradient Boosting.
jDT: decision tree.
kNNM: neural network model.
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Table 3. Baseline characteristics of studies detecting adverse BGa events (N=17).

ThresholdAge (years), mean
(SD)/range

TimeModelObject;
setting

Sample sizeData
source

First author
(year), country

Hypo-
glycemia, n

Data
points, n

Patients, n

——AllLinear discrimi-
nant analysis
(LDA)

T1DMd;
in

1324104—cEHRsbJin (2019), Unit-
ed States [10]

3.312-18AllLevenberg-
Marquardt

T1DM; in761445EEGeNguyen (2013),
Australia [16]

(LM), genetic
algorithm (GA)

3.314.6 (SD 1.5)NocturnalFeed-forward
neural network
(fNN)

T1DM;
experi-
mental

5210016CGMf

device

Chan (2011),
Australia [40]

3.312-18NocturnalBlock-based
neural network
(BRNN)

T1DM;
experi-
mental

27796EEGNguyen (2010),
Australia [41]

3.955 (SD 3)AllNNMgT1DM;
experi-
mental

1258251634EEGRubega (2020),
Italy [42]

——AllLogistic regres-
sion (LR)

DMh; in11300—EEGChen (2019),
United States
[43]

3.944 (SD 15)AllSVMiT1DM;
experi-
mental

160126710CGM
device

Jensen (2013),
Denmark [44]

3.916.1 (SD 2.1)NocturnalfNNT1DM; in115252CGM
device

Skladnev (2010),
Australia [45]

3.335 (SD 13.5)MorningNNMT1DM;
experi-
mental

99519908EEGIaione (2005),
Brazil [46]

3.016 (SD 0.7)AllSVM, linear
multiple regres-
sion (LMR)

DM; in1335755ECGNuryani (2012),
Australia [61]

3.314.6 (SD 1.5)AllBlock-based
neural network

T1DM; in3944015ECGSan (2013), Aus-
tralia [62]

(BBNN),
wavelet neural
network
(WNN), fNN,
SVM

3.314.6 (SD 1.5)NocturnalFuzzy reason-
ing model

T1DM; in5426916ECGLing (2012),
Australia [63]

(FRM), fNN,
multiple regres-
sion–fuzzy infer-
ence system
(MR-FIS)
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ThresholdAge (years), mean
(SD)/range

TimeModelObject;
setting

Sample sizeData
source

First author
(year), country

Hypo-
glycemia, n

Data
points, n

Patients, n

3.314.6 (SD 1.5)NocturnalExtreme learn-
ing ma-
chine–based
neural network
(ELM-NN),
particle swarm
optimiza-
tion–based neu-
ral network
(PSO-NN),
MR-FIS, LMR,
fuzzy inference
system (FIS)

T1DM; in5426916ECGLing (2016),
Australia [64]

3.312-18—NNMT1DM; in20445EEGNguyen (2012),
Australia [65]

3.912-18NocturnalBRNNT1DM; in531358EEGNgo (2020), Aus-
tralia [66]

3.912-18NocturnalBRNNT1DM; in26548EEGNgo (2018), Aus-
tralia [67]

3.316 (SD 0.7)NocturnalFuzzy support
vector machine
(FSVM), SVM

T1DM;
experi-
mental

8275ECGNuryani (2010),
Australia [68]

aBG: blood glucose.
bEHR: electronic health record.
cNot applicable.
dT1DM: type 1 diabetes mellitus.
eEEG: electroencephalograph.
fCGM: continuous glucose monitoring.
gNNM: neural network model.
hDM: diabetes mellitus.
iSVM: support vector machine.

As shown in Tables 1-3, 40 (87%) studies
[10,16,20-22,29,31,33-42,44-59,62-68] included participants
with type 1 diabetes mellitus (T1DM), 2 (4.3%) studies [32,60]
included participants with type 2 diabetes mellitus (T2DM),
and the remaining 4 (8.7%) studies [15,30,43,61] did not specify
the type of DM. Regarding the data source of ML models, CGM
devices were involved in 22 (47.8%) studies
[15,20,21,29,31,33,35-40,44,45,47,48,50,52,54-57], EEG signals
were used in 8 (17.4%) studies [16,41-43,46,65-67], ECG
signals were involved in 5 (10.9%) studies [61-64,68], EHRs
were used in 3 (6.5%) studies [10,30,34], data generated by the
UVA/Padova T1D simulator were used in 3 (6.5%) studies
[22,51,52], the Ohio T1DM data set was used in 2 (4.3%) studies
[22,49], and 4 (8.7%) studies [32,58-60] did not report the
source of data. Regarding the setting of data collection, 24
(52.2%) studies [15,20-22,29,31-33,35-39,47-49,51,52,54,56-60]
were conducted in an out-of-hospital setting, 13 (28.3%) studies
[10,16,34,43,50,53,61-67] were conducted in an in-hospital
setting, 6 (13%) studies [40-42,44,46,68] were conducted in an

experimental setting, and the remaining 1 (2.2%) study [55] did
not specify the environment. Regarding when adverse BG events
occurred in the 36 (78.3%) adverse event–based studies, 15
(41.7%) [29,31,33,35,36,40,41,45,47,59,63,64,66-68] reported
noc tu rna l  hypog lycemia ,  16  (44 .4%)
[10,16,30,32,34,38,39,42-44,48,56,57,60-62] were not specific
about the time of day, 2 (5.6%) [15,37] reported postprandial
hypoglycemia, 1 (2.8%) [46] reported morning hypoglycemia,
and the remaining 2 (5.6%) [58,65] did not report the time
setting. To carry out the network meta-analysis of BG
level–based studies, we chose the RMSE as the outcome to be
compared.

Quality Assessment of Included Studies
The quality assessment results using the QUADAS-2 tool
showed that more than half of all included studies did not report
the patient selection criteria in detail, which led to low-quality
patient selection (Figure 2). Furthermore, the diagnosis of
hypoglycemia using blood or the CGM device was considered
high quality in the reference test in our study.
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Figure 2. Quality assessment of included studies. Risk of bias and applicability concerns graph (A) and risk of bias and applicability concerns summary
(B).

Statistical Analysis

Machine Learning Models for Predicting Blood Glucose
Levels
Network meta-analysis was conducted to evaluate the
performance of different ML models. For PH=30 minutes, 10
(21.7%) studies [20-22,49-55] with 32 different ML models
were included, and the network map is shown in Figure 3A.

The mean RMSE was 21.40 (SD 12.56) mg/dL. Statistically
significant inconsistency was detected using the inconsistency

test(2=87.11, P<.001), as shown in the forest plot in Multimedia
Appendix 1. Meta-regression indicated that I² for the RMSE
was 60.75%, and the source of heterogeneity analysis showed
that place and validation type were statistically significant
(P<.001). The maximum SUCRA value was 99.1 for the dilated
recurrent neural network (DRNN) model with a mean RMSE
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of 7.80 (SD 0.60) mg/dL [22], whereas the minimum SUCRA
value was 0.4 for 1 symbolic model with a mean RMSE of 71.4
(SD 21.9) mg/dL [49]. The relative ranks of the ML models are
shown in Table 4, and the SUCRA curves are shown in Figure
4A. Publication bias was tested using the Egger test (P=.503),
indicating no significant publication bias.

For PH=60 minutes, 4 (8.7%) studies [50,51,55] with 17
different ML models were included, and the network map is
shown in Figure 3B. The mean RMSE was 30.01 (SD 7.23)
mg/dL. Statistically significant inconsistency was detected using

the inconsistency test (2=8.82, P=.012), as shown in the forest
plot in Multimedia Appendix 3. Meta-regression indicated that
none of the sample size, reference, place, validation type, and
model type was a source of heterogeneity. The maximum
SUCRA value was 97.8 for the GluNet model with a mean
RMSE of 19.90 (SD 3.17) mg/dL [51], while the minimum
SUCRA value was 4.5 for the decision tree (DT) model with a
mean RMSE of 32.86 (SD 8.81) mg/dL [55]. The relative ranks
of the ML models are shown in Table 5, and the SUCRA curves
are shown in Figure 4B. No significant publication bias was
detected using the Egger test (P=.626).

For PH=15 minutes, 3 (6.5%) studies [20,49,55] with 14
different ML models were included, and the network map is
shown in Figure 3C. The mean RMSE was 18.88 (SD 19.71)
mg/dL. Statistically significant inconsistency was detected using

the inconsistency test (2=28.29, P<.001), as shown in the forest
plot in Multimedia Appendix 4. Meta-regression showed that
I² was 41.28%, and the model type and sample size both were
the source of heterogeneity, with P=.002 and .037, respectively.
The maximum SUCRA value was 99.1 for the ARTiDe jump
neural network (ARJNN) model with a mean RMSE of 9.50
(SD 1.90) mg/dL [49], while the minimum SUCRA value was
0.3 for the SVM with a mean RMSE of 13.13 (SD 17.30) mg/dL
[55]. The relative ranks of the ML models are shown in Table
6, and SUCRA curves are shown in Figure 4C. Statistically
significant publication bias was detected using the Egger test
(P=.003).

For PH=45 minutes, only 2 (4.3%) studies [54,55] with 11
different ML models were included, and the network map is
shown in Figure 3D. The mean RMSE was 21.27 (SD 5.17)
mg/dL. Statistically significant inconsistency was detected using

the inconsistency test (2=6.92, P=.009), as shown in the forest
plot in Multimedia Appendix 5. Meta-regression indicated
significant heterogeneity from the model type (P=.006). The
maximum SUCRA value was 99.4 for the NNM with a mean
RMSE of 10.65 (SD 3.87) mg/dL [55], while the minimum
SUCRA value was 26.3 for the DT model with a mean RMSE
of 23.35 (6.36) mg/dL [55]. The relative ranks of the ML models
are shown in Table 7, and SUCRA curves are shown in Figure
4D. Statistically significant publication bias was detected using
the Egger test (P<.001).
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Figure 3. Network map of ML models for predicting BG levels in different PHs. PH=30 (A), 60 (B), 15 (C), and 45 minutes (D). ARIMA: autoregressive
integrated moving average; ARM: autoregression model; ARMA: autoregressive moving average; ARJNN: ARTiDe jump neural network; BG: blood
glucose; CRNN-MTL: convolutional recurrent neural network multitask learning; CRNN-MTL-GV: convolutional recurrent neural network multitask
learning glycemic variability; CRNN-STL: convolutional recurrent neural network single-task learning; CRNN-TL: convolutional recurrent neural
network transfer learning; DFFNN: delayed feed-forward neural network; DRNN: dilated recurrent neural network; DT: decision tree; FC: fully connected
(neural network); fNN: feed-forward neural network; GCN: gradually connected neural network; JNN: jump neural network; kNN: k-nearest neighbor;
LGBM: light gradient boosting machine; LSTM: long short-term memory; LVX: latent variable with exogenous input; ML: machine learning; NARX:
one neural network model; NN-LPA: neural network–linear prediction algorithm; NNM: neural network model; PH: prediction horizon; RF: random
forest; RNN: recurrent neural network; SAX: one symbolic model; SVR: support vector regression.
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Table 4. Relative ranks of MLa models for predicting BGb levels in PHc=30 minutes.

Relative rankSUCRAdML model

14.452.0NNMe

17.939.6ARMf

6.879.5ARJNNg

27.16.9RFh

8.573.3SVMi

28.90.4One symbolic model (SAX)

23.719.0Recurrent neural network (RNN)

27.93.9One neural network model (NARX)

18.936.0Jump neural network (JNN)

24.615.8Delayed feed-forward neural network model (DFFNN)

17.541.1Gradually connected neural network (GCN)

12.758.1Fully connected (FC [neural network])

9.669.3Light gradient boosting machine (LGBM)

1.299.1DRNNj

13.854.3Autoregressive moving average (ARMA)

16.046.6Autoregressive integrated moving average (ARIMA)

4.886.3Feed-forward neural network (fNN)

9.769.1Long short-term memory (LSTM)

2.096.4GluNet

7.975.2Latent variable with exogenous input (LVX)

12.260.0Neural network–linear prediction algorithm (NN-LPA)

7.377.5Convolutional recurrent neural network multitask learning (CRNN-MTL)

7.477.2Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV)

8.971.8Convolutional recurrent neural network transfer learning (CRNN-TL)

14.452.0Convolutional recurrent neural network single-task learning (CRNN-STL)

21.726.0k-Nearest neighbor (kNN)

24.516.2DTk

24.018.0AdaBoost

20.829.2XGBoostl

aML: machine learning.
bBG: blood glucose.
cPH: prediction horizon.
dSUCRA: surface under the cumulative ranking.
eNNM: neural network model.
fARM: autoregression model.
gARJNN: ARTiDe jump neural network.
hRF: random forest.
iSVM: support vector machine.
jDRNN: dilated recurrent neural network.
kDT: decision tree.
lXGBoost: Extreme Gradient Boosting.
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Figure 4. SUCRA curves of ML models for predicting BG levels in different PHs. PH=30 (A), 60 (B), 15 (C), and 45 minutes (D). ARIMA: autoregressive
integrated moving-average; ARM: autoregression model; ARMA: autoregressive moving average; ARJNN: ARTiDe jump neural network; BG: blood
glucose; CRNN-MTL: convolutional recurrent neural networks multitask learning; CRNN-MTL-GV: convolutional recurrent neural networks multitask
learning glycemic variability; CRNN-STL: convolutional recurrent neural networks single-task learning; CRNN-TL: convolutional recurrent neural
networks transfer learning; DFFNN: delayed feed-forward neural network; DRNN: dilated recurrent neural network; DT: decision tree; FC: fully
connected (neural network); fNN: feed-forward neural network; GCN: gradually connected neural network; JNN: jump neural network; kNN: k-nearest
neighbor; LGBM: light gradient boosting machine; LSTM: long short-term memory; LVX: latent variable with exogenous input; ML: machine learning;
NARX: one neural network model; NN-LPA: neural network–linear prediction algorithm; NNM: neural network model; PH: prediction horizon; RF:
random forest; RNN: recurrent neural network; SAX: one symbolic model; SVR: support vector regression.

JMIR Med Inform 2023 | vol. 11 | e47833 | p. 15https://medinform.jmir.org/2023/1/e47833
(page number not for citation purposes)

Liu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Relative ranks of MLa models for predicting BGb levels in PHc=60 minutes.

Relative rankSUCRAdML model

10.441.0ARMe

14.714.2Gradually connected neural network (GCN)

8.155.7Fully connected (FC [neural network])

8.056.0Light gradient boosting machine (LGBM)

7.559.7RFf

1.497.8GluNet

7.459.9NNMg

9.149.5SVMh

3.385.9Latent variable with exogenous input (LVX)

7.261.4Convolutional recurrent neural network multitask learning (CRNN-MTL)

8.354.2Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV)

9.944.5Convolutional recurrent neural network transfer learning (CRNN-TL)

11.832.5Convolutional recurrent neural network single-task learning (CRNN-STL)

10.242.5k-Nearest neighbor (kNN)

16.34.5DTi

13.124.1AdaBoost

6.466.5XGBoostj

aML: machine learning.
bBG: blood glucose.
cPH: prediction horizon.
dSUCRA: surface under the cumulative ranking.
eARM: autoregression model.
fRF: random forest.
gNNM: neural network model.
hSVM: support vector machine.
iDT: decision tree.
jXGBoost: Extreme Gradient Boosting.
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Table 6. Relative ranks of MLa models for predicting BGb levels in PHc=15 minutes.

Relative rankSUCRAdML model

3.084.4NNMe

2.786.8ARMf

1.199.1ARJNNg

5.664.6RFh

11.320.9SVMi

14.00.3One symbolic model (SAX)

8.045.9Recurrent neural network (RNN)

12.511.8One neural network model (NARX)

5.962.2Jump neural network (JNN)

8.939.6Delayed feed-forward neural network model (DFFNN)

7.053.7k-Nearest neighbor (kNN)

9.733.3DTj

9.236.8AdaBoost

6.160.8XGBoostk

aML: machine learning.
bBG: blood glucose.
cPH: prediction horizon.
dSUCRA: surface under the cumulative ranking.
eNNM: neural network model.
fARM: autoregression model.
gARJNN: ARTiDe jump neural network.
hRF: random forest.
iSVM: support vector machine.
jDT: decision tree.
kXGBoost: Extreme Gradient Boosting.
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Table 7. Relative ranks of MLa models for predicting BGb levels in PHc=45 minutes.

Relative rankSUCRAdML model

5.852.1Convolutional recurrent neural network multitask learning (CRNN-MTL)

6.841.8Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV)

7.831.6Convolutional recurrent neural network transfer learning (CRNN-TL)

8.227.5Convolutional recurrent neural network single-task learning (CRNN-STL)

7.832.0SVMe

4.961.4k-Nearest neighbor (kNN)

8.426.3DTf

4.070.3RFg

7.634.1AdaBoost

3.773.5XGBoosth

1.199.4NNMi

aML: machine learning.
bBG: blood glucose.
cPH: prediction horizon.
dSUCRA: surface under the cumulative ranking.
eSVM: support vector machine.
fDT: decision tree.
gRF: random forest.
hXGBoost: Extreme Gradient Boosting.
iNNM: neural network model.

Machine Learning Models for Predicting Hypoglycemia
ML models for predicting hypoglycemia (adverse BG events)
involved 19 (41.3%) studies [15,29-39,47,48,56-60], with pooled
estimates of 0.71 (95% CI 0.61-0.80) for sensitivity, 0.91 (95%
CI 0.87-0.94) for specificity, 8.3 (95% CI 5.7-12.0) for the PLR,
and 0.31 (95% CI 0.22-0.44) for the NLR. The heterogeneity
between different ML models in these studies is shown in the
forest plot in Figure 5, which was high for both sensitivity
(I²=100%, 95% CI 100%-100%) and specificity (I²=100%, 95%
CI 100%-100%). The SROC curve is shown in Figure 6A, with
an area under the curve (AUC) of 0.91 (95% CI 0.88-0.93).
According to the meta-regression results, the type of DM and
time were statistically significant sources of heterogeneity for
sensitivity while the type of DM, reference, data source, setting,
and threshold were statistically significant sources of
heterogeneity for specificity (Multimedia Appendix 6). No
statistically significant publication bias was detected (P=.09).
In addition to integral analysis for the hypoglycemia prediction
model, we also carried out analysis of 4 subgroups based on the
characteristics of the included studies, including the NNM, the
RF, the SVM, and ensemble learning (RF, Extreme Gradient
Boosting [XGBoost], bagging).

For the NNM, 3 (6.5%) studies [15,34,47] were included, with
pooled estimates of 0.50 (95% CI 0.16-0.84) for sensitivity,

0.91 (95% CI 0.84-0.96) for specificity, 5.9 (95% CI 3.2-10.8)
for the PLR, and 0.54 (95% CI 0.24-1.21) for the NLR. As
shown in the forest plot in Figure 7A, I² values were 99.59%
(95% CI 99.46%-99.71%) and 97.82% (95% CI
96.68%-98.86%) for sensitivity and specificity, respectively.
The SROC curve is shown in Figure 6B, with an AUC of 0.90
(95% CI 0.87-0.92). Meta-regression results revealed that
statistically significant heterogeneity was detected in all the
factors between these studies (type of DM, reference, time, data
source, setting, threshold) for sensitivity and 4 factors (reference,
data source, setting, threshold) for specificity (Multimedia
Appendix 7). No statistically significant publication bias was
detected (P=.86).

For the RF, 5 (10.9%) studies [15,34,56,58,60] were included,
with pooled estimates of 0.87 (95% CI 0.79-0.93) for sensitivity,
0.94 (95% CI 0.91-0.96) for specificity, 13.9 (95% CI 10.1-18.9)
for the PLR, and 0.14 (95% CI 0.08-0.22) for the NLR. The
forest plot in Figure 7B shows that statistically significant
heterogeneity was detected in both sensitivity (I²=98.32%, 95%
CI 97.61%-99.02%) and specificity (I²=99.41%, 95% CI
99.24%-99.58%). The SROC curve is shown in Figure 6C, with
an AUC of 0.97 (95% CI 0.95-0.98). Meta-regression failed to
run due to data instability or asymmetry. No statistically
significant publication bias was detected (P=.21).
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Figure 5. Sensitivity and specificity forest plots of ML models for predicting adverse BG events. The horizontal lines indicate 95% CIs. The square
markers represent the effect value of a single study, and the diamond marker represents the combined results of all studies. The vertical line shows the
line of no effects. BG: blood glucose; ML: machine learning.
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Figure 6. SROC curves of all ML algorithms (A), NNM algorithms (B), RF algorithms (C), SVM algorithms (D), and ensemble learning algorithms
(E) for predicting adverse BG events. The hollow circles represent results of all studies, and the red diamonds represent the summary result of all studies.
AUC: area under the curve; BG: blood glucose; ML: machine learning; NNM: neural network model; RF: random forest; SROC: summary receiver
operating characteristic; SVM: support vector machine.
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Figure 7. Sensitivity and specificity forest plots of NNM algorithms (A), RF models (B), SVM algorithms (C), and ensemble learning algorithms (D)
for predicting adverse BG events. The horizontal lines indicate 95% CIs. The square markers represent the effect value of a single study, and the diamond
marker represents the combined results of all studies. The vertical line shows the line of no effects. BG: blood glucose; NNM: neural network model;
RF: random forest; SROC: summary receiver operating characteristic; SVM: support vector machine.

For the SVM, 8 (17.4%) studies [15,29,33-35,37,39,47] were
involved, with pooled estimates of 0.75 (95% CI 0.52-0.89) for
sensitivity, 0.88 (95% CI 0.75-0.95) for specificity, 6.3 (95%
CI 3.4-11.7) for the PLR, and 0.29 (95% CI 0.15-0.55) for the
NLR. Statistically significant heterogeneity was detected for
both sensitivity (I²=99.30%, 95% CI 99.15%-99.44%) and
specificity (I²=99.67%, 95% CI 99.62%-99.73%), as shown in
Figure 7C. The SROC curve is shown in Figure 6D, with an
AUC of 0.89 (95% CI 0.86-0.92). Meta-regression results
showed that reference, time, data source, setting, and threshold
were sources of heterogeneity for sensitivity, while reference,
data source, setting, and threshold were sources of heterogeneity
for specificity (Multimedia Appendix 8). Publication bias was
not statistically significant (P=.83).

For ensemble learning models (RF, XGBoost, bagging), 7
(15.2%) studies [15,32,34,48,56,58,60] were involved, with
pooled estimates of 0.77 (95% CI 0.65-0.85) for sensitivity,
0.96 (95% CI 0.93-0.98) for specificity, 20.4 (95% CI 12.5-33.3)
for the PLR, and 0.24 (95% CI 0.16-0.37) for the NLR.
Statistically significant heterogeneity was detected for both
sensitivity (I²=99.13%, 95% CI 98.95%-99.32%) and specificity
(I²=98.44%, 95% CI 98.04%-98.84%), as shown in Figure 7D.
The SROC curve is shown in Figure 6E, with an AUC of 0.96
(95% CI 0.93-0.97). Meta-regression results showed that there
was no source of heterogeneity for sensitivity, while the type

of DM, setting, and threshold were sources of heterogeneity for
specificity (Multimedia Appendix 9). No statistically significant
publication bias was detected (P=.50).

Machine Learning Models for Detecting Hypoglycemia
ML models for detecting hypoglycemia (adverse BG events)
involved 17 (37%) studies [10,16,40-46,61-68], with pooled
estimates of 0.74 (95% CI 0.70-0.78) for sensitivity, 0.70 (95%
CI 0.56-0.81) for specificity, 2.4 (95% CI 1.6-3.7) for the PLR,
and 0.37 (95% CI 0.29-0.46) for the NLR. The heterogeneity
between different models in these studies is shown in the forest
plots in Figure 8 and was high for both sensitivity (I²=92.80%,
95% CI 91.10%-94.49%) and specificity (I²=99.04%, 95% CI
98.82%-99.16%). The SROC curve is shown in Figure 9A, with
an AUC of 0.77 (95% CI 0.73-0.81). Based on the
meta-regression results, reference, time, data source, setting,
and threshold were statistically significant sources of
heterogeneity for sensitivity, while reference, data source, and
threshold were statistically significant sources of heterogeneity
for specificity (Multimedia Appendix 9). Statistically significant
publication bias was detected (P<.001). In addition to integral
analysis for the hypoglycemia detection model, we also carried
out analysis of 2 subgroups based on the characteristics of the
included studies, including the NNM and the SVM.
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For the NNM, 11 (23.9%) studies [40-42,45,46,62-67] were
involved, with pooled estimates of 0.76 (95% CI 0.70-0.80) for
sensitivity, 0.67 (95% CI 0.49-0.82) for specificity, 2.3 (95%
CI 1.4-3.9) for the PLR, and 0.36 (95% CI 0.27-0.48) for the
NLR. The heterogeneity between different studies is shown in
the forest plot in Figure 10A and was high for both sensitivity
(I²=97.30%, 95% CI 96.62%-97.99%) and specificity
(I²=98.23%, 95% CI 97.83%-98.62%). The SROC curve is
shown in Figure 9B, with an AUC of 0.78 (95% CI 0.74-0.81).
Based on the of meta-regression results, reference, time, data
source, setting, and threshold were statistically significant
sources of heterogeneity for sensitivity, while reference and
setting were statistically significant sources of heterogeneity
for specificity (Multimedia Appendix 10). Statistically
significant publication bias was detected (P<.001).

For the SVM, 4 (8.7%) studies [10,44,61,62] were included,
with pooled estimates of 0.80 (95% CI 0.73-0.86) for sensitivity,
0.65 (95% CI 0.41-0.83) for specificity, 2.3 (95% CI 1.2-4.4)
for the PLR, and 0.31 (95% CI 0.18-0.51) for the NLR. The
heterogeneity between different studies is shown in the forest
plot in Figure 10B and was high for both sensitivity (I²=55.86%,
95% CI 11.96%-99.76%) and specificity (I²=99.02%, 95% CI
98.68%-99.36%). The SROC curve is shown in Figure 9C, with
an AUC of 0.81 (95% CI 0.78-0.85). Meta-regression results
indicated that reference, time, data source, setting, and threshold
were statistically significant sources of heterogeneity for
sensitivity, while reference, data source, setting, and threshold
statistically significant sources of heterogeneity for specificity
(Multimedia Appendix 11). No statistically significant
publication bias was detected (P=.31).

Figure 8. Sensitivity and specificity forest plots of ML models for detecting adverse BG events. The horizontal lines indicate 95% CIs. The square
markers represent the effect value of a single study, and the diamond marker represents the combined results of all studies. The vertical line shows the
line of no effects. BG: blood glucose; ML: machine learning.
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Figure 9. SROC curves of all ML algorithms (A), NNM algorithms (B), and SVM algorithms (C) for detecting adverse BG events. The hollow circles
represent results of all studies, and the red diamonds represent the summary result of all studies. AUC: area under the curve; BG: blood glucose; ML:
machine learning; NNM: neural network model; SROC: summary receiver operating characteristic; SVM: support vector machine.

Figure 10. Sensitivity and specificity forest plots of NNM algorithms (A) and SVM algorithms (B) for detecting adverse BG events. The horizontal
lines indicate 95% CIs. The square markers represent the effect value of a single study, and the diamond marker represents the combined results of all
studies. The vertical line shows the line of no effects. BG: blood glucose; NNM: neural network model; SVM: support vector machine.

Discussion

Principal Findings
This meta-analysis systematically assessed the performance of
different ML models in enhancing BG management in patients
with DM based on 46 eligible studies. Comprehensive evidence
obtained via exhaustive searching allowed us to assess the
overall ability of the ML models in different scenarios, including
predicting BG levels, predicting adverse BG events, and
detecting adverse BG events.

Comparison to Prior Work
Obviously, the RMSE of ML models for predicting BG levels
increased as the PH increased from 15 to 60 minutes, which
indicates that the longer the PH, the larger the prediction error.
Based on the results of relative ranking, among all the ML
models for predicting BG levels, neural network–based models,
including the DRNN, GluNet, ARJNN, and NNM, achieved
the minimum RMSE and the maximum SUCRA in different
PHs, indicting the highest relative performance. In contrast, the
DT achieved the maximum RMSE and the minimum SUCRA
in a PH of 60 and 45 minutes, indicating that lowest relative
performance. Thus, for predicting BG levels, neural
network–based algorithms might be an appropriate choice. We

found that time domain features combined with historical BG
levels as input can further improve the performance of NNM
algorithms [49,55]. However, the quality of training data for
NNMs needs to be high; therefore, the requirements during data
collection and preprocessing of raw data are high [22,51].

Regarding ML models for predicting adverse BG events, the
pooled sensitivity, specificity, PLR, and NLR were 0.71 (95%
CI 0.61-0.80), 0.91 (95% CI 0.87-0.94), 8.3 (95% CI 5.7-12.0),
and 0.31 (95% CI 0.22-0.44), respectively. According to the
Users’ Guide to Medical Literature, with regard to diagnostic
tests [69], a PLR of 5-10 should be able to moderately increase
the probability of persons having or developing a disease and
an NLR of 0.1-0.2 should be able to moderately decrease the
probability of having or developing a disease after taking the
index test. Hence, current ML models have relatively sufficient
ability to predict the occurrence of hypoglycemia, especially
RF algorithms with a PLR of 13.9 (95% CI 10.1-18.9) and an
NLR of 0.14 (95% CI 0.08-0.22). On the contrary, although the
PLR of NNM algorithms was 5.9 (95% CI 3.2-10.8), their
sensitivity and NLR were 0.50 (95% CI 0.16-0.84) and 0.54
(95% CI 0.24-1.21), respectively, which is far from satisfactory.
Although RF algorithms seem to be able to capture the complex,
nonlinear patterns affecting hypoglycemia [56], it was still not
enough to determine which algorithm shows the best
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performance, as the test scenarios were quite different and there
was high heterogeneity between studies.

Regarding ML models for detecting hypoglycemia, the pooled
sensitivity, specificity, PLR, and NLR were 0.74 (95% CI
0.70-0.78), 0.70 (0.56-0.81), 2.4 (1.6-3.7), and 0.37 (0.29-0.46),
respectively, which indicates that the algorithms generate small
changes in probability [69]. Nevertheless, it does not mean that
ML models combined with ECG or EEG monitoring, which we
found in 13 of 17 studies, should not be further investigated.
Considering patients with both DM and cardiovascular risk, or
patients under intensive care and in a coma, combined ML
models and ECG or EEG signals might be able to avoid deficits
in physical and cognitive function and death caused by
hypoglycemia [70].

Strengths and Limitations
The study has several limitations. First, although we developed
a comprehensive search strategy, there was still a possibility of
potential missing studies. To further increase the rate of
literature retrieval, we included the main medical databases with
a feasible search strategy, including PubMed, Embase, Web of
Science, and IEEE Explore, and references from relevant studies
were also screened for eligibility to avoid omissions. Second,
statistically significant high heterogeneity was detected in all
subgroups, with different sources of heterogeneity, including
different types of DM, ML models, data sources, reference
index, time and setting of data collection, and threshold of
hypoglycemia, among studies. To address this issue, hierarchical
analysis and meta-regression analysis were carried out in
different subgroups to explore the possible sources of
heterogeneity. Furthermore, for several studies that provided
no required outcome measures or had inconsistent outcome
measures, relevant estimation methods were used to calculate
the indicators, which might have led to a certain amount of
estimation error. However, the estimation error was small
enough to be accepted owing to an appropriate estimation
method, and the results of this study were further enriched.
However, future studies are required to report all relevant
outcome measures for further evaluation.

Future Directions
In future, more accurate ML models will be used for BG
management, which will certainly improve the quality of life
of patients with DM and reduce the burden of adverse BG
events. First, as mentioned before, current ML models have
relatively sufficient ability to predict BG levels and
hypoglycemia, and the fact that an extended PH is more
beneficial for increasing the time available for patients and

clinicians to respond still needs to be emphasized [15]. Hence,
future studies should focus on enhancing the performance of
ML models in longer PHs (ie, 60 minutes). Second, most of the
raw data from CGM devices are highly imbalanced due to the
low incidence of adverse BG events, which may lead to several
performance distortions. Previous studies have reported several
approaches to reduce the data imbalance, including
oversampling [71] and cost-based learning [15]. However, to
the best of our knowledge, few studies have investigated the
effectiveness of those approaches in BG management models,
which needs to be further studied in the future. Furthermore,
the high variability of BG levels in the human body due to
several factors, such as meal intake, high-intensity exercise, and
insulin dosage, creates challenges for ML models; thus, future
works need to integrate these factors with existing models to
further enhance their accuracy [22,51]. It is also necessary to
consider the computational complexity and convenience of use
for patients and physicians. Moreover, several studies have
implied that a combination of ML models and features extracted
from CGM profiles can achieve better predictability compared
to an ML model alone [15,56]. Recently, studies have focused
on more novel deep learning models, such as transformers,
which have also been proved clinically useful [72]. Therefore,
further studies that focus on optimizing the structure of an
ensemble method are needed to explore more models with a
new structure. Lastly, it should be mentioned that although
several studies have achieved high performance using relatively
small data set [29,31,32,35,39,47,57], which can reduce the
difficulty in model development, it also creates a concern about
whether this will decrease the generalization ability of the
models. Most of the models were developed and tested with a
certain data set, and few of them have been prospectively
validated in a clinical setting. Therefore, they need to be applied
in clinical practice and be updated, as needed, to provide
real-time feedback for the automatic collection of BG levels
and generate a basis for prompt medical intervention [73].

Conclusion
In summary, in predicting precise BG levels, the RMSE
increases with an increase in the PH, and the NNM shows the
relatively highest performance among all the ML models.
Meanwhile, according to the PLR and NLR, current ML models
have sufficient ability to predict adverse BG (hypoglycemia)
events, while their ability to detect adverse BG events needs to
be enhanced. Future studies are required to focus on improving
the performance and using ML models in clinical practice
[70,73].
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